Top-down derived modular and eclectic flavor symmetries

Saúl Ramos-Sánchez

Bethe Forum Bonn

May 3, 2022

From various collaborations with:

 A. Baur, M. Kade, H.P. Nilles & P. Vaudrevange: 2001.01736, 2004.05200, 2008.07534, 2010.13798, 2012.09586 & 2104.03981
 Y. Almumin, M-C. Chen, V. Knapp-Pérez, M. Ramos-Hamud, M. Ratz & S. Shukla: 1909.06910, 2102.11286 & 2108.02240

Saúl Ramos-Sánchez (UNAM - Mexico) Top-down derived flavor symmetries

The flavor puzzle and its potential solutions

Flavor puzzle

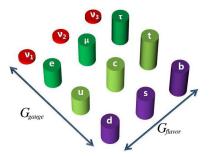
Despite the great success of the SM

$$\left(\begin{array}{cccc} 0.974 & 0.224 & 0.0039 \\ 0.218 & 0.997 & 0.042 \\ 0.008 & 0.039 & 1.019 \end{array}\right)_{CKM}, \qquad \left(\begin{array}{cccc} 0.829 & 0.539 & 0.147 \\ 0.493 & 0.584 & 0.645 \\ 0.262 & 0.607 & 0.75 \end{array}\right)_{PMNS}$$

$$\begin{split} m_{u_i} &\sim 2.16, 1270, 172900 \; {\rm MeV} & \Delta m_{21}^2 = 7.4 \cdot 10^{-5}, \Delta m_{31(23)}^2 \approx 2.5 \cdot 10^{-3} \; {\rm eV}^2 \\ m_{d_i} &\sim 4.67, 93, 4180 \; {\rm MeV} & m_{e_i} \sim 0.511, 105.7, 1776.9 \; {\rm MeV} \end{split}$$

normal ordering

<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

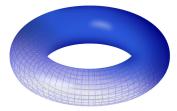


<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

flavon vev *alignment* is very challenging \bigcirc

<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

 $\begin{array}{ll} \underline{\text{Modular}:} \ \text{Yukawa couplings are modular forms } Y = Y(T) & \\ Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), & \gamma \in \Gamma = \text{SL}(2, \mathbb{Z}), \rho_Y \in \Gamma_N \end{array}$



<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

Matter fields transform similarly: $\phi \to (cT+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

 \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$

<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobavashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

 $\underline{\text{Modular}}: \text{ Yukawa couplings are modular forms } Y = Y(T)$ $Y(T) \to Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = \text{SL}(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \to (cT+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

 \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$

•
$$\Gamma_N\cong S_3, A_4, S_4, A_5$$
 for $N=2,3,4,5$
 $n_Y\in 2\mathbb{Z}$

 \Rightarrow 9 ν observables (m_{ν} , θ_{ij} , phases) by fixing 3 parameters!

<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobavashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

 $\underline{\text{Modular}}: \text{ Yukawa couplings are modular forms } Y = Y(T)$ $Y(T) \to Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = \text{SL}(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\bullet \ \Gamma_N \cong S_3, {\cal A}_4, S_4, {\cal A}_5 \quad \ {\rm for} \quad \ N=2,3,4,5$
- \bullet double cover $\Gamma'_N\cong S_3,T',{\rm SL}(2,4),{\rm SL}(2,5) \quad {\rm for} \quad N=2,3,4,5$ $n_Y\in \mathbb{Z}$

Liu, Ding(2019)

<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

 $\underline{\text{Modular}}: \text{ Yukawa couplings are modular forms } Y = Y(T)$ $Y(T) \to Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = \text{SL}(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\bullet \ \ \Gamma_N \cong S_3, {\cal A}_4, S_4, {\cal A}_5 \quad \ {\rm for} \quad \ N=2,3,4,5$
- 4-fold cover $\widetilde{\Gamma}_4 \cong [96, 67], \widetilde{\Gamma}_8 \cong [768, 1085324], \widetilde{\Gamma}_{12} \cong [2304, \ldots]$

 $n_Y \in \mathbb{Z}/2 \longrightarrow \text{metaplectic}$

Liu, Ding(2019); Liu, Yau, Qu, Ding(2020)

<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = SL(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\bullet \ \ \Gamma_N \cong S_3, A_4, S_4, A_5 \quad \ \text{for} \quad \ N=2,3,4,5$
- $\bullet \ \ {\rm double \ cover} \ \ \Gamma_N'\cong S_3, T', {\rm SL}(2,4), {\rm SL}(2,5) \quad \ {\rm for} \quad \ N=2,3,4,5$
- 4-fold cover $\widetilde{\Gamma}_4 \cong [96, 67], \widetilde{\Gamma}_8 \cong [768, 1085324], \widetilde{\Gamma}_{12} \cong [2304, \ldots]$
- Siegel modular groups $\Gamma_{g,N} \cong \operatorname{Sp}(2g,\mathbb{Z})/K_N$ with multiple moduli

Liu, Ding(2019); Liu, Yau, Qu, Ding(2020); Ding, Feruglio, Liu(2020)

<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

<u>Modular</u>: Yukawa couplings are modular forms Y = Y(T) $Y(T) \rightarrow Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = SL(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT+d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\bullet \ \Gamma_N \cong S_3, {\cal A}_4, S_4, {\cal A}_5 \quad \ {\rm for} \quad \ N=2,3,4,5$
- $\bullet \ \ {\rm double \ cover} \ \ \Gamma_N'\cong S_3, T', {\rm SL}(2,4), {\rm SL}(2,5) \quad \ {\rm for} \quad \ N=2,3,4,5$
- 4-fold cover $\widetilde{\Gamma}_4 \cong [96, 67], \widetilde{\Gamma}_8 \cong [768, 1085324], \widetilde{\Gamma}_{12} \cong [2304, \ldots]$
- Siegel modular groups $\Gamma_{g,N} \cong \mathrm{Sp}(2g,\mathbb{Z})/K_N$ with multiple moduli
- $\Gamma/\ker(\varrho)$ with vector-valued modular forms

Liu,Ding(2019); Liu,Yau,Qu,Ding(2020);Ding,Feruglio,Liu(2020);Ding,Liu(2021)

<u>Traditional</u>: discrete non-Abelian flavor symmetries $G_{traditional}$ lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

 $\underline{\text{Modular}}: \text{ Yukawa couplings are modular forms } Y = Y(T)$ $Y(T) \to Y(\gamma T) = (cT + d)^{n_Y} \rho_Y(\gamma) Y(T), \quad \gamma \in \Gamma = \text{SL}(2, \mathbb{Z}), \rho_Y \in \Gamma_N$

Matter fields transform similarly: $\phi \rightarrow (cT + d)^{n_{\phi}} \rho_{\phi}(\gamma) \phi$

- \Rightarrow finite modular groups $\Gamma_N =$ modular flavor symmetry $G_{modular}$
- $\bullet \ \Gamma_N \cong S_3, {\cal A}_4, S_4, {\cal A}_5 \quad \ {\rm for} \quad \ N=2,3,4,5$
- $\bullet \ \ {\rm double \ cover} \ \ \Gamma_N'\cong S_3, T', {\rm SL}(2,4), {\rm SL}(2,5) \quad \ {\rm for} \quad \ N=2,3,4,5$
- 4-fold cover $\widetilde{\Gamma}_4 \cong [96, 67], \widetilde{\Gamma}_8 \cong [768, 1085324], \widetilde{\Gamma}_{12} \cong [2304, \ldots]$
- Siegel modular groups $\Gamma_{g,N} \cong \operatorname{Sp}(2g,\mathbb{Z})/K_N$ with multiple moduli
- $\Gamma/\ker(\varrho)$ with vector-valued modular forms

Liu,Ding(2019); Liu,Yau,Qu,Ding(2020);Ding,Feruglio,Liu(2020);Ding,Liu(2021); King,Petcov,Penedo,Titov,... See their talks

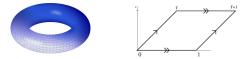
ullet Modulus T and modular transformations based on \mathbb{T}^2 torus

ullet Modulus T and modular transformations based on \mathbb{T}^2 torus

• Modulus T and modular transformations based on \mathbb{T}^2 torus

origin? *internal* torus? 2 extra dimensions?

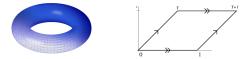
• Modulus T and modular transformations based on \mathbb{T}^2 torus



origin? internal torus? 2 extra dimensions?

• Several successful fits, mainly of lepton sector, but also quarks $T \sim \text{self-dual points}$, free W parameters $+ n_Y, n_{\phi}, \rho_Y(\gamma), \rho_{\phi}(\gamma)$ Is there a way to fix some of these parameters? See talks by Ferugio, King, Petcoy, Penedo, Titoy, Ding

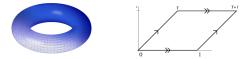
• Modulus T and modular transformations based on \mathbb{T}^2 torus



origin? internal torus? 2 extra dimensions?

- Several successful fits, mainly of lepton sector, but also quarks $T \sim \text{self-dual points}$, free W parameters $+ n_Y, n_{\phi}, \rho_Y(\gamma), \rho_{\phi}(\gamma)$ Is there a way to fix some of these parameters? See talks by Ferugio, King, Petcoy, Penedo, Titoy, Ding
- Low-energy SUSY $(typically with M_{pl} \rightarrow \infty)$ assumed modular forms without SUSY?

• Modulus T and modular transformations based on \mathbb{T}^2 torus



origin? internal torus? 2 extra dimensions?

- Several successful fits, mainly of lepton sector, but also quarks $T \sim \text{self-dual points}$, free W parameters $+ n_Y, n_{\phi}, \rho_Y(\gamma), \rho_{\phi}(\gamma)$ Is there a way to fix some of these parameters? See talks by Ferugio, King, Petcoy, Penedo, Titoy, Ding
- Low-energy SUSY $(typically with M_{pl} \rightarrow \infty)$ assumed modular forms without SUSY?
- Canonical Kähler potential $K_{ij} = \delta_{ij}$ additional terms/free parameters?

Challenge: Kähler potential not fixed by modular flavor symmetries Chen, SRS, Ratz (2019) Demanding modular invariance only:

$$K = \alpha_0 \qquad \underbrace{(\phi\bar{\phi})_1}_{\bullet}$$

canonical term

with
$$\alpha_0 = c_0 (-\mathrm{i}T + \mathrm{i}\bar{T})^{n_\phi}$$

with

Challenge: Kähler potential not fixed by modular flavor symmetries Chen, SRS, Ratz (2019) Demanding modular invariance only:

$$\begin{split} K &= \alpha_0(\phi\bar{\phi})_{\mathbf{1}} + \sum_{\substack{k \\ \text{sum over singlets}}} \alpha_k \underbrace{\left(\phi Y \bar{\phi} \bar{Y}\right)_{\mathbf{1},k}}_{\text{non-canonical terms}} \\ \alpha_0 &= c_0(-\mathrm{i}T + \mathrm{i}\bar{T})^{n_\phi} \quad \text{and} \quad \alpha_k = c_k(-\mathrm{i}T + \mathrm{i}\bar{T})^{n_\phi + n_Y} \end{split}$$

Challenge: Kähler potential not fixed by modular flavor symmetries Chen, SRS, Ratz (2019) Demanding modular invariance only:

$$K = \alpha_0 (\phi \bar{\phi})_1 + \sum_k \alpha_k \left(\phi Y \bar{\phi} \bar{Y} \right)_{1,k} + \text{smaller terms}$$

with
$$\alpha_0 = c_0 (-iT + i\overline{T})^{n_\phi}$$
 and $\alpha_k = c_k (-iT + i\overline{T})^{n_\phi + n_Y}$

Challenge: Kähler potential not fixed by modular flavor symmetries Chen, SRS, Ratz (2019) Demanding modular invariance only:

$$K = \alpha_0 (\phi \bar{\phi})_1 + \sum_k \alpha_k \left(\phi Y \bar{\phi} \bar{Y} \right)_{1,k} + \text{smaller terms}$$

with $\alpha_0 = c_0 (-iT + i\overline{T})^{n_{\phi}}$ and $\alpha_k = c_k (-iT + i\overline{T})^{n_{\phi} + n_Y}$ and $\mathcal{O}(\alpha_0) \sim \mathcal{O}(\alpha_k)$

Challenge: Kähler potential not fixed by modular flavor symmetries Chen, SRS, Ratz (2019) Demanding modular invariance only:

$$K = \alpha_0 (\phi \bar{\phi})_1 + \sum_k \alpha_k \left(\phi Y \bar{\phi} \bar{Y} \right)_{1,k} + \text{smaller terms}$$

with $\alpha_0 = c_0 (-iT + i\overline{T})^{n_{\phi}}$ and $\alpha_k = c_k (-iT + i\overline{T})^{n_{\phi} + n_Y}$ and $\mathcal{O}(\alpha_0) \sim \mathcal{O}(\alpha_k)$

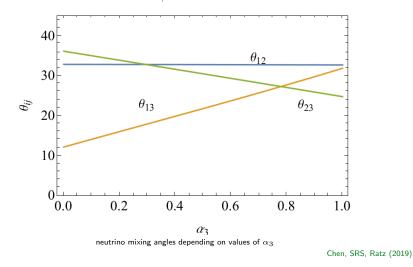
All α_k coefficients are "new" \rightarrow modify predictions!

Kähler problem in Feruglio's simplest A_4 model

Take $\Gamma_3 \cong A_4$ and $n_Y = 1 = -n_{\phi}$ for $\phi = L$

Kähler problem in Feruglio's simplest A_4 model

Take $\Gamma_3 \cong A_4$ and $n_Y = 1 = -n_{\phi}$ for $\phi = L$



In this talk

In this talk

Ideas towards solutions based on or inspired by string theory

• String compactifications (orbifolds)

In this talk

- String compactifications (orbifolds)
- Origin of traditional and modular flavor sym. in heterotic orbifolds

In this talk

- String compactifications (orbifolds)
- Origin of traditional and modular flavor sym. in heterotic orbifolds
- Eclectic flavor symmetries

In this talk

- String compactifications (orbifolds)
- Origin of traditional and modular flavor sym. in heterotic orbifolds
- Eclectic flavor symmetries
- Semi-realistic string models

In this talk

- String compactifications (orbifolds)
- Origin of traditional and modular flavor sym. in heterotic orbifolds
- Eclectic flavor symmetries
- Semi-realistic string models
- Siegel flavor symmetries

In this talk

- String compactifications (orbifolds)
- Origin of traditional and modular flavor sym. in heterotic orbifolds
- Eclectic flavor symmetries
- Semi-realistic string models
- Siegel flavor symmetries
- Metaplectic flavor symmetries (magnetized tori)

In this talk

- String compactifications (orbifolds)
- Origin of traditional and modular flavor sym. in heterotic orbifolds
- Eclectic flavor symmetries
- Semi-realistic string models
- Siegel flavor symmetries
- Metaplectic flavor symmetries (magnetized tori)
- Eclectic and quasi-eclectic pictures à la bottom-up

All about

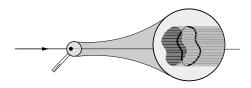
We have resources for all string-related topics

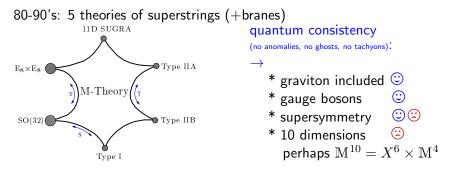
Saúl Ramos-Sánchez (UNAM - Mexico)

Top-down derived flavor symmetries

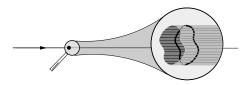
Strings

1970's: particles \rightarrow strings



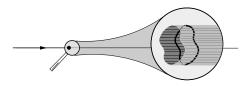


 $\mathsf{particles}\longleftrightarrow\mathsf{strings}$



- SUSY & 10D space-time
- matter fields get all their properties from string features
- field couplings arise from string interactions

 $\mathsf{particles}\longleftrightarrow\mathsf{strings}$

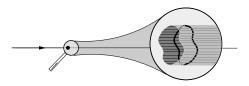


• SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

- matter fields get all their properties from string features
- field couplings arise from string interactions

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$



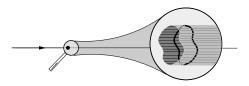
• SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

 \rightarrow geometric discrete symmetries & modular symmetries from 6D

- matter fields get all their properties from string features
- field couplings arise from string interactions

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$



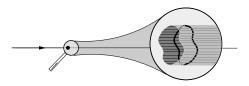
SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

 \rightarrow geometric discrete symmetries & modular symmetries from 6D

- matter fields get all their properties from string features
 <u>all</u> field charges are computable
- field couplings arise from string interactions

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$



SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

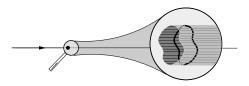
 \rightarrow geometric discrete symmetries & modular symmetries from 6D

- matter fields get all their properties from string features
 - \rightarrow all field charges are computable

 \rightarrow include discrete charges/representations & modular weights

• field couplings arise from string interactions

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$



SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

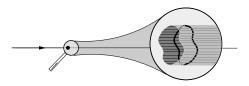
 \rightarrow geometric discrete symmetries & modular symmetries from 6D

- matter fields get all their properties from string features
 - \rightarrow all field charges are computable

 \rightarrow include discrete charges/representations & modular weights

- field couplings arise from string interactions
 - \rightarrow coupling strengths are computable

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$



SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

ightarrow geometric discrete symmetries & modular symmetries from 6D

- matter fields get all their properties from string features
 - \rightarrow all field charges are computable

 $\rightarrow\,$ include discrete charges/representations & modular weights

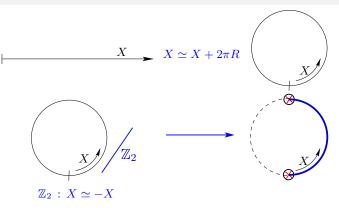
- field couplings arise from string interactions
 - \rightarrow coupling strengths are computable
 - \rightarrow couplings are modular forms with fixed properties

Flavor Symmetries in Heterotic Orbifolds

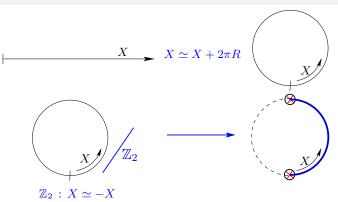
Heterotic Orbifolds

(in bosonic formulation)

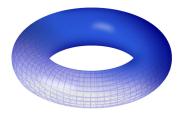
1D $\mathbb{S}^1/\mathbb{Z}_2$ orbifold

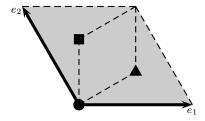


1D $\mathbb{S}^1/\mathbb{Z}_2$ orbifold

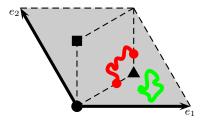


In general, an orbifold $\mathcal{O} := \mathbb{M}/S$ with a *d*-dimensional manifold \mathbb{M} space group $S = \{(\Theta, \lambda) \mid \Theta : \text{ rotation in d-dim}, \lambda : \text{ translation}\}$ e.g. $\mathbb{S}^1/\mathbb{Z}_2 \cong \mathbb{R}/S$ with $S = \langle (-1, 2\pi R) \rangle \to X \simeq -1X + 2\pi Rm$

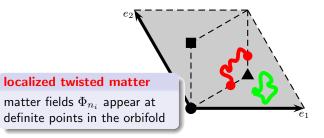




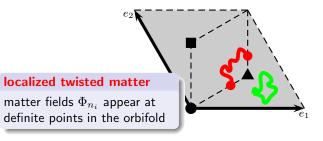
Matter at low energies arise from *closed strings*: some are free and some are fixed in compact space



Matter at low energies arise from *closed strings*: some are free and some are fixed in compact space



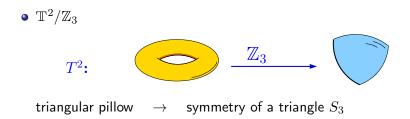
Matter at low energies arise from *closed strings*: some are free and some are fixed in compact space



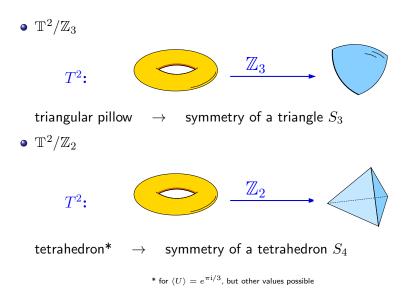
all matter properties are determined by the space group S:

- global and gauge symmetries, charges/representations,
- target-space modular properties (weights n_i and representations),...

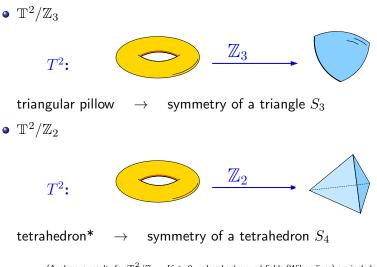
A first hint of (geometric) flavor symmetries



A first hint of (geometric) flavor symmetries



A first hint of (geometric) flavor symmetries



(Analogous results for $\mathbb{T}^2/\mathbb{Z}_K$, K > 2, unless background fields (Wilson lines) are included)

Saúl Ramos-Sánchez (UNAM - Mexico) Top-down derived flavor symmetries

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$
Groot-Nibbelink, Vaudrevange (2017)

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$

Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta = \mathbb{Z}_3$) on each 2D independent string component

 $\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$

Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta = \mathbb{Z}_3$) on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$$

Inspiration: \mathcal{CP} in SM is outer automorphism of the Lorentz group

Use Narain formalism: split string in independent components

$$X(au, \sigma) = X_R(\sigma - au) + X_L(\sigma + au)$$

Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta = \mathbb{Z}_3$) on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$$

Inspiration: CP in SM is outer automorphism of the Lorentz group What are the outer automorphisms of $S_{Narain} = \{g\}$?

$$Out(S_{Narain}) = \left\{ h = (\Sigma, t) \notin S_{Narain} \mid hgh^{-1} \in S_{Narain} \right\}$$

Rotations: $h_{\Sigma} = (\Sigma, 0) \rightarrow O(2, 2; \mathbb{Z})$, Translations: $h_t = (\mathbb{1}_4, t)$

Baur, Nilles, Trautner, Vaudrevange (2019)

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \left(\begin{array}{cc} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{array} \right), \qquad B = \operatorname{Re} T \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$$

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Baur, Nilles, Trautner, Vaudrevange (2019)

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric $G \Rightarrow$ also T, U !!

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Baur, Nilles, Trautner, Vaudrevange (2019)

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Baur, Nilles, Trautner, Vaudrevange (2019)

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Frautner, Vaudrevange (2019)

(:)

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric $G \Rightarrow$ also T, U !!

> (:) $\mathrm{SL}(2, Z)_T = \langle \mathrm{S}_T, \mathrm{T}_T \rangle, \quad \mathrm{SL}(2, Z)_U = \langle \mathrm{S}_U, \mathrm{T}_U \rangle$

M: mirror symmetry

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Baur, Nilles, Trautner, Vaudrevange (2019)

 $\operatorname{SL}(2,Z)_T = \langle S_T, T_T \rangle, \quad \operatorname{SL}(2,Z)_U = \langle S_U, T_U \rangle$

M: mirror symmetry, K_* : CP-like transformation \bigcirc Nilles, Ratz, Trautner, Vaudrevange (2018)

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

rautner, Vaudrevange (2019)

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric $G \Rightarrow$ also T, U !!

> $\operatorname{SL}(2, Z)_T = \langle \operatorname{S}_T, \operatorname{T}_T \rangle, \quad \operatorname{SL}(2, Z)_U = \langle \operatorname{S}_U, \operatorname{T}_U \rangle$ (:)

(:)M: mirror symmetry, K_* : CP-like transformation Nilles, Ratz, Trautner, Vaudrevange (2018); Novichkov, Penedo, Petcov, Titov (2019)

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Trautner, Vaudrevange (2019)

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric $G \Rightarrow$ also T, U !!

> (:) $\mathrm{SL}(2, Z)_T = \langle \mathrm{S}_T, \mathrm{T}_T \rangle, \quad \mathrm{SL}(2, Z)_U = \langle \mathrm{S}_U, \mathrm{T}_U \rangle$

(:)M: mirror symmetry, K_* : CP-like transformation Nilles, Ratz, Trautner, Vaudrevange (2018); Novichkov, Penedo, Petcov, Titov (2019)

Further, $\{h_t\}$ don't change T, U, but do transform fields \rightarrow traditional symmetry \bigcirc

Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

In fact: flavoring is better with strings! \bigcirc $Out(S_{Narain}) \supset$ traditional & modular symmetries

Baur, Nilles, Trautner, Vaudrevange (1901.03251, 1908.00805)

In fact: flavoring is better with strings! 🙂

 $Out(S_{Narain}) \supset$ traditional & modular symmetries Next: demand \mathbb{Z}_K orbifold invariance, act on fields, couplings

Modular weights n, representations and couplings of Φ_n not $ad \ hoc!$

Modular weights n, representations and couplings of Φ_n not ad hoc! \odot Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } SL(2,\mathbb{Z})_U$ $SL(2,\mathbb{Z})_U \to \mathbb{Z}_9^R$ due to $n \in \{-5/3, -1, -2/3, -1/3, 0, 2/3\}$ and $\Phi_n \xrightarrow{\gamma_U} \exp\{2\pi i R/9\} \Phi_n$ con $R = 3(-n+\alpha)$

Modular weights *n*, representations and couplings of Φ_n not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: $\langle U \rangle = \omega \implies \operatorname{SL}(2,\mathbb{Z})_U \rightarrow \mathbb{Z}_9^R$

Lauer, Mas, Nilles (1989)

By using CFT formalism, inspect $SL(2,\mathbb{Z})_T$ on the triplet of matter fields:

$$h_{\Sigma}: \rho(\mathbf{S}_T) = \frac{\mathrm{i}}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega^2 & \omega\\ 1 & \omega & \omega^2 \end{pmatrix}, \quad \rho(\mathbf{T}_T) = \begin{pmatrix} \omega^2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

 $ho(\mathrm{S}_T)$ and $ho(\mathrm{S}_T)$ build the reps. $\mathbf{2'}\oplus\mathbf{1}$ of modular group $\Gamma_3'=T'$ \bigcirc

$$\Phi_{n=-\frac{2}{3},-\frac{5}{3}} \xrightarrow{\mathbf{S}_T} (-T)^n \rho(\mathbf{S}_T) \Phi_n, \qquad \Phi_n \xrightarrow{\mathbf{T}_T} \rho(\mathbf{T}_T) \Phi_n$$

Common origin of modular and traditional flavor

Modular weights n, representations and couplings of Φ_n not ad hoc! ()Example $\mathbb{T}^2/\mathbb{Z}_3$: $\langle U \rangle = \omega \implies SL(2, \mathbb{Z})_U \rightarrow \mathbb{Z}_9^R$

By using CFT formalism, inspect $SL(2,\mathbb{Z})_T$ on the triplet of matter fields:

$$h_t: \rho(\mathbf{A}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \ \rho(\mathbf{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \ \rho(\mathbf{C}) = \rho(\mathbf{S}_T^2)$$

ho(A), ho(B) and ho(C) build the reps 3_2 and 3_1 of traditional flavor group $\Delta(54)$ for $\Phi_{-2/3}$ and $\Phi_{-5/3}$ f. also in Kobayashi, Plöger, Nilles, Raby, Ratz (2006)

Common origin of modular and traditional flavor

Modular weights n, representations and couplings of Φ_n not ad hoc! (())Example $\mathbb{T}^2/\mathbb{Z}_3: \langle U \rangle = \omega \implies SL(2, \mathbb{Z})_U \rightarrow \mathbb{Z}_9^R$ e_2 first eclectic flavor symmetry: traditional + modular flavor

 $\begin{aligned} G_{\text{traditional}} \cup G_{\text{modular}} &\cong (\Delta(54) \cup \mathbb{Z}_9^R) \cup T' \cong \Omega(2) = [1944, 3448] \\ \text{with } \mathcal{CP} : \, \Omega(2) \rtimes \mathbb{Z}_2^{\mathcal{CP}} \cong [3888, \ldots] \end{aligned}$

Baur, Nilles, Trautner, Vaudrevange (2019); Nilles, SRS, Vaudrevange (2020)

Common origin of modular and traditional flavor

Modular weights n, representations and couplings of Φ_n not ad hoc! \odot Example $\mathbb{T}^2/\mathbb{Z}_3$: $\langle U \rangle = \omega \implies \mathrm{SL}(2,\mathbb{Z})_U \rightarrow \mathbb{Z}_0^R$ Φ_{-1} $\Phi_{-2/3}$ $\Phi_{-5/3}$ Φ_0 $\Phi_{-1/3}$ $\Phi_{2/3}$ 1' 1 **3**2 $\mathbf{3}_1$ $\bar{\mathbf{3}}_2$ $\Delta(54)$ **3**1 $\mathbf{2}^{\prime}\oplus\mathbf{1}$ $\overline{\mathbf{2}''\oplus\mathbf{1}}$ $\overline{\mathbf{2}''\oplus\mathbf{1}}$ T'1 1 $\mathbf{2}' \oplus \mathbf{1}$ \mathbb{Z}_{9}^{R} 0 3 1 -225and $\mathbb{Z}_{2}^{\mathcal{CP}}$: $\Phi_{n} \xrightarrow{\mathcal{CP}} \overline{\Phi}_{n}$ $\forall n$

Baur, Nilles, Trautner, Vaudrevange (2019); Nilles, SRS, Vaudrevange (2020)

Top-down derived flavor symmetries

Modular forms as couplings in $\mathbb{T}^2/\mathbb{Z}_3$

Yukawa coupling coefficients \hat{Y} are modular forms!

modular	eclectic flavor group $\Omega(1)$							
forms	modular T' subgroup				$\ $ traditional $\Delta(54)$ subgroup			group
$\hat{Y}^{(n_Y)}_{s}$	irrep \boldsymbol{s}	irrep $\boldsymbol{s} \mid \rho_{\boldsymbol{s}}(\mathbf{S}) \mid \rho_{\boldsymbol{s}}(\mathbf{T}) \mid n_{Y}$				$\rho_{\boldsymbol{r}}(\mathbf{A})$	$\rho_{\boldsymbol{r}}(\mathbf{B})$	$\rho_{\boldsymbol{r}}(\mathbf{C})$
$\hat{Y}^{(1)}_{2''}$	2″	$\rho_{2''}(S)$	$\rho_{2''}(T)$	1	1	1	1	1
$\hat{Y}_{1}^{(4)}$	1	1	1	4	1	1	1	1
$\hat{Y}_{1'}^{(4)}$	1'	1	ω	4	1	1	1	1
$\hat{Y_{3}^{(4)}}$	3	$\rho_{3}(S)$	$\rho_{3}(T)$	4	1	1	1	1

$$\hat{Y}_{\mathbf{2}''}^{(1)} := \left(\begin{array}{c} \hat{Y}_1(T) \\ \hat{Y}_2(T) \end{array} \right) = \left(\begin{array}{c} -3\sqrt{2} & 0 \\ 3 & 1 \end{array} \right) \left(\begin{array}{c} \eta(3T)^3/\eta(T) \\ \eta(T/3)^3/\eta(T) \end{array} \right)$$

No arbitrary modular weights n_Y nor representations s! \bigcirc

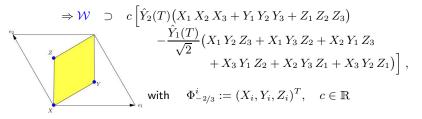
Superpotential and Kähler in $\mathbb{T}^2/\mathbb{Z}_3$

Restricted superpotential Baur, Nilles, Trautner, SRS, Vaudrevange (2021-22), see talks by Baur & Trautner

$$\Rightarrow \mathcal{W} \supset c \left[\hat{Y}_{2}(T) \left(X_{1} X_{2} X_{3} + Y_{1} Y_{2} Y_{3} + Z_{1} Z_{2} Z_{3} \right) \\ - \frac{\hat{Y}_{1}(T)}{\sqrt{2}} \left(X_{1} Y_{2} Z_{3} + X_{1} Y_{3} Z_{2} + X_{2} Y_{1} Z_{3} \\ + X_{3} Y_{1} Z_{2} + X_{2} Y_{3} Z_{1} + X_{3} Y_{2} Z_{1} \right) \right],$$

Superpotential and Kähler in $\mathbb{T}^2/\mathbb{Z}_3$

Restricted superpotential Baur, Nilles, Trautner, SRS, Vaudrevange (2021-22), see talks by Baur & Trautner



More interestingly

$$K = -\log(-iT + iT) + \sum_{i} \left[(-iT + iT)^{-2/3} + (-iT + iT)^{1/3} |\hat{Y}_{2''}^{(1)}|^2 + \dots \right] |\Phi_{-2/3}^{i}|^2$$

+ suppressed corrections with flavon fields

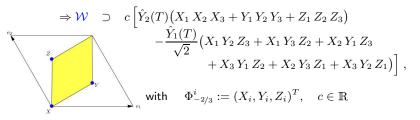
Only canonical terms are allowed

 \rightarrow predictivity of bottom-up models with Γ'_N recovered! \bigcirc

Nilles, SRS, Vaudrevange (2004.05200)

Superpotential and Kähler in $\mathbb{T}^2/\mathbb{Z}_3$

Restricted superpotential Baur, Nilles, Trautner, SRS, Vaudrevange (2021-22), see talks by Baur & Trautner



More interestingly

$$K = -\log(-iT + iT) + \sum_{i} \left[(-iT + iT)^{-2/3} + (-iT + iT)^{1/3} |\hat{Y}_{2''}^{(1)}|^2 + \dots \right] |\Phi_{-2/3}^{i}|^2$$

+ suppressed corrections with flavon fields

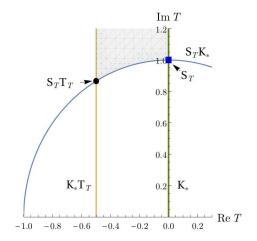
Only canonical terms are allowed (due to traditional symmetry) \rightarrow predictivity of bottom-up models with Γ'_N recovered! \bigcirc

Nilles, SRS, Vaudrevange (2004.05200)

 $\gamma T_{fp} \stackrel{!}{=} T_{fp} \quad \Rightarrow \quad G_{\text{stabilizer}} = \{\gamma\} \subset G_{\text{modular}} \text{ is traditional symmetry}$

 $\gamma T_{fp} \stackrel{!}{=} T_{fp} \Rightarrow G_{\text{stabilizer}} = \{\gamma\} \subset G_{\text{modular}} \text{ is traditional symmetry}$ enhanced $G_{\text{traditional}} = G_{\text{traditional}} \cup G_{\text{stabilizer}} \quad @ T = T_{fp}$

 $\gamma T_{fp} \stackrel{!}{=} T_{fp} \Rightarrow G_{\text{stabilizer}} = \{\gamma\} \subset G_{\text{modular}} \text{ is traditional symmetry}$ enhanced $G_{\text{traditional}} = G_{\text{traditional}} \cup G_{\text{stabilizer}} \quad \mathbb{Q} \quad T = T_{fp}$



 $\gamma T_{fp} \stackrel{!}{=} T_{fp} \Rightarrow G_{\text{stabilizer}} = \{\gamma\} \subset G_{\text{modular}} \text{ is traditional symmetry}$ enhanced $G_{\text{traditional}} = G_{\text{traditional}} \cup G_{\text{stabilizer}} \quad @ T = T_{fp}$

	stabilizer ge	nerators	unified flavor symmetries			
$\langle T \rangle$	non \mathcal{CP} -like	$\mathcal{CP} ext{-like}$	without \mathcal{CP}	with \mathcal{CP}		
i	S_T	K_*	$\Xi(2,2) \cong [324,111]$	[648, 548]		
ω	$S_T T_T$	K_*T_T	$H(3,2,1) \cong [486,125]$	[972, 469]		
$\operatorname{Re}\langle T \rangle = 0$		K_*	$\Delta'(54,2,1) \cong [162,44]$	[324, 125]		
$\operatorname{Re}\langle T \rangle = -1/2$		K_*T_T	$\Delta'(54,2,1) \cong [162,44]$	[324, 125]		
$ \langle T \rangle = 1$		$S_T K_*$	$\Delta'(54,2,1) \cong [162,44]$	[324, 125]		
$ (T / - 1) \qquad $						

Saúl Ramos-Sánchez (UNAM - Mexico)

Top-down derived flavor symmetries

Semi-realistic orbifold models

A model is semi-realistic (or MSSM-like) if it exhibits:

- $\mathcal{G}_{4D} = \mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \times \mathcal{G}_{hidden} \times \mathrm{U}(1)'^z$ gauge group
- $\bullet~\mathcal{G}_{hidden}$ admits gaugino condensates due to little hidden matter
- 3 families of quarks & leptons
- 2 (or more) Higgs doublets
- U(1)_Y admits traditional unification at some M_{GUT} , i.e. $\sin^2 \vartheta_w(M_{GUT}) = 3/8$
- The Yukawa of at least one up-type quark is trilinear (no flavons)
- All (most?) exotics can acquire masses $\sim M_s$

Promising models with electic $\Omega(2)$

[Olguín-Trejo, Pérez-Martínez, SRS (2018)]

symmetry	Z	4	Z	Z6-I		Z	Z ₆ -II	
geometry	2	3	1	2	1	2	3	4
# models	149	27	30	30	363	349	353	356
symmetry	\mathbb{Z}_7		\mathbb{Z}_8 -I		\mathbb{Z}_8	;-II	Z	Z ₁₂ -I
geometry	1	1	2	3	1	2	1	2
# models	1	268	246	389	2,023	505	556	555
symmetry	\mathbb{Z}_{12} -II				$\mathbb{Z}_2 \times \mathbb{Z}_2$			
geometry	1	1	2	3	5	6	7	8
# models	363	205	369	444	42	401	76	25
symmetry		$\mathbb{Z}_2 \times \mathbb{Z}_2$				$\mathbb{Z}_2 \times \mathbb{Z}_4$		
geometry	9	10	12	(1,1)	(1,6)	(2,1)	(2,4)	(3,1)
# models	27	21	3	10,580	86	6,158	328	22,305
symmetry			\mathbb{Z}_2	$\times \mathbb{Z}_4$			\mathbb{Z}_2	$\times \mathbb{Z}_6$ -I
geometry	(4,1)	(5,1)	(6,1)	(7,1)	(8,1)	(9,1)	1	2
# models	4,519	2,116	3,246	2,667	911	2,142	583	353
symmetry			$\mathbb{Z}_3{ imes}\mathbb{Z}_3$			\mathbb{Z}_3	$\langle \mathbb{Z}_6$	$\mathbb{Z}_4 \times \mathbb{Z}_4$
geometry	(1,1)	(1,4)	(2,1)	(3,1)	(4,1)	1	2	1
# models	1,108	8	1,952	6	215	4,493	540	28,649
symmetry		$\mathbb{Z}_4 \times \mathbb{Z}_4$		$\mathbb{Z}_6 \times \mathbb{Z}_6$	http://str	ringpheno.fis	ica.unam.m	x/stringflavor
geometry	2	3	4	1		12	1,246	
# models	9,853	5,522	4,730	3,696	5	semi-reali	stic mod	lels!

Top-down derived flavor symmetries

Also happens in models based on magnetized tori. See Ohki, Uemura, Watanabe (2020); Otsuka's talk(?)

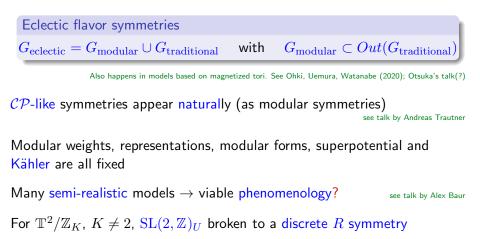
see talk by Andreas Trautner

 \mathcal{CP} -like symmetries appear naturally (as modular symmetries)

see talk by Andreas Trautner

Modular weights, representations, modular forms, superpotential and Kähler are all fixed

Many semi-realistic models \rightarrow viable phenomenology? see talk by Alex Baur



What happens with K = 2?

Siegel modular flavor group

from string theory

Baur, Kade, Nilles, SRS, Vaudrevange: 2008.07534, 2012.09586, 2104.03981

Orbifold $\mathbb{T}^2/\mathbb{Z}_2$

Translational outer automorphisms of S_{Narain} : $G_{\text{traditional}} = D_8 \times D_8 / \mathbb{Z}_2$

Orbifold $\mathbb{T}^2/\mathbb{Z}_2$

Translational outer automorphisms of S_{Narain} : $G_{\text{traditional}} = D_8 \times D_8 / \mathbb{Z}_2$ G_{modular} contains *everything* because $\langle U \rangle = \text{free}$

 $G_{\text{modular}} = (S_3^T \times S_3^U) \rtimes \mathbb{Z}_4^M \rtimes \mathbb{Z}_2^{\mathcal{CP}} \cup \mathbb{Z}_4^R$

Orbifold $\mathbb{T}^2/\mathbb{Z}_2$

Translational outer automorphisms of S_{Narain} : $G_{\text{traditional}} = D_8 \times D_8 / \mathbb{Z}_2$ G_{modular} contains *everything* because $\langle U \rangle = \text{free}$

 $G_{\text{modular}} = (S_3^T \times S_3^U) \rtimes \mathbb{Z}_4^M \rtimes \mathbb{Z}_2^{\mathcal{CP}} \cup \mathbb{Z}_4^R$

$\Phi_{(n_T,n_U)} =$	$\Phi_{(0,0)}$	$\Phi_{(-1,-1)}$	$\Phi_{(^{-1/2},^{-1/2})}$	$\Phi_{(-3/2,1/2)}$	$\Phi_{(1/2,-3/2)}$	$\hat{Y}^{(2)}_{4_3}$	\mathcal{W}
$D_8 \times D_8 / \mathbb{Z}_2$	1_0	1_0	4	4	4	1_0	1_0
$S_3^T \times S_3^U$	1_0	1_0	4_1	$(4_{1}\oplus$	(4_1)	4_3	1_0
n_T	0	-1	-1/2	-3/2	$^{1/2}$	2	-1
n_U	0	-1	-1/2	1/2	-3/2	2	-1
\mathbb{Z}_4^R	0	2	3	1	1	0	$2 \mod 4$

Modular transformations in $\mathbb{T}^2/\mathbb{Z}_2$

Observation: if T and U are included in a modulus matrix

$$\Omega := \left(\begin{array}{cc} T & 0 \\ 0 & U \end{array} \right) \qquad \text{subject to} \quad \operatorname{Im} \Omega > 0$$

all modular transformations (w/o K_*) are 4×4 matrices

$$\mathcal{M} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}(4, \mathbb{Z}) \qquad \text{e.g.} \quad \mathcal{M}_{(\gamma_T, \gamma_U)} = \begin{pmatrix} a_U & 0 & b_U & 0 \\ 0 & a_T & 0 & b_T \\ c_U & 0 & d_U & 0 \\ 0 & c_T & 0 & d_T \end{pmatrix}$$

with

$$\operatorname{Sp}(4,\mathbb{Z}) = \{\mathcal{M} \in \mathbb{Z}^{4 \times 4} | \mathcal{M}^T J \mathcal{M} = J\} \text{ and } J = \begin{pmatrix} 0 & \mathbb{1}_2 \\ -\mathbb{1}_2 & 0 \end{pmatrix}$$

Including K_* , we need

$$\operatorname{GSp}(4,\mathbb{Z}) = \{\mathcal{M} \in \mathbb{Z}^{4 \times 4} | \mathcal{M}^T J \mathcal{M} = \pm J\}$$

Saúl Ramos-Sánchez (UNAM - Mexico)

Top-down derived flavor symmetries

Modular transformations of $\mathbb{T}^2/\mathbb{Z}_2$ vs $\operatorname{Sp}(4,\mathbb{Z})$						
symmetry	symmetry $\operatorname{Sp}(4,\mathbb{Z})$		transformation of moduli			
$\mathrm{SL}(2,\mathbb{Z})_T$	$\mathcal{M}_{(\mathrm{S},\mathbb{1}_2)}$	S_{T}	$\begin{array}{c} T \to -\frac{1}{T} \\ U \to U \end{array}$			
51(2,2)1	$\mathcal{M}_{(\mathrm{T},\mathbb{1}_2)}$	T_T	$\begin{array}{c} T \to T+1 \\ U \to U \end{array}$			
$\mathrm{SL}(2,\mathbb{Z})_U$	$\mathcal{M}_{(\mathbb{1}_2,S)}$	\mathbf{S}_U	$\begin{array}{c} T \to T \\ U \to -\frac{1}{U} \end{array}$			
51(2, 2)0	$\mathcal{M}_{(\mathbb{1}_2,T)}$	T_{U}	$\begin{array}{c} T \to T \\ U \to U+1 \end{array}$			
Mirror	$\mathcal{M}_{ imes}$	М	$\begin{array}{c} T \to U \\ U \to T \end{array}$			
?	$\mathcal{M}(rac{\ell}{m})$?				
$\mathcal{CP} ext{-like}$	$\mathcal{M}_* \in \\ GSp(4,\mathbb{Z})$	K*	$\begin{array}{c} T \to -\bar{T} \\ U \to -\bar{U} \end{array}$			

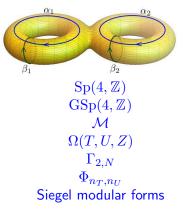
Modular transformations of $\mathbb{T}^2/\mathbb{Z}_2$ vs $\operatorname{Sp}(4,\mathbb{Z})$					
symmetry	$\operatorname{Sp}(4,\mathbb{Z})$	$\mathrm{O}_{\hat{\eta}}(2,2,\mathbb{Z})$	transformation of moduli		
$\mathrm{SL}(2,\mathbb{Z})_T$	$\mathcal{M}_{(S,\mathbb{1}_2)}$	S_{T}	$\begin{array}{c} T \to -\frac{1}{T} \\ U \to U \end{array}$		
51(2, 2)1	$\mathcal{M}_{(\mathrm{T},\mathbb{1}_2)}$	T_T	$\begin{array}{c} T \to T+1 \\ U \to U \end{array}$		
I	nclude continu	uous Wilson-	line modulus Z		
$\mathrm{SL}(2,\mathbb{Z})_U$	`	/	$a_2 + Ua_1, a_i \in \mathbb{R}$ $a_1 + \ell, a_2 \to a_2 + m$		
Mirror	$\ell,m\in\mathbb{Z}$				
WIITO					
?	$\mathcal{M}(rac{\ell}{m})$?			
CP-like	$\mathcal{M}_* \in \\ GSp(4,\mathbb{Z})$	K*	$\begin{array}{c} T \to -\bar{T} \\ U \to -\bar{U} \end{array}$		

Modular transformations of $\mathbb{T}^2/\mathbb{Z}_2$ vs $\operatorname{Sp}(4,\mathbb{Z})$							
symmetry	$\operatorname{Sp}(4,\mathbb{Z})$	$O_{\hat{\eta}}(2, 3, \mathbb{Z})$	transformation of moduli				
$\mathrm{SL}(2,\mathbb{Z})_T$	$\mathcal{M}_{(\mathrm{S},\mathbb{1}_2)}$	\mathbf{S}_T	$ \begin{array}{c} T \rightarrow -\frac{1}{T} \\ U \rightarrow U - \frac{Z^2}{T} \\ Z \rightarrow -\frac{Z}{T} \end{array} $				
())-	$\mathcal{M}_{(\mathrm{T},\mathbb{1}_2)}$	T_T	$T \to T + 1$ $U \to U$ $Z \to Z$				
$\mathrm{SL}(2,\mathbb{Z})_U$	$\mathcal{M}_{(\mathbb{1}_2,\mathrm{S})}$	S_U	$\begin{array}{l} T \to T - \frac{Z^2}{U} \\ U \to -\frac{1}{U} \\ Z \to -\frac{Z}{U} \end{array}$				
51(2,2)0	$\mathcal{M}_{(\mathbb{1}_2,T)}$	T_U	$T \to T$ $U \to U + 1$ $Z \to Z$				
Mirror	$\mathcal{M}_{ imes}$	М	$\begin{array}{c} T \to U \\ U \to T \\ Z \to Z \end{array}$				
Wilson line shift	$\mathcal{M}(^{\ell}_m)$	$\mathrm{W}(rac{\ell}{m})$	$T \to T + m (m U + 2 Z - \ell)$ $U \to U$ $Z \to Z + m U - \ell$				
\mathcal{CP} -like	$\mathcal{M}_* \in \\ \mathrm{GSp}(4,\mathbb{Z})$	K_{*}	$\begin{array}{c} T \to -\bar{T} \\ U \to -\bar{U} \\ Z \to -\bar{Z} \end{array}$				

Saúl Ramos-Sánchez (UNAM - Mexico)

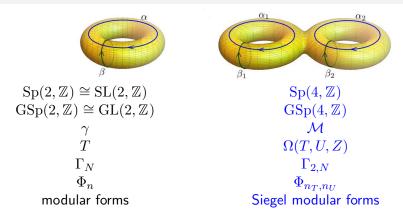
Top-down derived flavor symmetries

Origin of the Siegel modular flavor group



 $\begin{array}{l} \operatorname{Sp}(2,\mathbb{Z})\cong\operatorname{SL}(2,\mathbb{Z})\\ \operatorname{GSp}(2,\mathbb{Z})\cong\operatorname{GL}(2,\mathbb{Z})\\ & \gamma\\ & T\\ & \Gamma_N\\ & \Phi_n\\ \operatorname{modular \ forms} \end{array}$

Origin of the Siegel modular flavor group



Extend to $n_T \neq n_U$, new modular weight associated with Z? Find out the exact form of all transformations Compare with compactifications on CY Ishiguro, Kobayashi, Otsuka (2021)

Metaplectic flavor symmetries in the top-down approach

• $\widetilde{\Gamma} = Mp(2, \mathbb{Z})$: metaplectic group = double cover of $SL(2, \mathbb{Z})$

- $\widetilde{\Gamma} = Mp(2, \mathbb{Z})$: metaplectic group = double cover of $SL(2, \mathbb{Z})$
- $\widetilde{\Gamma} = \{\widetilde{\gamma} = (\gamma, \varphi(\gamma, T)) | \gamma \in \mathrm{SL}(2, \mathbb{Z}), \varphi(\gamma, T) = \pm (cT + d)^{1/2} \}$

- $\widetilde{\Gamma} = Mp(2, \mathbb{Z})$: metaplectic group = double cover of $SL(2, \mathbb{Z})$
- $\widetilde{\Gamma} = \{\widetilde{\gamma} = (\gamma, \varphi(\gamma, T)) | \gamma \in \mathrm{SL}(2, \mathbb{Z}), \varphi(\gamma, T) = \pm (cT + d)^{1/2} \}$
- Choice of phase (of multiplier system)

$$\widetilde{S} = (S, -\sqrt{-T}) \quad \& \quad \widetilde{T} = (T, +1), \qquad S, T \in \mathrm{SL}(2, \mathbb{Z})$$

- $\widetilde{\Gamma} = Mp(2, \mathbb{Z})$: metaplectic group = double cover of $SL(2, \mathbb{Z})$
- $\widetilde{\Gamma} = \{\widetilde{\gamma} = (\gamma, \varphi(\gamma, T)) | \gamma \in \mathrm{SL}(2, \mathbb{Z}), \varphi(\gamma, T) = \pm (cT + d)^{1/2} \}$
- Choice of phase (of multiplier system)

$$\widetilde{S} = (S, -\sqrt{-T}) \quad \& \quad \widetilde{T} = (T, +1), \qquad S, T \in \mathrm{SL}(2, \mathbb{Z})$$

• $\widetilde{\Gamma}$ is generated by \widetilde{S} and \widetilde{T} satisfying

$$\widetilde{S}^8 = (\mathbb{1}, +1) = (\widetilde{S}\widetilde{T})^3 \qquad \& \qquad \widetilde{S}^2\widetilde{T} = \widetilde{T}\widetilde{S}^2$$

- $\widetilde{\Gamma} = Mp(2, \mathbb{Z})$: metaplectic group = double cover of $SL(2, \mathbb{Z})$
- $\widetilde{\Gamma} = \{\widetilde{\gamma} = (\gamma, \varphi(\gamma, T)) | \gamma \in \mathrm{SL}(2, \mathbb{Z}), \varphi(\gamma, T) = \pm (cT + d)^{1/2} \}$
- Choice of phase (of multiplier system)

$$\widetilde{S} = (S, -\sqrt{-T}) \quad \& \quad \widetilde{T} = (T, +1), \qquad S, T \in \mathrm{SL}(2, \mathbb{Z})$$

• $\widetilde{\Gamma}$ is generated by \widetilde{S} and \widetilde{T} satisfying

$$\widetilde{S}^8 = (1, +1) = (\widetilde{S}\widetilde{T})^3 \qquad \& \qquad \widetilde{S}^2\widetilde{T} = \widetilde{T}\widetilde{S}^2$$

Product of metaplectic elements

$$(\gamma_1, \varphi(\gamma_1, T))(\gamma_2, \varphi(\gamma_2, T)) = (\gamma_1 \gamma_2, \varphi(\gamma_1, \gamma_2 T)\varphi(\gamma_2, T))$$

- $\widetilde{\Gamma} = Mp(2, \mathbb{Z})$: metaplectic group = double cover of $SL(2, \mathbb{Z})$
- $\widetilde{\Gamma} = \{\widetilde{\gamma} = (\gamma, \varphi(\gamma, T)) | \gamma \in \mathrm{SL}(2, \mathbb{Z}), \varphi(\gamma, T) = \pm (cT + d)^{1/2} \}$
- Choice of phase (of multiplier system)

$$\widetilde{S} = (S, -\sqrt{-T}) \quad \& \quad \widetilde{T} = (T, +1), \qquad S, T \in \mathrm{SL}(2, \mathbb{Z})$$

• $\widetilde{\Gamma}$ is generated by \widetilde{S} and \widetilde{T} satisfying

$$\widetilde{S}^8 = (\mathbb{1}, +1) = (\widetilde{S}\widetilde{T})^3 \qquad \& \qquad \widetilde{S}^2\widetilde{T} = \widetilde{T}\widetilde{S}^2$$

Product of metaplectic elements

$$(\gamma_1, \varphi(\gamma_1, T))(\gamma_2, \varphi(\gamma_2, T)) = (\gamma_1\gamma_2, \varphi(\gamma_1, \gamma_2 T)\varphi(\gamma_2, T))$$

• Note that Φ_n has $n \in \mathbb{Z}/2$!

Finite metaplectic flavor symmetries

Finite metaplectic groups:

$$\widetilde{\Gamma}_{4N} = \frac{\operatorname{Mp}(2,\mathbb{Z})}{\widetilde{\Gamma}(4N)}, \qquad \widetilde{\Gamma}(4N) : \text{metaplectic congruence subgroup}$$

whose generators satisfy

 $\widetilde{S}^8 = (\widetilde{S}\widetilde{T})^3 = \widetilde{T}^{4N} = (\mathbb{1}, +1), \quad \widetilde{S}^2\widetilde{T} = \widetilde{T}\widetilde{S}^2 \quad \& \quad \text{extra finiteness relations}$

Finite metaplectic flavor symmetries

Finite metaplectic groups:

$$\widetilde{\Gamma}_{4N} = \frac{\mathrm{Mp}(2,\mathbb{Z})}{\widetilde{\Gamma}(4N)}, \qquad \widetilde{\Gamma}(4N) : \text{metaplectic congruence subgroup}$$

whose generators satisfy

 $\widetilde{S}^8 = (\widetilde{S}\widetilde{T})^3 = \widetilde{T}^{4N} = (\mathbb{1},+1), \quad \widetilde{S}^2\widetilde{T} = \widetilde{T}\widetilde{S}^2 \quad \& \quad \text{extra finiteness relations}$

 $\Rightarrow \quad \widetilde{\Gamma}_4 \cong [96,67], \quad \widetilde{\Gamma}_8 \cong [768,1085324], \quad \widetilde{\Gamma}_{12} \cong [2304,\ldots]$

Finite metaplectic flavor symmetries

Finite metaplectic groups:

$$\widetilde{\Gamma}_{4N} = \frac{\operatorname{Mp}(2,\mathbb{Z})}{\widetilde{\Gamma}(4N)}, \qquad \widetilde{\Gamma}(4N) : \text{metaplectic congruence subgroup}$$

whose generators satisfy

 $\widetilde{S}^8 = (\widetilde{S}\widetilde{T})^3 = \widetilde{T}^{4N} = (\mathbb{1},+1), \quad \widetilde{S}^2\widetilde{T} = \widetilde{T}\widetilde{S}^2 \quad \& \quad \text{extra finiteness relations}$

 $\Rightarrow \quad \widetilde{\Gamma}_4 \cong [96, 67], \quad \widetilde{\Gamma}_8 \cong [768, 1085324], \quad \widetilde{\Gamma}_{12} \cong [2304, \ldots]$

Metaplectic modular forms $Y^{(n=1/2)}$ transform as

$$Y^{(n=1/2)}(\widetilde{\gamma}T) = \varphi(\widetilde{\gamma},T)\rho(\widetilde{\gamma})Y^{(n=1/2)}(T), \quad \rho(\widetilde{\gamma}) \in \widetilde{\Gamma}_{4N}$$

• Many semi-realistic models based on intersecting D-branes

Ibáñez, Uranga: String Theory and Particle Physics

• Many semi-realistic models based on intersecting D-branes

Ibáñez, Uranga: String Theory and Particle Physics

• They are dual to compactifications with magnetized tori

Cremades, Ibáñez, Marchesano (2003); Kobayashi, Ohki, Otsuka, ... see talk by Hajime Otsuka

• Many semi-realistic models based on intersecting D-branes

Ibáñez, Uranga: String Theory and Particle Physics

• They are dual to compactifications with magnetized tori

Cremades, Ibáñez, Marchesano (2003); Kobayashi, Ohki, Otsuka, ... see talk by Hajime Otsuka

• One can effectively compute couplings in D-brane models using magnetized tori

Cremades, Ibáñez, Marchesano (2004)

• Many semi-realistic models based on intersecting D-branes

Ibáñez, Uranga: String Theory and Particle Physics

- They are dual to compactifications with magnetized tori
 Cremades, Ibáñez, Marchesano (2003); Kobayashi, Ohki, Otsuka, ... see talk by Hajime Otsuka
- One can effectively compute couplings in D-brane models using magnetized tori

Cremades, Ibáñez, Marchesano (2004)

• Couplings are computed as intersections of effective "wave-functions" associated with matter fields

• Many semi-realistic models based on intersecting D-branes

Ibáñez, Uranga: String Theory and Particle Physics

- They are dual to compactifications with magnetized tori Cremades, Ibáñez, Marchesano (2003); Kobayashi, Ohki, Otsuka, ... see talk by Hajime Otsuka
- One can effectively compute couplings in D-brane models using magnetized tori

Cremades, Ibáñez, Marchesano (2004)

- Couplings are computed as intersections of effective "wave-functions" associated with matter fields
- Modular properties of fields reveal modular flavor symmetries 🙂

Kobayashi, Otsuka (2019-21); Ohki, Uemura, Watanabe (2020); Ishiguro, Kikuchi, Ogawa, Uchida, Kobayashi, Otsuka,...

Internal components of matter fields

Almumin, Chen, Knapp-Pérez, SRS, Ratz, Shukla (2021); Tatsuta (2021)

"Wave-functions" $\psi^{j,M}$: solutions to the Dirac equation on a torus background with M magnetic fluxes

$$\psi^{j,M}(z,T) = (2M \operatorname{Im} T)^{1/4} e^{\pi i M z \frac{\operatorname{Im} z}{\operatorname{Im} T}} \vartheta \begin{bmatrix} j/M \\ 0 \end{bmatrix} (Mz, MT)$$
$$0 \le j \le M - 1 \qquad \Rightarrow \qquad M \text{ zero modes or "flavors"}$$

Internal components of matter fields

Almumin, Chen, Knapp-Pérez, SRS, Ratz, Shukla (2021); Tatsuta (2021)

"Wave-functions" $\psi^{j,M}$: solutions to the Dirac equation on a torus background with M magnetic fluxes

$$\psi^{j,M}(z,T) = (2M \operatorname{Im} T)^{1/4} e^{\pi i M z \frac{\operatorname{Im} z}{\operatorname{Im} T}} \vartheta \begin{bmatrix} j/M \\ 0 \end{bmatrix} (Mz, MT)$$
$$0 \le j \le M - 1 \qquad \Rightarrow \qquad M \text{ zero modes or "flavors"}$$

M solutions build generators of an $M\mathchar`-dim$ vector space, whose elements transform as

$$\psi^M := (\psi^{0,M}, \dots, \psi^{M-1,M})^T \xrightarrow{\gamma} \varphi(\widetilde{\gamma}, T) \rho(\widetilde{\gamma}) \psi^M(z,T)$$

with

$$\rho(\widetilde{S})_{j\ell} = -\frac{e^{\pi i/4}}{\sqrt{M}} e^{2\pi i j\ell/M}, \qquad \rho(\widetilde{T})_{j\ell} = e^{\pi i j(1+j/M)} \delta_{j\ell}$$

Internal components of matter fields

Almumin, Chen, Knapp-Pérez, SRS, Ratz, Shukla (2021); Tatsuta (2021)

"Wave-functions" $\psi^{j,M}$: solutions to the Dirac equation on a torus background with M magnetic fluxes

$$\psi^{j,M}(z,T) = (2M \operatorname{Im} T)^{1/4} e^{\pi i M z \frac{\operatorname{Im} z}{\operatorname{Im} T}} \vartheta \begin{bmatrix} j/M \\ 0 \end{bmatrix} (Mz, MT)$$
$$0 \le j \le M - 1 \qquad \Rightarrow \qquad M \text{ zero modes or "flavors"}$$

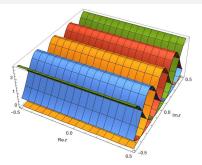
M solutions build generators of an $M\mathchar`-dim$ vector space, whose elements transform as

$$\psi^M := (\psi^{0,M}, \dots, \psi^{M-1,M})^T \xrightarrow{\gamma} \varphi(\widetilde{\gamma}, T) \rho(\widetilde{\gamma}) \psi^M(z,T)$$

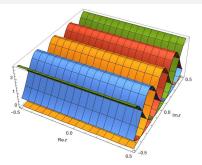
with

$$\rho(\widetilde{S})_{j\ell} = -\frac{e^{\pi i/4}}{\sqrt{M}} e^{2\pi i j\ell/M}, \qquad \rho(\widetilde{T})_{j\ell} = e^{\pi i j(1+j/M)} \delta_{j\ell}$$

Valid for all M, also $M = 3 \bigcirc$



$$Y_{ijk}(\tilde{\zeta},T) = g \int d^2 z \psi^{i,M_1} \psi^{j,M_2} (\psi^{k,M_3})^* \propto \vartheta \begin{bmatrix} \frac{\text{fluxes}}{\lambda} \\ 0 \end{bmatrix} (\tilde{\zeta}/d,\lambda T)$$
$$\lambda = \text{lcm}(\# \text{flavors})$$



$$Y_{ijk}(\tilde{\zeta},T) = g \int d^2 z \psi^{i,M_1} \psi^{j,M_2} (\psi^{k,M_3})^* \propto \vartheta \begin{bmatrix} \frac{\mathrm{fluxes}}{\lambda} \\ 0 \end{bmatrix} (\tilde{\zeta}/d,\lambda T)$$

 $\lambda = \operatorname{lcm}(\# \operatorname{flavors})$

 Y_{ijk} are accommodated in vectors with components $Y_{\hat{lpha}}$

$$\begin{split} Y_{ijk}(\tilde{\zeta},T) &= g \int d^2 z \psi^{i,M_1} \psi^{j,M_2} (\psi^{k,M_3})^* \propto \vartheta \begin{bmatrix} \frac{\text{fluxes}}{\lambda} \\ 0 \end{bmatrix} (\tilde{\zeta}/d,\lambda T) \\ \lambda &= \text{lcm}(\# \text{ flavors}) \end{split}$$

 Y_{ijk} are accommodated in vectors with components $Y_{\hat{\alpha}}$ Their transformations are given by

$$\begin{split} Y_{ijk}(\tilde{\zeta},T) &= g \int d^2 z \psi^{i,M_1} \psi^{j,M_2} (\psi^{k,M_3})^* \propto \vartheta \begin{bmatrix} \frac{\text{fluxes}}{\lambda} \\ 0 \end{bmatrix} (\tilde{\zeta}/d,\lambda T) \\ \lambda &= \text{lcm}(\# \text{ flavors}) \end{split}$$

 Y_{ijk} are accommodated in vectors with components $Y_{\hat{\alpha}}$ Their transformations are given by

$$Y_{\hat{\alpha}} \xrightarrow{\gamma} \varphi(\widetilde{\gamma}, T) \rho(\widetilde{\gamma})_{\hat{\alpha}\hat{\beta}} Y_{\hat{\beta}}$$

with

$$\rho(\widetilde{S})_{\hat{\alpha}\hat{\beta}} = -\frac{e^{\pi \mathrm{i}/4}}{\sqrt{\lambda}}e^{2\pi \mathrm{i}\hat{\alpha}\hat{\beta}/\lambda}, \qquad \rho(\widetilde{T})_{\hat{\alpha}\hat{\beta}} = e^{\pi \mathrm{i}\hat{\alpha}^2/\lambda}\delta_{\hat{\alpha}\hat{\beta}}$$

wich are representations of $\widetilde{\Gamma}_{2\lambda}$ \bigcirc

From top-down to bottom-up

eclectic flavor symmetries

Key observation: T' is subgroup of $Out(\Delta(54))$ \bigcirc

Key observation: T' is subgroup of $Out(\Delta(54))$ \bigcirc

Recipe to get the eclectic flavor group associated with a $G_{\text{traditional}}$: • Determine $Out(G_{\text{traditional}})$

Key observation: T' is subgroup of $Out(\Delta(54))$ \bigcirc

- Determine $Out(G_{traditional})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations

Key observation: T' is subgroup of $Out(\Delta(54))$ \bigcirc

- Determine $Out(G_{traditional})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields

Key observation: T' is subgroup of $Out(\Delta(54))$ \bigcirc

- Determine $Out(G_{traditional})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which G_{modular} is generated (via e.g. GAP)

Key observation: T' is subgroup of $Out(\Delta(54))$ \bigcirc

- Determine $Out(G_{traditional})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which G_{modular} is generated (via e.g. GAP)
- $G_{\text{eclectic}} \cong \text{multiplicative closure of } G_{\text{traditional}}$ and G_{modular}

Key observation: T' is subgroup of $Out(\Delta(54))$ \bigcirc

- Determine $Out(G_{traditional})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which G_{modular} is generated (via e.g. GAP)
- $G_{\text{eclectic}} \cong \text{multiplicative closure of } G_{\text{traditional}}$ and G_{modular}
- Verify whether there is a third (class-inverting) outer automorphism acting as a \mathbb{Z}_2 *CP*-like transformation to further enhance the eclectic flavor symmetry

flavor group	GAP	$\operatorname{Aut}(\mathcal{G}_{\mathrm{fl}})$	finite mo	eclectic flavor	
$\mathcal{G}_{\mathrm{fl}}$	ID		grouj	group	
Q_8	[8, 4]	S_4	without \mathcal{CP} S_3		GL(2,3)
	5 14 155		with \mathcal{CP}		
$\mathbb{Z}_3 imes \mathbb{Z}_3$	[9, 2]	GL(2,3)	without \mathcal{CP}	S_3	$\Delta(54)$
			with \mathcal{CP}	$S_3 \times \mathbb{Z}_2$	[108, 17]
A_4	[12, 3]	S_4	without \mathcal{CP}	S_3	S_4
				S_4	S_4
			with \mathcal{CP}	100	-
T'	[24, 3]	S_4	without \mathcal{CP}	S_3	GL(2,3)
	C. C. MAR		with \mathcal{CP}	-	
$\Delta(27)$	[27, 3]	[432,734]	without \mathcal{CP}	S_3	$\Delta(54)$
	20 III III			T'	$\Omega(1)$
			with \mathcal{CP}	$S_3 \times \mathbb{Z}_2$	[108, 17]
204 - 2008 CO 204				$\operatorname{GL}(2,3)$	[1296, 2891]
$\Delta(54)$	[54, 8]	[432, 734]	without \mathcal{CP}	T'	$\Omega(1)$
			with \mathcal{CP}	$\operatorname{GL}(2,3)$	[1296, 2891]

Nilles, SR-S, Vaudrevange (2001.01736)

Quasi-eclectic symmetries for model building

Quasi-Electic realization

of a simple lepton model

		C	hen, Kn	app-Pére	z, Rai	nos-Ha	mud, SF	RS, Ratz	, Shukla	a (2021)
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{ m traditional}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: *quasi-eclectic* picture $G_{\text{modular}} \times G_{\text{traditional}}$

			C	hen, Kn	app-Pére	z, Ra	mos-Ha	mud, Sl	RS, Ratz	, Shukla	a (2021)
_		$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
	$A_4^{\mathrm{traditional}}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
	Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
-	modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

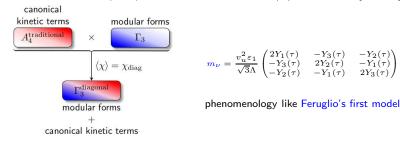
Alternative to eclectic: *quasi-eclectic* picture $G_{\text{modular}} \times G_{\text{traditional}}$ Inherits control over the Kähler potential because of $G_{\text{traditional}}$

		C	hen, Kn	app-Pére	ez, Ra	mos-Ha	mud, Sl	RS, Ratz	, Shukla	a (2021)
	$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
$A_4^{\mathrm{traditional}}$	$(\boldsymbol{1}_0,\boldsymbol{1_2},\boldsymbol{1_1})$	3	1_0	1_0	3	3	1_0	1_0	1_0	
Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
modular weights	s (1,1,1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: *quasi-eclectic* picture $G_{\text{modular}} \times G_{\text{traditional}}$ Inherits control over the Kähler potential because of $G_{\text{traditional}}$ Choose flavon χ : (3,3) and a diagonal VEV $\langle \chi \rangle = v_1 \operatorname{diag}\{1,1,1\}$

			C	hen, Kn	app-Pére	ez, Rai	nos-Ha	mud, Sl	RS, Ratz	, Shukla	a (2021)
_		$(E_1^{\mathcal{C}}, E_2^{\mathcal{C}}, E_3^{\mathcal{C}})$	L	H_d	H_u	χ	φ	S_{χ}	S_{φ}	Y	
	$A_4^{\mathrm{traditional}}$	$({f 1}_0,{f 1}_2,{f 1}_1)$	3	1_0	1_0	3	3	1_0	1_0	1_0	
	Γ_3	1_0	1_0	1_0	1_0	3	1_0	1_0	1_0	3	
	modular weights	(1, 1, 1)	-1	0	0	0	0	0	0	2	

Alternative to eclectic: *quasi-eclectic* picture $G_{\text{modular}} \times G_{\text{traditional}}$ Inherits control over the Kähler potential because of $G_{\text{traditional}}$ Choose flavon χ : (3,3) and a diagonal VEV $\langle \chi \rangle = v_1 \operatorname{diag}\{1,1,1\}$



Saúl Ramos-Sánchez	(UNAM - Mexico)	
--------------------	-----------------	--

Top-down derived flavor symmetries

In summary

• Finite modular flavor symmetries are great, but have open questions

- Finite modular flavor symmetries are great, but have open questions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = traditional ∪ modular symmetries

- Finite modular flavor symmetries are great, but have open questions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = traditional ∪ modular symmetries
- $\bullet\,$ In string models: moduli, modular weights, representations, charges of Φ and Y

- Finite modular flavor symmetries are great, but have open questions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = traditional ∪ modular symmetries
- $\bullet\,$ In string models: moduli, modular weights, representations, charges of Φ and Y
- In T²Z₂: natural to include Siegel flavor groups with 3rd modulus = Wilson line

- Finite modular flavor symmetries are great, but have open questions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = traditional ∪ modular symmetries
- $\bullet\,$ In string models: moduli, modular weights, representations, charges of Φ and Y
- In T²Z₂: natural to include Siegel flavor groups with 3rd modulus = Wilson line
- In magnetized tori: metaplectic flavor symmetries $\widetilde{\Gamma}_{4N}$ are direct first time obtained explicitly in top-down

- Finite modular flavor symmetries are great, but have open questions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = traditional ∪ modular symmetries
- $\bullet\,$ In string models: moduli, modular weights, representations, charges of Φ and Y
- In T²Z₂: natural to include Siegel flavor groups with 3rd modulus = Wilson line
- In magnetized tori: metaplectic flavor symmetries $\widetilde{\Gamma}_{4N}$ are direct first time obtained explicitly in top-down
- *Eclectic* and *Quasi eclectic* flavors appear in bottom-up

- Finite modular flavor symmetries are great, but have open questions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = traditional ∪ modular symmetries
- $\bullet\,$ In string models: moduli, modular weights, representations, charges of Φ and Y
- In T²Z₂: natural to include Siegel flavor groups with 3rd modulus = Wilson line
- In magnetized tori: metaplectic flavor symmetries $\widetilde{\Gamma}_{4N}$ are direct first time obtained explicitly in top-down
- *Eclectic* and *Quasi eclectic* flavors appear in bottom-up
- In string models, more useful constraints: matter modular weights, representations and charges defined by compactification

Concluding remarks

- Finite modular flavor symmetries are great, but have open questions
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = traditional ∪ modular symmetries
- $\bullet\,$ In string models: moduli, modular weights, representations, charges of Φ and Y
- In $\mathbb{T}^2\mathbb{Z}_2$: natural to include Siegel flavor groups with 3rd modulus = Wilson line
- In magnetized tori: first time obtained ε
- Eclectic and Quasi
- In string models, me matter modular weig compactification

• pheno & *eclectic* breakdown

see Baur's talk

see Trautner's talk

• moduli stabilization ?

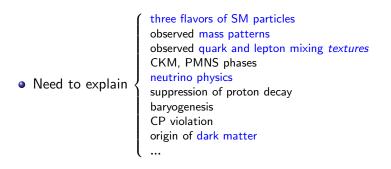
• \mathcal{CP} and \mathcal{CP} violation ?

- complete Siegel picture ?
- non-supersymmetric constructions ?

Just in case...

Backup slides

Some things we *don't* know



• Many proposed non-Abelian flavor (discrete) symmetries that (can) answer some of these questions

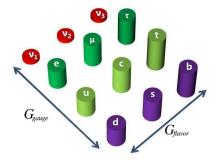
We do know: flavor symmetries...

• Extension of the group of symmetries of SM particles

 $G_{\mathsf{SM}} \times G_{flavor}$

Typically $G_{flavor} \subset SU(3)$

• Matter transforms under G_{flavor} , relating families



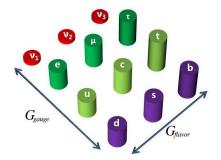
We do know: flavor symmetries...

• Extension of the group of symmetries of SM particles

 $G_{\mathsf{SM}} \times G_{flavor}$

Typically $G_{flavor} \subset SU(3)$

• Matter transforms under G_{flavor} , relating families

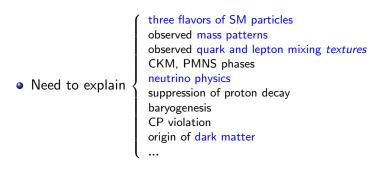


More technically, the Lagrangian is invariant under

$$\begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \xrightarrow{g} \rho(g) \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}, \quad \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} = \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix}, \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}, \begin{pmatrix} u' \\ c' \\ t' \end{pmatrix}, \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}$$

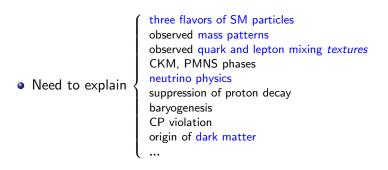
for (reducible or non-reducible triplet) matrix reps. $\rho(g), g \in G_{flavor}$ \Rightarrow mixtures of quarks in V_{CKM} and of leptons in U_{PMNS}

Yet again, back to some things we don't know



• Many proposed non-Abelian flavor (discrete) symmetries that (can) answer some of these questions

Yet again, back to some things we don't know



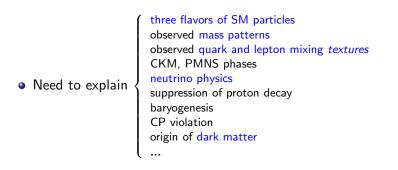
 Many proposed non-Abelian flavor (discrete) symmetries that (can) answer some of these questions

$$S_3, D_4, Q_8, A_4, T_7, S_4, T', \Delta(27), \Delta(54), A_5, \Sigma(168), \dots$$

see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010)

and Freuglio, Romanino (2019)

Yet again, back to some things we don't know



 Many proposed non-Abelian flavor (discrete) symmetries that (can) answer some of these questions and yield some *predictions*

$$S_3, D_4, Q_8, A_4, T_7, S_4, T', \Delta(27), \Delta(54), A_5, \Sigma(168), \dots$$

see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010)

and Freuglio, Romanino (2019)

How to proceed with *traditional* flavor symmetries

• Take your favorite traditional flavor symmetry G_{flavor}

 $S_3, D_4, Q_8, A_4, T_7, S_4, T', \Delta(27), \Delta(54), A_5, \Sigma(168), \dots$

• Choose your favorite representations for quark and lepton fields

e.g. quark doublets $\ Q$ as $\mathbf 3$ or $\mathbf 1 \oplus \mathbf 1' \oplus \mathbf 1''$ of A_4, \dots

• Write your G_{flavor} -invariant Lagrangian $\mathcal L$ or superpotential W

e.g.
$$\mathcal{L} \supset -y_{ij}^u \phi^* Q^i \bar{u}^j - y_{ij}^d \phi Q^i \bar{d}^j - y_{ij}^e \phi^* L^i \bar{e}^j - \frac{\lambda_{ij}}{\Lambda} L_i \phi \bar{L}_j \phi^*$$

- Introduce some flavon field s in some nontrivial representation, then give it a vev e.g. $\langle s \rangle = v_s(1,0,\ldots)^T$ to break G_{fl}
- EW breakdown with $\langle \phi \rangle \neq 0$
- Diagonalize quark and lepton matrices to compute V_{CKM} and U_{PMNS} and adjust couplings and vevs to data

Modular Flavor Symmetries

Modular

Flavor Symmetries

Saúl Ramos-Sánchez (UNAM - Mexico) Top-down derived flavor symmetries

"Simplest" modular group: $SL(2,\mathbb{Z})$

$$\gamma \in \mathrm{SL}(2,\mathbb{Z}): \quad \gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right), \qquad \det \gamma = ad - bc = 1$$

generators:
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
general *presentation*: $\langle S, T | S^4 = (ST)^3 = 1$, $S^2T = TS^2 \rangle$

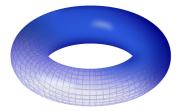
"Simplest" modular group: $SL(2,\mathbb{Z})$

$$\gamma \in \mathrm{SL}(2,\mathbb{Z}): \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad \det \gamma = ad - bc = 1$$

generators:
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

general *presentation*: $\langle S, T | S^4 = (ST)^3 = 1, S^2T = TS^2 \rangle$

Describe deformations of a torus \mathbb{T}^2 defined by a modulus T



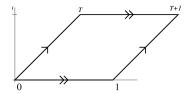
"Simplest" modular group: $SL(2,\mathbb{Z})$

$$\gamma \in \mathrm{SL}(2,\mathbb{Z}): \quad \gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right), \qquad \det \gamma = ad - bc = 1$$

generators:
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

general *presentation*: $\langle S, T | S^4 = (ST)^3 = 1, S^2T = TS^2 \rangle$

Describe deformations of a torus \mathbb{T}^2 defined by a modulus T



"Simplest" modular group: $SL(2,\mathbb{Z})$

$$\gamma \in \mathrm{SL}(2,\mathbb{Z}): \quad \gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right), \qquad \det \gamma = ad - bc = 1$$

generators:
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

general *presentation*: $\langle S, T | S^4 = (ST)^3 = 1, S^2T = TS^2 \rangle$

Describe deformations of a torus \mathbb{T}^2 defined by a modulus T

$$T \xrightarrow{\gamma} \frac{aT+b}{cT+d} \Rightarrow T \xrightarrow{S} -\frac{1}{T}, \qquad T \xrightarrow{T} T+1$$

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = \mathbb{1} \mod N \}$$

are normal subgroups of $SL(2,\mathbb{Z})$

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = 1 \mod N \}$$

are normal subgroups of $SL(2,\mathbb{Z})$

(Double-cover) finite modular subgroups: $\Gamma'_N \cong SL(2,\mathbb{Z})/\Gamma(N)$

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = 1 \mod N \}$$

are normal subgroups of $SL(2,\mathbb{Z})$

(Double-cover) finite modular subgroups: $\Gamma'_N \cong SL(2,\mathbb{Z})/\Gamma(N)$

$$\begin{split} \Gamma'_{N} &= \left\langle \mathbf{S}, \mathbf{T} \, | \, \mathbf{S}^{4} = (\mathbf{S}\mathbf{T})^{3} = T^{N} = \mathbb{1}, \quad \mathbf{S}^{2}\mathbf{T} = \mathbf{T}\mathbf{S}^{2}, \qquad N = 2, 3, 4, 5 \right\rangle \\ \Gamma'_{2} &\cong S_{3}, \ \Gamma'_{3} \cong T', \ \Gamma_{4} \cong \mathrm{SL}(2, 4), \ \Gamma_{5} \cong \mathrm{SL}(2, 5), \dots \\ & \text{e.g. Liu, Ding (2019)} \end{split}$$

Finite modular subgroups: $\Gamma_N \cong PSL(2,\mathbb{Z})/\overline{\Gamma}(N)$ (PSL(2, \mathbb{Z}) \cong SL(2, \mathbb{Z})/{±1})

$$\Gamma_N = \langle S, T | S^2 = (ST)^3 = T^N = 1, N = 2, 3, 4, 5 \rangle$$

 $\Gamma_2 \cong S_3, \ \Gamma_3 \cong A_4, \ \Gamma_4 \cong S_4, \ \Gamma_5 \cong A_5, \dots, \Gamma_7 \cong \Sigma(168), \dots$

e.g. de Adelhaart, Feruglio, Hagedorn (2011)

Thus far, models with modular flavor symmetries are supersymmetric

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e,\mu,\tau)^T, (u,c,t)^T, \ldots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i}

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e,\mu,\tau)^T, (u,c,t)^T, \dots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i} Couplings $\hat{Y}^{(n_Y)}(T)$ are modular forms

$$W \supset \sum \hat{Y}^{(n_Y)}(T) \Phi_{n_1} \Phi_{n_2} \Phi_{n_3}, \qquad \hat{Y}^{(n_Y)} \xrightarrow{\gamma} (cT+d)^{n_Y} \rho(\gamma) \hat{Y}^{(n_Y)}$$

 n_Y : modular weight, $\rho(\gamma)$: matrix rep. of γ for $\hat{Y}^{(n_Y)}(T)$

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e,\mu,\tau)^T, (u,c,t)^T, \dots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i} Couplings $\hat{Y}^{(n_Y)}(T)$ are modular forms

$$W \supset \sum \hat{Y}^{(n_Y)}(T) \Phi_{n_1} \Phi_{n_2} \Phi_{n_3}, \qquad \hat{Y}^{(n_Y)} \xrightarrow{\gamma} (cT+d)^{n_Y} \rho(\gamma) \hat{Y}^{(n_Y)}$$

 n_Y : modular weight, $ho(\gamma)$: matrix rep. of γ for $\hat{Y}^{(n_Y)}(T)$ Admissible iff

$$W(\Phi_{n_1},\ldots) \xrightarrow{\gamma} (cT+d)^{-1} \mathbb{1} W(\Phi_{n_1},\ldots), \qquad \text{i.e. } n_Y + \sum n_i = -1, \quad \prod \rho(\gamma) = 1$$

Note the nontrivial *automorphy factor* $(cT+d)^{-1} \rightarrow W$ covariant

How to proceed with modular flavor symmetries

- Take your favorite symmetry: $G_{mod} = \Gamma_N \in \{S_3, A_4, S_4, A_5, \ldots\}$
- $\bullet\,$ Choose your favorite representations $\rho(\gamma)$ for quark and lepton fields

e.g. quark doublets Q as 3 or $\mathbf{1} \oplus \mathbf{1}' \oplus \mathbf{1}''$ of $\Gamma_3 \cong A_4, \dots$

- Pick your favorite modular weights n_i and n_Y
- Write your G_{mod} -covariant superpotential W

e.g.
$$W \supset \hat{Y}^u H_u Q \bar{u} + \hat{Y}^d H_d Q \bar{d} + \hat{Y}^e H_d L \bar{e} + \frac{\hat{Y}}{\Lambda} L H_u L H_u$$

- Take your favorite inv. Kähler potential K; typical choice $K=\sum |\Phi_{n_i}|^2$ MANY other modular invariant K possible! - Chen, SR-S, Ratz (1909.06910)
- Choose a $\langle T \rangle \neq 0 \quad \rightarrow \quad$ nontrivial rep. of $\hat{Y}(\langle T \rangle)$ breaks G_{mod}
- EW breakdown with $\langle H_u \rangle, \langle H_d \rangle \neq 0$
- Diagonalize quark and lepton matrices to compute V_{CKM} and U_{PMNS} and adjust only $\langle T \rangle$ to data

Saúl Ramos-Sánchez (UNAM - Mexico)

<u>Traditional</u>: traditional flavor groups good for pheno: models for quarks and models for leptons exist "predictions" of tribimaximal mixing, $\theta_{13} \neq 0,...$

<u>Traditional</u>: traditional flavor groups good for pheno: models for quarks and models for leptons exist "predictions" of tribimaximal mixing, $\theta_{13} \neq 0,...$

Freedom in e.g. vev alignment can destroy predictivity 🙂

<u>Traditional</u>: traditional flavor groups good for pheno: models for quarks and models for leptons exist "predictions" of tribimaximal mixing, $\theta_{13} \neq 0,...$

Freedom in e.g. vev *alignment* can destroy predictivity \bigcirc

<u>Modular</u>: finite modular groups Γ_N good flavor symmetries: $\Gamma_N = S_3, A_4, S_4, A_5$ for N = 2, 3, 4, 59 ν observables (m_{ν} , θ_{ij} , phases) by fixing 3 parameters! Feruglio (2017) and many others

<u>Traditional</u>: traditional flavor groups good for pheno: models for quarks and models for leptons exist "predictions" of tribimaximal mixing, $\theta_{13} \neq 0,...$

Freedom in e.g. vev *alignment* can destroy predictivity \bigcirc

<u>Modular</u>: finite modular groups Γ_N good flavor symmetries: $\Gamma_N = S_3, A_4, S_4, A_5$ for N = 2, 3, 4, 59 ν observables (m_{ν} , θ_{ij} , phases) by fixing 3 parameters! Feruglio (2017) and many others

Extra terms in Kähler potential allowed by modular symmetries (alone) destroy predictivity (Chen, SRS, Ratz (1909.06910)

<u>Traditional</u>: traditional flavor groups good for pheno: models for quarks and models for leptons exist "predictions" of tribimaximal mixing, $\theta_{13} \neq 0,...$

Freedom in e.g. vev *alignment* can destroy predictivity \bigcirc

<u>Modular</u>: finite modular groups Γ_N good flavor symmetries: $\Gamma_N = S_3, A_4, S_4, A_5$ for N = 2, 3, 4, 59 ν observables (m_{ν} , θ_{ij} , phases) by fixing 3 parameters! Feruglio (2017) and many others

Extra terms in Kähler potential allowed by modular symmetries (alone) destroy predictivity (Chen, SRS, Ratz (1909.06910)

Symmetries ad hoc, representations ad hoc, modular weights ad hoc, modular forms ad hoc, vevs ad hoc...

<u>Traditional</u>: traditional flavor groups good for pheno: models for quarks and models for leptons exist "predictions" of tribimaximal mixing, $\theta_{13} \neq 0,...$

Freedom in e.g. vev *alignment* can destroy predictivity \bigcirc

<u>Modular</u>: finite modular groups Γ_N good flavor symmetries: $\Gamma_N = S_3, A_4, S_4, A_5$ for N = 2, 3, 4, 59 ν observables (m_{ν} , θ_{ij} , phases) by fixing 3 parameters! Feruglio (2017) and many others

Extra terms in Kähler potential allowed by modular symmetries (alone) destroy predictivity (Chen, SRS, Ratz (1909.06910)

Symmetries ad hoc, representations ad hoc, modular weights ad hoc, modular forms ad hoc, vevs ad hoc...

Perhaps strings could offer a solution ?

- Orbifold $\mathcal{O} = \mathbb{R}^6 / S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to two kinds of "geometric" symmetries

A: permutation symmetries among fixed points $\rightarrow S_n$ B: stringy selection rules for their interactions

 $\to D_S = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \cdots$

- Orbifold $\mathcal{O} = \mathbb{R}^6/S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to two kinds of "geometric" symmetries

A: permutation symmetries among fixed points $\rightarrow S_n$ B: stringy selection rules for their interactions

 $\to D_S = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \cdots$

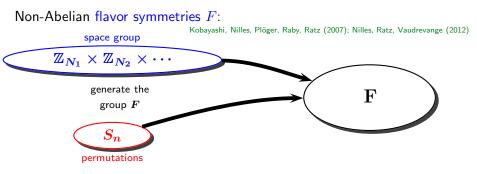
Non-Abelian flavor symmetries F:

Kobayashi, Nilles, Plöger, Raby, Ratz (2007); Nilles, Ratz, Vaudrevange (2012)

- Orbifold $\mathcal{O} = \mathbb{R}^6/S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to two kinds of "geometric" symmetries

A: permutation symmetries among fixed points $\rightarrow S_n$ B: stringy selection rules for their interactions

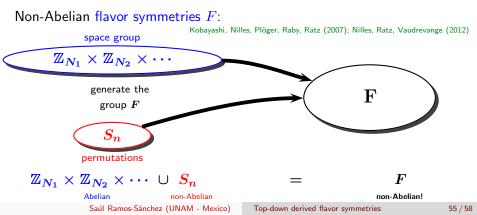
$$\to D_S = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \cdots$$



- Orbifold $\mathcal{O} = \mathbb{R}^6/S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to two kinds of "geometric" symmetries

A: permutation symmetries among fixed points $\rightarrow S_n$ B: stringy selection rules for their interactions

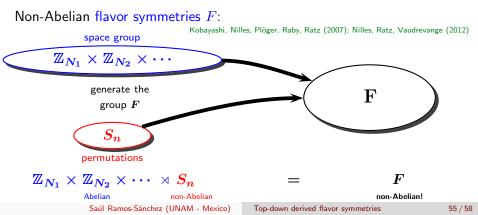
$$\to D_S = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \cdots$$

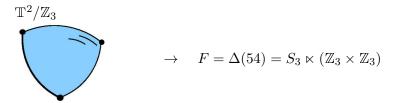


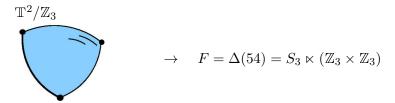
- Orbifold $\mathcal{O} = \mathbb{R}^6/S \leftarrow$ space group: rotations, reflexions and shifts
- Localized states are subject to two kinds of "geometric" symmetries

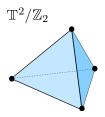
A: permutation symmetries among fixed points $\rightarrow S_n$ B: stringy selection rules for their interactions

$$\to D_S = \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \mathbb{Z}_{N_3} \times \cdots$$









$$\rightarrow \quad F = D_4 \times D_4 / \mathbb{Z}_2$$

Eclectic flavor symmetries

Eclectic flavor symmetries

Nilles, SR-S, Vaudrevange (2001.01736)

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc Recipe to get the modular group G_{mod} compatible with G_{fl}

• Determine $Out(G_{fl}) = \{u(g) \mid u(g) = h_u g h_u^{-1} \in G_{fl}, h_u \notin G_{fl}\}$

Key observation: T' is an outer automorphism group of $\Delta(54)$ 2Recipe to get the modular group G_{mod} compatible with G_{fl}

- Determine $Out(G_{fl}) = \{u(g) \mid u(g) = h_u g h_u^{-1} \in G_{fl}, h_u \notin G_{fl}\}$
- Pick some $u_S, u_T \in Out(G_{fl})$ satisfying Γ_N -like relations

$$(u_S)^4 = (u_S \circ u_T)^3 = (u_T)^N = \mathbb{1}, \qquad u_S^2 \circ u_T = u_T \circ u_S^2$$

Key observation: T' is an outer automorphism group of $\Delta(54)$ 2Recipe to get the modular group G_{mod} compatible with G_{fl}

- Determine $Out(G_{fl}) = \{u(g) \mid u(g) = h_u g h_u^{-1} \in G_{fl}, h_u \notin G_{fl}\}$
- Pick some $u_S, u_T \in Out(G_{fl})$ satisfying Γ_N -like relations

$$(u_S)^4 = (u_S \circ u_T)^3 = (u_T)^N = \mathbb{1}, \qquad u_S^2 \circ u_T = u_T \circ u_S^2$$

• Verify whether \exists a "triplet" matrix rep. $\rho(u_S), \rho(u_T)$ $\rho(S)\rho(g)\rho(S)^{-1} = \rho(u_S(g)), \quad \rho(T)\rho(g)\rho(T)^{-1} = \rho(u_T(g))$ $\rho(S)^4 = (\rho(S)\rho(T))^3 = \rho(T)^N = \mathbb{1}, \qquad \rho(S)^2\rho(T) = \rho(T)\rho(S)^2$

Key observation: T' is an outer automorphism group of $\Delta(54)$ 2Recipe to get the modular group G_{mod} compatible with G_{fl}

- Determine $Out(G_{fl}) = \{u(g) \mid u(g) = h_u g h_u^{-1} \in G_{fl}, h_u \notin G_{fl}\}$
- Pick some $u_S, u_T \in Out(G_{fl})$ satisfying Γ_N -like relations

$$(u_S)^4 = (u_S \circ u_T)^3 = (u_T)^N = \mathbb{1}, \qquad u_S^2 \circ u_T = u_T \circ u_S^2$$

• Verify whether \exists a "triplet" matrix rep. $\rho(u_S), \rho(u_T)$ $\rho(S)\rho(g)\rho(S)^{-1} = \rho(u_S(g)), \quad \rho(T)\rho(g)\rho(T)^{-1} = \rho(u_T(g))$ $\rho(S)^4 = (\rho(S)\rho(T))^3 = \rho(T)^N = 1, \qquad \rho(S)^2\rho(T) = \rho(T)\rho(S)^2$

• If $\rho(S)^2 = 1 \Rightarrow \rho(S), \rho(T)$ build a Γ_N modular flavor group Otherwise, $\rho(S), \rho(T)$ build a Γ'_N modular flavor group

Key observation: T' is an outer automorphism group of $\Delta(54)$ $\textcircled{\odot}$ Recipe to get the modular group G_{mod} compatible with G_{fl}

- Determine $Out(G_{fl}) = \{u(g) \mid u(g) = h_u g h_u^{-1} \in G_{fl}, h_u \notin G_{fl}\}$
- Pick some $u_S, u_T \in Out(G_{fl})$ satisfying Γ_N -like relations

$$(u_S)^4 = (u_S \circ u_T)^3 = (u_T)^N = \mathbb{1}, \qquad u_S^2 \circ u_T = u_T \circ u_S^2$$

• Verify whether \exists a "triplet" matrix rep. $\rho(u_S), \rho(u_T)$ $\rho(S)\rho(g)\rho(S)^{-1} = \rho(u_S(g)), \quad \rho(T)\rho(g)\rho(T)^{-1} = \rho(u_T(g))$ $\rho(S)^4 = (\rho(S)\rho(T))^3 = \rho(T)^N = \mathbb{1}, \qquad \rho(S)^2\rho(T) = \rho(T)\rho(S)^2$

- If $\rho(S)^2 = 1 \Rightarrow \rho(S), \rho(T)$ build a Γ_N modular flavor group Otherwise, $\rho(S), \rho(T)$ build a Γ'_N modular flavor group
- Inspect the character table of the group to determine the exact rep.

Key observation: T' is an outer automorphism group of $\Delta(54)$ $\textcircled{\odot}$ Recipe to get the modular group G_{mod} compatible with G_{fl}

- Determine $Out(G_{fl}) = \{u(g) \mid u(g) = h_u g h_u^{-1} \in G_{fl}, h_u \notin G_{fl}\}$
- Pick some $u_S, u_T \in Out(G_{fl})$ satisfying Γ_N -like relations

$$(u_S)^4 = (u_S \circ u_T)^3 = (u_T)^N = \mathbb{1}, \qquad u_S^2 \circ u_T = u_T \circ u_S^2$$

• Verify whether \exists a "triplet" matrix rep. $\rho(u_S), \rho(u_T)$ $\rho(S)\rho(g)\rho(S)^{-1} = \rho(u_S(g)), \quad \rho(T)\rho(g)\rho(T)^{-1} = \rho(u_T(g))$ $\rho(S)^4 = (\rho(S)\rho(T))^3 = \rho(T)^N = \mathbb{1}, \qquad \rho(S)^2\rho(T) = \rho(T)\rho(S)^2$

- If $\rho(S)^2 = 1 \Rightarrow \rho(S), \rho(T)$ build a Γ_N modular flavor group Otherwise, $\rho(S), \rho(T)$ build a Γ'_N modular flavor group
- Inspect the character table of the group to determine the exact rep.
- Eclectic group \cong multiplicative closure of G_{fl} and G_{mod}