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New physics from flavour Sheldon Stone

1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.
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Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a
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8 Chapter 1 Introduction

In the PDG parametrisation, UPMNS is described by three mixing angles ✓`ij and three

phases �`, ↵21 and ↵31. With cij = cos ✓`ij and sij = sin ✓`ij ,

UPMNS =

0

B@
1 0 0

0 c23 s23

0 �s23 c23

1

CA

0

B@
c13 0 s13e�i�`

0 1 0

�s13ei�
`

0 c13

1

CA

0

B@
c12 s12 0

�s12 c12 0

0 0 1

1

CA

⇥ diag(1, ei↵21/2, ei↵31/2).

(1.23)

If neutrinos are Dirac particles, the phases ↵21 and ↵31 become unphysical, and the

PMNS matrix is exactly analogous to the CKM matrix. In shorthand, we may write the

above as UPMNS = R`
23
U `
13
R`

12
P .

Neutrino oscillation experiments do not measure the neutrino masses directly, and can

only constrain the mass squared di↵erences �m2

ij = m2

i � m2

j . The absolute scale of

neutrino mass, characterised by the lightest neutrino mass m1, is not known. Moreover,

the ordering of neutrino masses is not yet fixed. While it is known that the first and

second neutrinos obey m1 < m2 (equivalent to �m2

21
> 0), at current experimental

precision it is not known whether the third neutrino with mass m3 is the heaviest, so-

called normal ordering (NO), or the lightest, dubbed inverted ordering (IO). In other

words, the sign of �m2

31
is undetermined, although global fits to data show a mild

preference for normal ordering [36]. For normal ordering, the strongest hierarchy occurs

when m1 is small: for m1 . 5 meV, m2/m3 ⇠ 0.2 meV. Meanwhile an inverted ordering

requires the first and second neutrinos to be similar, i.e. m1 . m2, while the third

neutrino is lighter. Observations of the cosmic microwave background (CMB) puts an

upper bound on the sum of neutrino masses
P

mi < 0.23 eV [37]. Bounds on the

neutrino masses are also given by searches for neutrinoless double beta (0⌫2�) decay.

Specifically, the 0⌫2� decay rate is proportional to the square of the e↵ective Majorana

mass |m�� | = |
P

i U
2

eimi|. Future experiments may be able to place upper bounds on

|m�� | which is in tension with oscillation data for an inverted hierarchy (or conversely,

confirm it).

In Table 1.3 we present the current best fit values for normal ordering to the three

lepton mixing angles ✓`ij , Dirac charge-parity (CP ) phase �` and neutrino mass-squared

di↵erences�m2

ij , taken from the NuFit collaboration [36], as well as the measured masses

of the electron, muon and tau [23].

1.3 The flavour puzzle

The flavour puzzle can be approached in a number of equivalent ways. For instance, we

may ask

thus not only confirmed solar neutrino oscillations, but has also uniquely specified the LMA

solar solution, heralding a new era in neutrino physics.

2.4 Reactor neutrino mixing

Until recently, the reactor angle θ13 was not measured, only limited by CHOOZ, a reactor

experiment that failed to see any signal of neutrino oscillations over the Super-Kamiokande

mass range. CHOOZ data from ν̄e → ν̄e disappearance not being observed provided a

significant constraint on θ13 over the Super-Kamiokande preferred range of ∆m2
32 [11]:

sin2 2θ13 < 0.2. (2.10)

Direct evidence for θ13 was first provided by T2K, MINOS and Double Chooz [12]. Re-

cently the Daya Bay [13], RENO [14], and Double Chooz [15] collaborations have measured

sin2(2θ13):

Daya Bay : sin2(2θ13) = 0.084 ± 0.005(stat. & syst.) ,

RENO : sin2(2θ13) = 0.082 ± 0.009(stat.) ± 0.006(syst.) ,

Double Chooz : sin2(2θ13) = 0.090+0.032
−0.029(syst. & stat.) .

(2.11)

This corresponds to

|Ue3| = sin θ13 ≈ 0.15, (2.12)

or a reactor angle θ13 ≈ 8.5◦.

2.5 Three neutrino mixing including phases

If the reactor angle were zero then there would be no CP violation in neutrino oscillations.

The measurement of the reactor angle means that we cannot ignore the presence of phases

any more. Including the phases, assuming the light neutrinos are Majorana, UPMNS can

be parameterised in terms of three mixing angles θij, a Dirac phase δ, together with two

Majorana phases β1,β2, as follows [5],

UPMNS = R23U13R12P12, (2.13)

where

U13 =




c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13



 , P12 =




eiβ1 0 0

0 eiβ2 0

0 0 1



 , (2.14)

and R23 and R12 were defined below Eq. (2.1), giving,

UPMNS =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23



P12. (2.15)

Alternatively the lepton mixing matrix may be expressed as a product of three complex

Euler rotations [57],

UPMNS = U23U13U12, (2.16)
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SM Yukawa couplings
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Is there a symmetry at work?
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Family/Flavour Symmetry
Basic idea is to distinguish the 

families by some quantum numbers 
under a new “horizontal” 
family/flavour symmetry

Horizontal symmetry

The symmetry is 
assumed to be 
spontaneously 

broken by 
“flavons”



Family/Flavour Symmetry

Small effective 
Yukawas generated 

by “flavons”

Yukawas forbidden 
by the symmetry 
(apart from third 
family couplings)



Example: U(1) Family/Flavour Symmetry

Consider a U(1) family symmetry spontaneously broken by a flavon vev                    

The other Yukawa couplings are generated from higher order operators 
which respect U(1) family symmetry due to flavon φ insertions:

When the flavon gets its VEV it generates 
small effective Yukawa couplings in terms


 of an expansion parameter
..

Suppose U(1) charges are Q (ψ3 )=0, Q (ψ2 )=1, Q (ψ1 )=3, Q(H)=0, Q(φ )=-1


Then the lowest order allowed Yukawa coupling is H ψ3 ψ3   

Approximate 
texture zero



What is the origin of the higher order operators?


Froggatt and Nielsen took their inspiration from 
the see-saw mechanism  

Where χ are heavy fermion messengers 
c.f. heavy RH neutrinos

Froggatt-Nielsen Mechanism (1979)

..

..



There may be Higgs messengers or fermion messengers

Fermion messengers may be SU(2)L doublets or singlets

U(1) charge

Froggatt-Nielsen Mechanism (1979)



Neutrinos motivate new 
family/flavour symmetries
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CKM Matrix PMNS Matrix

Froggatt-Nielsen tends to predict small mixing What symmetry gives this?



Mu-Tau Symmetry

maximal CP violation in the lepton sector.

The layout of the remainder of this paper is as follows. In section 2 we introduce and
define different types of µτ symmetry as applied to the PMNS matrix V , the neutrino
mass matrix Mν , and its hermitean square Hν ≡ M †

νMν . In section 3 we give basis
invariant conditions on Hν leading to maximal atmospheric mixing and maximal CP
violation. In section 4 we present a general form for Mν with µτ symmetry leading
to maximal atmospheric mixing and maximal CP violation. In section 5 we show how
the µτ conjugation operation can be useful for relating different neutrino mass matrices
which have the general form of µτ symmetry. In section 6 we apply the results to the
LSS mass matrix and show why this model has approximate µτ symmetry. In section 7
we discuss accidental implementations of µτ symmetry and give an example. Finally
section 8 concludes the paper. The Appendices contain some of the proofs of results in
the paper. Appendix A provides a proof that a µτ symmetric Hν implies and is implied
by µτ symmetric PMNS mixing. Appendix B makes the connection of the general form
of Mν with µτ symmetry with CP transformations.

2 Other types of µτ symmetry: µτ-U and µτ-R

Let us denote by µτ universal (µτ -U) mixing the PMNS matrix V characterized by the
following two conditions: (i) fully nonvanishing first row,

|Vej| "= 0 , j = 1, 2, 3, (1)

and (ii) equal moduli for the µ (second) and τ (third) rows [33, 34],

|Vµj | = |Vτj| , j = 1, 2, 3. (2)

In other words the modulus of the µτ -U PMNS matrix elements have the form

|V | =




|Ve1| |Ve2| |Ve3|
|Vµ1| |Vµ2| |Vµ3|
|Vµ1| |Vµ2| |Vµ3|



 . (3)

One can show within the standard parametrization that conditions (1) and (2) are equiv-
alent to having nonzero θ13 together with maximal atmospheric angle and Dirac CP
phase:3

θ13 "= 0 , θ23 = 45◦, δCP = ±90◦ , (4)

which are consistent with current data. The condition (1) ensures the first inequality while
(2) ensures the rest. In fact, condition (1) implies that both θ13 and θ12 are nontrivial
(different from 0 or π/2). Notice that the Majorana phases in V are not constrained.

3Also denoted as cobimaximal mixing in Ref. [35].
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Mu-Tau Symmetry

Mu-tau reflection 
symmetry

P.F.Harrison and W.G.Scott, hep-ph/0210197

Generalisation of:

Harrison and Scott [33] showed that, allowing rephasing transformations from the left
and from the right,4 any µτ -U PMNS mixing matrix V can be cast in the form

V0 =




|Ve1| |Ve2| |Ve3|
Vµ1 Vµ2 Vµ3

V ∗
µ1 V ∗

µ2 V ∗
µ3



 . (5)

Moreover, when all |Vej| are nonzero, i.e., condition (1) is valid, it is guaranteed that
not all of the phases in Vµi can be removed and V0 is essentially complex. This fact is
consistent with the presence of CP violation in (4). The form (5) can be easily checked by
imposing maximal angle and phase in (4) in the standard parametrization and applying
appropriate rephasing transformations; see Ref. [36] for the explicit form. In Ref. [33] a
different proof was originally supplied and the restriction (1) was not imposed.

Instead of characterizing the mixing matrix, it is often more interesting to characterize
the neutrino mass matrix Mν that is responsible for the mixing in the flavor basis where
the µτ -U PMNS matrix comes from the diagonalization of the neutrino mass matrix.
As condition (2) is insensitive to Majorana phases, it is useful to consider the hermitean
squareHν ≡ M †

νMν of the neutrino mass matrixMν for both Majorana or Dirac neutrinos.

We say a hermitean or symmetric 3× 3 matrix A is µτ -reflection (µτ -R) symmetric 5 if

PµτAPµτ = A∗ , (6)

where

Pµτ =




1 0 0
0 0 1
0 1 0



 (7)

represents µτ interchange. According to this definition, the hermitean square mass matrix
Hν = H†

ν is µτ -R symmetric [33] if it has the form

Hν =




A D D∗

D∗ B C∗

D C B



 , (8)

with A,B real and positive while C,D should have irremovable phases (Im[C∗D2] #= 0).
It can readily be checked that, if the hermitean square mass matrix Hν is µτ -R symmetric
in the flavour basis (i.e. has the form in Eq. (8)), then this leads to a µτ -U PMNS matrix,
with the usual predictions of maximal atmospheric mixing and maximal CP violation. In
fact it can be proved that a µτ -U PMNS matrix implies and is implied by Hν being µτ -R
symmetric in the flavour basis (see Appendix A).

For Majorana neutrinos, the complex symmetric mass matrix Mν which leads to a µτ -R
symmetric hermitean square mass matrix Hν (and hence µτ -U PMNS matrix) may take

4The following rephasing freedom from the left still survives: Vµk → eiαVµk, Vτk → e−iαVτk.
5Also denoted as CPµτ in Ref. [40].
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maximal CP violation in the lepton sector.

The layout of the remainder of this paper is as follows. In section 2 we introduce and
define different types of µτ symmetry as applied to the PMNS matrix V , the neutrino
mass matrix Mν , and its hermitean square Hν ≡ M †

νMν . In section 3 we give basis
invariant conditions on Hν leading to maximal atmospheric mixing and maximal CP
violation. In section 4 we present a general form for Mν with µτ symmetry leading
to maximal atmospheric mixing and maximal CP violation. In section 5 we show how
the µτ conjugation operation can be useful for relating different neutrino mass matrices
which have the general form of µτ symmetry. In section 6 we apply the results to the
LSS mass matrix and show why this model has approximate µτ symmetry. In section 7
we discuss accidental implementations of µτ symmetry and give an example. Finally
section 8 concludes the paper. The Appendices contain some of the proofs of results in
the paper. Appendix A provides a proof that a µτ symmetric Hν implies and is implied
by µτ symmetric PMNS mixing. Appendix B makes the connection of the general form
of Mν with µτ symmetry with CP transformations.

2 Other types of µτ symmetry: µτ-U and µτ-R

Let us denote by µτ universal (µτ -U) mixing the PMNS matrix V characterized by the
following two conditions: (i) fully nonvanishing first row,

|Vej| "= 0 , j = 1, 2, 3, (1)

and (ii) equal moduli for the µ (second) and τ (third) rows [33, 34],

|Vµj | = |Vτj| , j = 1, 2, 3. (2)

In other words the modulus of the µτ -U PMNS matrix elements have the form

|V | =




|Ve1| |Ve2| |Ve3|
|Vµ1| |Vµ2| |Vµ3|
|Vµ1| |Vµ2| |Vµ3|



 . (3)

One can show within the standard parametrization that conditions (1) and (2) are equiv-
alent to having nonzero θ13 together with maximal atmospheric angle and Dirac CP
phase:3

θ13 "= 0 , θ23 = 45◦, δCP = ±90◦ , (4)

which are consistent with current data. The condition (1) ensures the first inequality while
(2) ensures the rest. In fact, condition (1) implies that both θ13 and θ12 are nontrivial
(different from 0 or π/2). Notice that the Majorana phases in V are not constrained.

3Also denoted as cobimaximal mixing in Ref. [35].
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<latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit>

sin ✓13 = 0
<latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit><latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit><latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit><latexit sha1_base64="mIIHmAkwrZjQSSPec2xd3j+pO+E=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwVBIV9CIUvXisYD+gCWGz3bRLN5uwOxFLyF/x4kERr/4Rb/4bt20O2vpg4PHeDDPzwlRwDY7zba2srq1vbFa2qts7u3v79kGto5NMUdamiUhULySaCS5ZGzgI1ksVI3EoWDcc30797iNTmifyASYp82MylDzilICRArvmaS6xByMGJMjd8+LaCey603BmwMvELUkdlWgF9pc3SGgWMwlUEK37rpOCnxMFnApWVL1Ms5TQMRmyvqGSxEz7+ez2Ap8YZYCjRJmSgGfq74mcxFpP4tB0xgRGetGbiv95/QyiKz/nMs2ASTpfFGUCQ4KnQeABV4yCmBhCqOLmVkxHRBEKJq6qCcFdfHmZdM4artNw7y/qzZsyjgo6QsfoFLnoEjXRHWqhNqLoCT2jV/RmFdaL9W59zFtXrHLmEP2B9fkDAF6Tvw==</latexit>

sin ✓12 =
1p
3

<latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit>

Allowed at 
3 sigma 

Allowed at 
3 sigma

Excluded 
at many sigma

Tri

Bi

P.F.Harrison, D.H.Perkins and W.G.Scott, hep-ph/0202074



Tri-Bimaximal-Reactor

sin ✓23 =
1p
2

<latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit><latexit sha1_base64="XCala5uJ6qJBWHoEea3vqMLfiH8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZaYKuhGKblxWsA/olJJJM21oJjMmd4QS5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnNPkAiuwXW/naXlldW19cJGcXNre2e3tLff1HGqKGvQWMSqHRDNBJesARwEayeKkSgQrBWMrid+64EpzWN5B+OEdSMykDzklICVeqWyr7nEPgwZkJ6pnmaXfqgINV5mfH2vwFSzzKbcijsFXiReTsooR71X+vL7MU0jJoEKonXHcxPoGqKAU8Gyop9qlhA6IgPWsVSSiOmumR6T4WOr9HEYK/sk4Kn6e8KQSOtxFNhkRGCo572J+J/XSSG86BoukxSYpLNFYSowxHjSDO5zxSiIsSWEKm7/iumQ2DLA9le0JXjzJy+SZrXiuRXv9qxcu8rrKKBDdIROkIfOUQ3doDpqIIoe0TN6RW/Ok/PivDsfs+iSk88coD9wPn8AFHybow==</latexit>

sin ✓12 =
1p
3

<latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit><latexit sha1_base64="EJ//TNPUp8vrqQnLo4ZHxbocKi8=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZVIF3QhFNy4r2Ad0SsmkmTY0kxmTO0IZ5gPc+CtuXCji1g9w59+YtrPQ1gOBwznncnOPH0thwHW/naXlldW19cJGcXNre2e3tLffNFGiGW+wSEa67VPDpVC8AQIkb8ea09CXvOWPrid+64FrIyJ1B+OYd0M6UCIQjIKVeqWyZ4TCHgw50F5KqtmlF2jKUpKlnrnXkJ5mmU25FXcKvEhITsooR71X+vL6EUtCroBJakyHuDF0U6pBMMmzopcYHlM2ogPesVTRkJtuOj0mw8dW6eMg0vYpwFP190RKQ2PGoW+TIYWhmfcm4n9eJ4HgopsKFSfAFZstChKJIcKTZnBfaM5Aji2hTAv7V8yG1JYBtr+iLYHMn7xImtUKcSvk9qxcu8rrKKBDdIROEEHnqIZuUB01EEOP6Bm9ojfnyXlx3p2PWXTJyWcO0B84nz8S0Zui</latexit>

Allowed at 
3 sigma 

Allowed at 
3 sigma

SFK 0903.3199, 1205.0506

sin θ13 =
λ

2

Thus, apparently following the adage “many a little makes a mickle”, one is led to a
2σ indication for a non-zero value of θ13. This corresponds to a value for θ13 in the 1σ
range (in degrees),

θ13 = 8o ± 2o. (6)

In any case it is certainly theoretically plausible that θ13 could take a value in the above
range [7], so it is interesting to consider this possibility, and we emphasize this more
general motivation.

It is well known that the solar and atmospheric data are consistent with so-called
tri-bimaximal (TB) mixing [8],
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corresponding to the mixing angles, 1

θ12 = 35.26o, θ23 = 45o, θ13 = 0o. (8)

The ansatz of TB mixing matrix is interesting due to its symmetry properties which seem
to call for a possibly discrete non-Abelian family symmetry in nature [9]. There has been
a considerable amount of theoretical work in this direction [10, 11, 12, 13, 14, 15]. The
presence of a non-zero reactor angle as in Eq.6 would be clearly inconsistent with the TB
prediction for the zero reactor angle in Eq.8 and so the TB ansatz would be excluded,
even though the predictions for the solar and atmospheric angles remain acceptable.

In this paper we shall explore the possibility of extending the TB mixing matrix to
allow for a non-zero reactor angle θ13, while at the same time preserving the predictions
for the tri-maximal solar angle and the maximal atmospheric angle given by Eq.8, namely
θ12 = 35.26o and θ23 = 45o. In order to maintain these predictions requires,

|Ue2|2

|Ue1|2
=

1

2
,

|Uµ3|2

|Uτ3|2
= 1. (9)

To leading order in Ue3 the conditions in Eq.9 correspond approximately to,

|Ue2|2 ≈ 1/3, |Uµ3|2 ≈ 1/2. (10)

We refer to the above proposal as as tri-bimaximal-reactor (TBR) mixing, to emphasize
that tri-maximal solar mixing and maximal atmospheric mixing are both preserved while

1Note that different versions of the TB mixing matrix appear in the literature with the minus signs
appearing in different places corresponding to differing choices of charged lepton and Majorana phases.
We prefer the convention shown which emerges from the PDG parametrization when the angles are set
equal to those shown in Eq.8

2

2 Tri-bimaximal-Cabibbo Mixing

The recent data is consistent with the remarkable relationship,

s13 =
sin θC√

2
=

λ√
2
, (4)

where λ = 0.2253 ± 0.0007 [1] is the Wolfenstein parameter. This relationship is an
example of “Cabibbo Haze” [10], the general hypothesis that the Cabibbo angle is an
expansion parameter for lepton as well as quark mixing. It was proposed earlier in the
context of “Quark-Lepton Complementarity” (QLC) in which θ12 + θC = 45o [11]. For
related approaches see [12]. Our approach in section 3 relies on maximal atmospheric
mixing but the solar angle is determined by “Sum Rules” [13], which differ from the QLC
relation. These examples illustrate that the value of the solar angle is independent of
the relation in Eq.4. On the other hand, phenomenology is consistent with a trimaximal
solar angle as in Eq.3, and furthermore the approach in section 4 suggests a trimaximal
solar angle. It is therefore natural to combine Eq.4 with TB mixing, as discussed below.

In terms of the combination measured by the reactor neutrino experiments, Eq.4
implies,

sin2 2θ13 ≈ 2λ2(1−
λ2

2
) ≈ 0.099, (5)

in excellent agreement with the recent Daya Bay and RENO results above. Furthermore
the above ansatz implies a reactor angle of

θ13 ≈
θC√
2
≈ 9.2o, (6)

where θC ≈ 13o is the Cabibbo angle.
Apart from the reactor angle, the measured and fitted atmospheric and solar angles

are in good agreement with the ansatz of Tri-bimaximal (TB) mixing [14]. We are
therefore led to combine the relation in Eq.4 with TB mixing to yield tri-bimaximal-
Cabibbo (TBC) mixing:

s13 =
λ√
2
, s12 =

1√
3
, s23 =

1√
2
. (7)

In terms of the TB deviations parameters defined in [15], this corresponds to r = λ with
s = a = 0. Using the second order expansion in [15], Eq.7 then leads to the following
approximate form of the mixing matrix,

UTBC ≈







√

2

3
(1− 1

4
λ2) 1√

3
(1− 1

4
λ2) 1√

2
λe−iδ

− 1√
6
(1 + λeiδ) 1√

3
(1− 1

2
λeiδ) 1√

2
(1− 1

4
λ2)

1√
6
(1− λeiδ) − 1√

3
(1 + 1

2
λeiδ) 1√

2
(1− 1

4
λ2)






P +O(λ3), (8)

corresponding to the mixing angles,

θ13 ≈ 9.2o, θ12 = 35.26o, θ23 = 45o. (9)
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3.4 Charged lepton mixing corrections and sum rules

Recall that the physical PMNS matrix in Eq.10 is given by UPMNS = U eU ⌫

TB. Now suppose that U ⌫

TB is
the TB matrix in Eq.14 while U e corresponds to small but unknown charged lepton corrections. This
was first discussed in [55–58] where the following sum rule involving the lepton mixing parameters,
including crucially the CP phase �, was first derived:

✓12 ⇡ 35.26o + ✓13 cos �, (24)

where 35.26o = sin�1 1p
3
. Eq.24 may be recast in terms of TB deviation parameters as [48],

s = r cos �. (25)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections involving
only (1,2) mixing, so that the PMNS matrix is given by [58],
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Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],

|Ue3| = s13 =
se

12
p

2
, (27)

|U⌧1| = |s23s12 � s13c23c12e
i�
| =

1
p

6
, (28)

|U⌧2| = | � c12s23 � s12s13c23e
i�
| =

1
p

3
, (29)

|U⌧3| = c13c23 =
1

p
2
. (30)

The first equation implies a reactor angle ✓13 ⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1|

|U⌧2|
=

|s12s23 � c12s13c23ei�
|

| � c12s23 � s12s13c23ei�|
=

1
p

2
. (31)

This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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After some algebra, Eq.31 leads to [59],

cos � =
t23s2

12 + s2
13c

2
12/t23 �

1
3(t23 + s2

13/t23)

sin 2✓12s13
. (32)

To leading order in ✓13, Eq.32 returns the sum rule in Eq.24, from which we find cos � ⇡ 0 if ✓12 ⇡ 35o,
consistent with � ⇠ �⇡/2. This can also be understood directly from Eq.32 where we see that for
s2
12 = 1/3 the leading terms t23s2

12 and 1
3t23 cancel in the numerator, giving cos � = s13/(2

p
2t23) ⇡ 0.05

to be compared to cos � ⇡ 0 in the linear approximation. In general the error induced by using the
linear sum rule instead of the exact one has been shown to be �(cos �) . 0.1 [59] for the TB sum rule.

Recently there has been much activity in exploring the phenomenology of various such solar mixing

sum rules, arising from charged lepton corrections to simple neutrino mixing, not just TB neutrino
mixing, but other simple neutrino mixing, including BM and GR mixing, allowing more general charged
lepton corrections, renormalisation group running and so on [60].

It is important to distinguish solar mixing sum rules discussed here from atmospheric mixing sum

rules discussed previously. The physics is di↵erent: here we consider charged lepton corrections to TB
neutrino mixing, while previously we considered two forms of the physical trimaximal lepton mixing
matrix.

4 Minimality: The Type I Seesaw Mechanism

4.1 The type I seesaw mechanism with one RH neutrino

The LH Majorana masses are given by,

L
LL

⌫
= �

1

2
m⌫⌫L⌫c

L
+ H.c. (33)

where ⌫c

L
is a RH antineutrino field, which is the CP conjugate of the LH neutrino field ⌫L. Majorana

masses are possible below the electroweak symmetry (EW) breaking scale since the neutrino has zero
electric charge. Majorana neutrino masses violate lepton number conservation, and are forbidden above
the EW breaking scale. The type I seesaw mechanism assumes that Majorana neutrino mass terms are
zero to begin with, but are generated e↵ectively by RH neutrinos [5].

If we introduce one RH neutrino field ⌫R, 7 then there are two possible additional neutrino mass
terms. First there are Majorana masses,

L
R

⌫
= �

1

2
MR⌫c

R
⌫R + H.c. (34)

Secondly, there are Dirac masses,
L

D

⌫
= �mD⌫L⌫R + H.c.. (35)

Dirac mass terms arise from Yukawa couplings to a Higgs doublet, Hu,

L
Yuk = �HuY

⌫L⌫R + H.c. (36)

7A single RH neutrino is su�cient to account for atmospheric neutrino oscillations if it couples approximately equally
to ⌫µ and ⌫⌧ as discussed in [23].

16

c23c13 =
1p
2

<latexit sha1_base64="agXr++5C+k9tXlX+B9hWXe2bIqw=">AAACCHicbVC7TsMwFHV4lvIKMDIQUSExVXGLBAtSBQtjkehDaqLIcZ3WquME20GqrIws/AoLAwix8gls/A1umwFajnSvjs65V/Y9YcqoVK77bS0tr6yurZc2yptb2zu79t5+WyaZwKSFE5aIbogkYZSTlqKKkW4qCIpDRjrh6Hridx6IkDThd2qcEj9GA04jipEyUmAf4UDX6rnpsJ5fepFAWMNce/JeKF3L88CuuFV3CmeRwIJUQIFmYH95/QRnMeEKMyRlD7qp8jUSimJG8rKXSZIiPEID0jOUo5hIX08PyZ0To/SdKBGmuHKm6u8NjWIpx3FoJmOkhnLem4j/eb1MRRe+pjzNFOF49lCUMUclziQVp08FwYqNDUFYUPNXBw+RCUOZ7MomBDh/8iJp16rQrcLbs0rjqoijBA7BMTgFEJyDBrgBTdACGDyCZ/AK3qwn68V6tz5mo0tWsXMA/sD6/AGvipnE</latexit><latexit sha1_base64="agXr++5C+k9tXlX+B9hWXe2bIqw=">AAACCHicbVC7TsMwFHV4lvIKMDIQUSExVXGLBAtSBQtjkehDaqLIcZ3WquME20GqrIws/AoLAwix8gls/A1umwFajnSvjs65V/Y9YcqoVK77bS0tr6yurZc2yptb2zu79t5+WyaZwKSFE5aIbogkYZSTlqKKkW4qCIpDRjrh6Hridx6IkDThd2qcEj9GA04jipEyUmAf4UDX6rnpsJ5fepFAWMNce/JeKF3L88CuuFV3CmeRwIJUQIFmYH95/QRnMeEKMyRlD7qp8jUSimJG8rKXSZIiPEID0jOUo5hIX08PyZ0To/SdKBGmuHKm6u8NjWIpx3FoJmOkhnLem4j/eb1MRRe+pjzNFOF49lCUMUclziQVp08FwYqNDUFYUPNXBw+RCUOZ7MomBDh/8iJp16rQrcLbs0rjqoijBA7BMTgFEJyDBrgBTdACGDyCZ/AK3qwn68V6tz5mo0tWsXMA/sD6/AGvipnE</latexit><latexit sha1_base64="agXr++5C+k9tXlX+B9hWXe2bIqw=">AAACCHicbVC7TsMwFHV4lvIKMDIQUSExVXGLBAtSBQtjkehDaqLIcZ3WquME20GqrIws/AoLAwix8gls/A1umwFajnSvjs65V/Y9YcqoVK77bS0tr6yurZc2yptb2zu79t5+WyaZwKSFE5aIbogkYZSTlqKKkW4qCIpDRjrh6Hridx6IkDThd2qcEj9GA04jipEyUmAf4UDX6rnpsJ5fepFAWMNce/JeKF3L88CuuFV3CmeRwIJUQIFmYH95/QRnMeEKMyRlD7qp8jUSimJG8rKXSZIiPEID0jOUo5hIX08PyZ0To/SdKBGmuHKm6u8NjWIpx3FoJmOkhnLem4j/eb1MRRe+pjzNFOF49lCUMUclziQVp08FwYqNDUFYUPNXBw+RCUOZ7MomBDh/8iJp16rQrcLbs0rjqoijBA7BMTgFEJyDBrgBTdACGDyCZ/AK3qwn68V6tz5mo0tWsXMA/sD6/AGvipnE</latexit><latexit sha1_base64="agXr++5C+k9tXlX+B9hWXe2bIqw=">AAACCHicbVC7TsMwFHV4lvIKMDIQUSExVXGLBAtSBQtjkehDaqLIcZ3WquME20GqrIws/AoLAwix8gls/A1umwFajnSvjs65V/Y9YcqoVK77bS0tr6yurZc2yptb2zu79t5+WyaZwKSFE5aIbogkYZSTlqKKkW4qCIpDRjrh6Hridx6IkDThd2qcEj9GA04jipEyUmAf4UDX6rnpsJ5fepFAWMNce/JeKF3L88CuuFV3CmeRwIJUQIFmYH95/QRnMeEKMyRlD7qp8jUSimJG8rKXSZIiPEID0jOUo5hIX08PyZ0To/SdKBGmuHKm6u8NjWIpx3FoJmOkhnLem4j/eb1MRRe+pjzNFOF49lCUMUclziQVp08FwYqNDUFYUPNXBw+RCUOZ7MomBDh/8iJp16rQrcLbs0rjqoijBA7BMTgFEJyDBrgBTdACGDyCZ/AK3qwn68V6tz5mo0tWsXMA/sD6/AGvipnE</latexit>

s13 =
se12p
2

<latexit sha1_base64="JlJwMdfPx/SisPJL4d5PYxKJMrA=">AAACCXicbZC7TsMwFIadcivlFmBksaiQmKqkIMGCVMHCWCR6kZoQOa7TWnWcYDtIlZWVhVdhYQAhVt6AjbfBbTNAyy9Z+vyfc2SfP0wZlcpxvq3S0vLK6lp5vbKxubW9Y+/utWWSCUxaOGGJ6IZIEkY5aSmqGOmmgqA4ZKQTjq4m9c4DEZIm/FaNU+LHaMBpRDFSxgpsKAPtnuQXXiQQ1vKOmGs9z7Un74XShgK76tScqeAiuAVUQaFmYH95/QRnMeEKMyRlz3VS5WskFMWM5BUvkyRFeIQGpGeQo5hIX083yeGRcfowSoQ5XMGp+3tCo1jKcRyazhipoZyvTcz/ar1MRee+pjzNFOF49lCUMagSOIkF9qkgWLGxAYQFNX+FeIhMJsqEVzEhuPMrL0K7XnOdmntzWm1cFnGUwQE4BMfABWegAa5BE7QABo/gGbyCN+vJerHerY9Za8kqZvbBH1mfP/G4mn4=</latexit><latexit sha1_base64="JlJwMdfPx/SisPJL4d5PYxKJMrA=">AAACCXicbZC7TsMwFIadcivlFmBksaiQmKqkIMGCVMHCWCR6kZoQOa7TWnWcYDtIlZWVhVdhYQAhVt6AjbfBbTNAyy9Z+vyfc2SfP0wZlcpxvq3S0vLK6lp5vbKxubW9Y+/utWWSCUxaOGGJ6IZIEkY5aSmqGOmmgqA4ZKQTjq4m9c4DEZIm/FaNU+LHaMBpRDFSxgpsKAPtnuQXXiQQ1vKOmGs9z7Un74XShgK76tScqeAiuAVUQaFmYH95/QRnMeEKMyRlz3VS5WskFMWM5BUvkyRFeIQGpGeQo5hIX083yeGRcfowSoQ5XMGp+3tCo1jKcRyazhipoZyvTcz/ar1MRee+pjzNFOF49lCUMagSOIkF9qkgWLGxAYQFNX+FeIhMJsqEVzEhuPMrL0K7XnOdmntzWm1cFnGUwQE4BMfABWegAa5BE7QABo/gGbyCN+vJerHerY9Za8kqZvbBH1mfP/G4mn4=</latexit><latexit sha1_base64="JlJwMdfPx/SisPJL4d5PYxKJMrA=">AAACCXicbZC7TsMwFIadcivlFmBksaiQmKqkIMGCVMHCWCR6kZoQOa7TWnWcYDtIlZWVhVdhYQAhVt6AjbfBbTNAyy9Z+vyfc2SfP0wZlcpxvq3S0vLK6lp5vbKxubW9Y+/utWWSCUxaOGGJ6IZIEkY5aSmqGOmmgqA4ZKQTjq4m9c4DEZIm/FaNU+LHaMBpRDFSxgpsKAPtnuQXXiQQ1vKOmGs9z7Un74XShgK76tScqeAiuAVUQaFmYH95/QRnMeEKMyRlz3VS5WskFMWM5BUvkyRFeIQGpGeQo5hIX083yeGRcfowSoQ5XMGp+3tCo1jKcRyazhipoZyvTcz/ar1MRee+pjzNFOF49lCUMagSOIkF9qkgWLGxAYQFNX+FeIhMJsqEVzEhuPMrL0K7XnOdmntzWm1cFnGUwQE4BMfABWegAa5BE7QABo/gGbyCN+vJerHerY9Za8kqZvbBH1mfP/G4mn4=</latexit><latexit sha1_base64="JlJwMdfPx/SisPJL4d5PYxKJMrA=">AAACCXicbZC7TsMwFIadcivlFmBksaiQmKqkIMGCVMHCWCR6kZoQOa7TWnWcYDtIlZWVhVdhYQAhVt6AjbfBbTNAyy9Z+vyfc2SfP0wZlcpxvq3S0vLK6lp5vbKxubW9Y+/utWWSCUxaOGGJ6IZIEkY5aSmqGOmmgqA4ZKQTjq4m9c4DEZIm/FaNU+LHaMBpRDFSxgpsKAPtnuQXXiQQ1vKOmGs9z7Un74XShgK76tScqeAiuAVUQaFmYH95/QRnMeEKMyRlz3VS5WskFMWM5BUvkyRFeIQGpGeQo5hIX083yeGRcfowSoQ5XMGp+3tCo1jKcRyazhipoZyvTcz/ar1MRee+pjzNFOF49lCUMagSOIkF9qkgWLGxAYQFNX+FeIhMJsqEVzEhuPMrL0K7XnOdmntzWm1cFnGUwQE4BMfABWegAa5BE7QABo/gGbyCN+vJerHerY9Za8kqZvbBH1mfP/G4mn4=</latexit>

s223 <
1

2
<latexit sha1_base64="pzyaFMhHWVScgaraG6yqj7/9V9c=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWJgi5cFN24rGAf0MYwmU7aoZMHMxOhhuCvuHGhiFv/w51/47TNQlsPXDiccy/33uMnnEllWd9GaWl5ZXWtvF7Z2Nza3jF391oyTgWhTRLzWHR8LClnEW0qpjjtJILi0Oe07Y+uJ377gQrJ4uhOjRPqhngQsYARrLTkmQfy3vEy5zS/7AUCk8zOMyf3zKpVs6ZAi8QuSBUKNDzzq9ePSRrSSBGOpezaVqLcDAvFCKd5pZdKmmAywgPa1TTCIZVuNr0+R8da6aMgFroihabq74kMh1KOQ193hlgN5bw3Ef/zuqkKLtyMRUmqaERmi4KUIxWjSRSozwQlio81wUQwfSsiQ6xTUDqwig7Bnn95kbScmm3V7Nuzav2qiKMMh3AEJ2DDOdThBhrQBAKP8Ayv8GY8GS/Gu/Exay0Zxcw+/IHx+QOwtZS5</latexit><latexit sha1_base64="pzyaFMhHWVScgaraG6yqj7/9V9c=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWJgi5cFN24rGAf0MYwmU7aoZMHMxOhhuCvuHGhiFv/w51/47TNQlsPXDiccy/33uMnnEllWd9GaWl5ZXWtvF7Z2Nza3jF391oyTgWhTRLzWHR8LClnEW0qpjjtJILi0Oe07Y+uJ377gQrJ4uhOjRPqhngQsYARrLTkmQfy3vEy5zS/7AUCk8zOMyf3zKpVs6ZAi8QuSBUKNDzzq9ePSRrSSBGOpezaVqLcDAvFCKd5pZdKmmAywgPa1TTCIZVuNr0+R8da6aMgFroihabq74kMh1KOQ193hlgN5bw3Ef/zuqkKLtyMRUmqaERmi4KUIxWjSRSozwQlio81wUQwfSsiQ6xTUDqwig7Bnn95kbScmm3V7Nuzav2qiKMMh3AEJ2DDOdThBhrQBAKP8Ayv8GY8GS/Gu/Exay0Zxcw+/IHx+QOwtZS5</latexit><latexit sha1_base64="pzyaFMhHWVScgaraG6yqj7/9V9c=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWJgi5cFN24rGAf0MYwmU7aoZMHMxOhhuCvuHGhiFv/w51/47TNQlsPXDiccy/33uMnnEllWd9GaWl5ZXWtvF7Z2Nza3jF391oyTgWhTRLzWHR8LClnEW0qpjjtJILi0Oe07Y+uJ377gQrJ4uhOjRPqhngQsYARrLTkmQfy3vEy5zS/7AUCk8zOMyf3zKpVs6ZAi8QuSBUKNDzzq9ePSRrSSBGOpezaVqLcDAvFCKd5pZdKmmAywgPa1TTCIZVuNr0+R8da6aMgFroihabq74kMh1KOQ193hlgN5bw3Ef/zuqkKLtyMRUmqaERmi4KUIxWjSRSozwQlio81wUQwfSsiQ6xTUDqwig7Bnn95kbScmm3V7Nuzav2qiKMMh3AEJ2DDOdThBhrQBAKP8Ayv8GY8GS/Gu/Exay0Zxcw+/IHx+QOwtZS5</latexit><latexit sha1_base64="pzyaFMhHWVScgaraG6yqj7/9V9c=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gEVyWJgi5cFN24rGAf0MYwmU7aoZMHMxOhhuCvuHGhiFv/w51/47TNQlsPXDiccy/33uMnnEllWd9GaWl5ZXWtvF7Z2Nza3jF391oyTgWhTRLzWHR8LClnEW0qpjjtJILi0Oe07Y+uJ377gQrJ4uhOjRPqhngQsYARrLTkmQfy3vEy5zS/7AUCk8zOMyf3zKpVs6ZAi8QuSBUKNDzzq9ePSRrSSBGOpezaVqLcDAvFCKd5pZdKmmAywgPa1TTCIZVuNr0+R8da6aMgFroihabq74kMh1KOQ193hlgN5bw3Ef/zuqkKLtyMRUmqaERmi4KUIxWjSRSozwQlio81wUQwfSsiQ6xTUDqwig7Bnn95kbScmm3V7Nuzav2qiKMMh3AEJ2DDOdThBhrQBAKP8Ayv8GY8GS/Gu/Exay0Zxcw+/IHx+QOwtZS5</latexit>

Charged lepton rotation

Suggests
✓e12 ⇡ ✓C

<latexit sha1_base64="SleYkooNtakOFCz3R4LsfkSyVkw=">AAACBnicbVDJSgNBEO2JW4xb1KMIjUHwFGaCoMdgLh4jmAUycejp1CRNeha6a8Qw5OTFX/HiQRGvfoM3/8bOctDEBwWP96qoqucnUmi07W8rt7K6tr6R3yxsbe/s7hX3D5o6ThWHBo9lrNo+0yBFBA0UKKGdKGChL6HlD2sTv3UPSos4usVRAt2Q9SMRCM7QSF7x2MUBILsDL3MqY5cliYof6Ez0al6xZJftKegyceakROaoe8UvtxfzNIQIuWRadxw7wW7GFAouYVxwUw0J40PWh46hEQtBd7PpG2N6apQeDWJlKkI6VX9PZCzUehT6pjNkONCL3kT8z+ukGFx2MxElKULEZ4uCVFKM6SQT2hMKOMqRIYwrYW6lfMAU42iSK5gQnMWXl0mzUnbssnNzXqpezePIkyNyQs6IQy5IlVyTOmkQTh7JM3klb9aT9WK9Wx+z1pw1nzkkf2B9/gAmC5jm</latexit><latexit sha1_base64="SleYkooNtakOFCz3R4LsfkSyVkw=">AAACBnicbVDJSgNBEO2JW4xb1KMIjUHwFGaCoMdgLh4jmAUycejp1CRNeha6a8Qw5OTFX/HiQRGvfoM3/8bOctDEBwWP96qoqucnUmi07W8rt7K6tr6R3yxsbe/s7hX3D5o6ThWHBo9lrNo+0yBFBA0UKKGdKGChL6HlD2sTv3UPSos4usVRAt2Q9SMRCM7QSF7x2MUBILsDL3MqY5cliYof6Ez0al6xZJftKegyceakROaoe8UvtxfzNIQIuWRadxw7wW7GFAouYVxwUw0J40PWh46hEQtBd7PpG2N6apQeDWJlKkI6VX9PZCzUehT6pjNkONCL3kT8z+ukGFx2MxElKULEZ4uCVFKM6SQT2hMKOMqRIYwrYW6lfMAU42iSK5gQnMWXl0mzUnbssnNzXqpezePIkyNyQs6IQy5IlVyTOmkQTh7JM3klb9aT9WK9Wx+z1pw1nzkkf2B9/gAmC5jm</latexit><latexit sha1_base64="SleYkooNtakOFCz3R4LsfkSyVkw=">AAACBnicbVDJSgNBEO2JW4xb1KMIjUHwFGaCoMdgLh4jmAUycejp1CRNeha6a8Qw5OTFX/HiQRGvfoM3/8bOctDEBwWP96qoqucnUmi07W8rt7K6tr6R3yxsbe/s7hX3D5o6ThWHBo9lrNo+0yBFBA0UKKGdKGChL6HlD2sTv3UPSos4usVRAt2Q9SMRCM7QSF7x2MUBILsDL3MqY5cliYof6Ez0al6xZJftKegyceakROaoe8UvtxfzNIQIuWRadxw7wW7GFAouYVxwUw0J40PWh46hEQtBd7PpG2N6apQeDWJlKkI6VX9PZCzUehT6pjNkONCL3kT8z+ukGFx2MxElKULEZ4uCVFKM6SQT2hMKOMqRIYwrYW6lfMAU42iSK5gQnMWXl0mzUnbssnNzXqpezePIkyNyQs6IQy5IlVyTOmkQTh7JM3klb9aT9WK9Wx+z1pw1nzkkf2B9/gAmC5jm</latexit><latexit sha1_base64="SleYkooNtakOFCz3R4LsfkSyVkw=">AAACBnicbVDJSgNBEO2JW4xb1KMIjUHwFGaCoMdgLh4jmAUycejp1CRNeha6a8Qw5OTFX/HiQRGvfoM3/8bOctDEBwWP96qoqucnUmi07W8rt7K6tr6R3yxsbe/s7hX3D5o6ThWHBo9lrNo+0yBFBA0UKKGdKGChL6HlD2sTv3UPSos4usVRAt2Q9SMRCM7QSF7x2MUBILsDL3MqY5cliYof6Ez0al6xZJftKegyceakROaoe8UvtxfzNIQIuWRadxw7wW7GFAouYVxwUw0J40PWh46hEQtBd7PpG2N6apQeDWJlKkI6VX9PZCzUehT6pjNkONCL3kT8z+ukGFx2MxElKULEZ4uCVFKM6SQT2hMKOMqRIYwrYW6lfMAU42iSK5gQnMWXl0mzUnbssnNzXqpezePIkyNyQs6IQy5IlVyTOmkQTh7JM3klb9aT9WK9Wx+z1pw1nzkkf2B9/gAmC5jm</latexit>

This derivation: P.Ballett, S.F.K., C.Luhn, S.Pascoli and M.A.Schmidt, 1410.7573

Prediction for CP phase

Huge literature e.g. Antusch and SFK, hep-ph/0508044; I.Girardi, S.T.Petcov and A.V.Titov,1410.8056, ..



Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1� s

2
13)

1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,
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CA . (13)

Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,

UTM1 ⇡

0
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3 � �
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� �

1

CA . (14)

With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

UTM2 ⇡

0

B@
� 1p
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�

� 1p
3
�

� � 1p
3
�

1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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TM2

TM1

Tri Second column of TBM

First column of TBM

Tri-maximal Mixing
C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798 
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|U⌧2| = |� c12s23 � s12s13c23e
i�| =

r
1

3
<latexit sha1_base64="D9yjkh7K4T3fIOt4NltVQH++yPg="></latexit><latexit sha1_base64="D9yjkh7K4T3fIOt4NltVQH++yPg="></latexit><latexit sha1_base64="D9yjkh7K4T3fIOt4NltVQH++yPg="></latexit><latexit sha1_base64="D9yjkh7K4T3fIOt4NltVQH++yPg="></latexit>

|Uµ2| = |c12c23 � s12s13s23e
i�| =

r
1

3
<latexit sha1_base64="9N9nPikgMQtXBjTZrqi0pnC3kW0="></latexit><latexit sha1_base64="9N9nPikgMQtXBjTZrqi0pnC3kW0="></latexit><latexit sha1_base64="9N9nPikgMQtXBjTZrqi0pnC3kW0="></latexit><latexit sha1_base64="9N9nPikgMQtXBjTZrqi0pnC3kW0="></latexit>

|Ue2| = s12c13 =

r
1

3
<latexit sha1_base64="Ef+3o/87922CwhrWSapiR7sby2U=">AAACG3icbVDLSgMxFM3UV62vqks3wSK4KjNTQTdC0Y3LCk5baMuQSTNtaCYzJhmhpPMfbvwVNy4UcSW48G9M21lo64HLPZxzL8k9QcKoVLb9bRVWVtfWN4qbpa3tnd298v5BU8apwMTDMYtFO0CSMMqJp6hipJ0IgqKAkVYwup76rQciJI35nRonpBehAachxUgZyS+7pYnnawLdbAIvofS142YQm1bLoBG68l4o3Q0FwtrJdC3LYMkvV+yqPQNcJk5OKiBHwy9/dvsxTiPCFWZIyo5jJ6qnkVAUM5KVuqkkCcIjNCAdQzmKiOzp2W0ZPDFKH4axMMUVnKm/NzSKpBxHgZmMkBrKRW8q/ud1UhVe9DTlSaoIx/OHwpRBFcNpULBPBcGKjQ1BWFDzV4iHyAShTJzTEJzFk5dJ0606dtW5PavUr/I4iuAIHINT4IBzUAc3oAE8gMEjeAav4M16sl6sd+tjPlqw8p1D8AfW1w9PVJ8d</latexit><latexit sha1_base64="Ef+3o/87922CwhrWSapiR7sby2U=">AAACG3icbVDLSgMxFM3UV62vqks3wSK4KjNTQTdC0Y3LCk5baMuQSTNtaCYzJhmhpPMfbvwVNy4UcSW48G9M21lo64HLPZxzL8k9QcKoVLb9bRVWVtfWN4qbpa3tnd298v5BU8apwMTDMYtFO0CSMMqJp6hipJ0IgqKAkVYwup76rQciJI35nRonpBehAachxUgZyS+7pYnnawLdbAIvofS142YQm1bLoBG68l4o3Q0FwtrJdC3LYMkvV+yqPQNcJk5OKiBHwy9/dvsxTiPCFWZIyo5jJ6qnkVAUM5KVuqkkCcIjNCAdQzmKiOzp2W0ZPDFKH4axMMUVnKm/NzSKpBxHgZmMkBrKRW8q/ud1UhVe9DTlSaoIx/OHwpRBFcNpULBPBcGKjQ1BWFDzV4iHyAShTJzTEJzFk5dJ0606dtW5PavUr/I4iuAIHINT4IBzUAc3oAE8gMEjeAav4M16sl6sd+tjPlqw8p1D8AfW1w9PVJ8d</latexit><latexit sha1_base64="Ef+3o/87922CwhrWSapiR7sby2U=">AAACG3icbVDLSgMxFM3UV62vqks3wSK4KjNTQTdC0Y3LCk5baMuQSTNtaCYzJhmhpPMfbvwVNy4UcSW48G9M21lo64HLPZxzL8k9QcKoVLb9bRVWVtfWN4qbpa3tnd298v5BU8apwMTDMYtFO0CSMMqJp6hipJ0IgqKAkVYwup76rQciJI35nRonpBehAachxUgZyS+7pYnnawLdbAIvofS142YQm1bLoBG68l4o3Q0FwtrJdC3LYMkvV+yqPQNcJk5OKiBHwy9/dvsxTiPCFWZIyo5jJ6qnkVAUM5KVuqkkCcIjNCAdQzmKiOzp2W0ZPDFKH4axMMUVnKm/NzSKpBxHgZmMkBrKRW8q/ud1UhVe9DTlSaoIx/OHwpRBFcNpULBPBcGKjQ1BWFDzV4iHyAShTJzTEJzFk5dJ0606dtW5PavUr/I4iuAIHINT4IBzUAc3oAE8gMEjeAav4M16sl6sd+tjPlqw8p1D8AfW1w9PVJ8d</latexit><latexit sha1_base64="Ef+3o/87922CwhrWSapiR7sby2U=">AAACG3icbVDLSgMxFM3UV62vqks3wSK4KjNTQTdC0Y3LCk5baMuQSTNtaCYzJhmhpPMfbvwVNy4UcSW48G9M21lo64HLPZxzL8k9QcKoVLb9bRVWVtfWN4qbpa3tnd298v5BU8apwMTDMYtFO0CSMMqJp6hipJ0IgqKAkVYwup76rQciJI35nRonpBehAachxUgZyS+7pYnnawLdbAIvofS142YQm1bLoBG68l4o3Q0FwtrJdC3LYMkvV+yqPQNcJk5OKiBHwy9/dvsxTiPCFWZIyo5jJ6qnkVAUM5KVuqkkCcIjNCAdQzmKiOzp2W0ZPDFKH4axMMUVnKm/NzSKpBxHgZmMkBrKRW8q/ud1UhVe9DTlSaoIx/OHwpRBFcNpULBPBcGKjQ1BWFDzV4iHyAShTJzTEJzFk5dJ0606dtW5PavUr/I4iuAIHINT4IBzUAc3oAE8gMEjeAav4M16sl6sd+tjPlqw8p1D8AfW1w9PVJ8d</latexit>

cos � =
2c13 cot 2✓23 cot 2✓13p

2� 3s213
<latexit sha1_base64="9SJL3dpAtpGT8Erseu5NizTIYZo="></latexit><latexit sha1_base64="9SJL3dpAtpGT8Erseu5NizTIYZo="></latexit><latexit sha1_base64="9SJL3dpAtpGT8Erseu5NizTIYZo="></latexit><latexit sha1_base64="9SJL3dpAtpGT8Erseu5NizTIYZo="></latexit>
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<latexit sha1_base64="j/sEXBgYlqMtNfw+6mENqkqlq10=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5Kpgq6k6MZlBfuANpbJdNIOnUzCzESoIfgrblwo4tb/cOffOG2z0NYDFw7n3Mu99/gxZ0q77rdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NH1xG89UKlYJO70OKZeiAeCBYxgbaSefaDuq70UVbPLbiAxSVGWnmY9u+xW3CmcRYJyUoYc9Z791e1HJAmp0IRjpTrIjbWXYqkZ4TQrdRNFY0xGeEA7hgocUuWl0+sz59gofSeIpCmhnan6eyLFoVLj0DedIdZDNe9NxP+8TqKDCy9lIk40FWS2KEi4oyNnEoXTZ5ISzceGYCKZudUhQ2xS0CawkgkBzb+8SJrVCnIr6PasXLvK4yjCIRzBCSA4hxrcQB0aQOARnuEV3qwn68V6tz5mrQUrn9mHP7A+fwCyNZS6</latexit><latexit sha1_base64="j/sEXBgYlqMtNfw+6mENqkqlq10=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5Kpgq6k6MZlBfuANpbJdNIOnUzCzESoIfgrblwo4tb/cOffOG2z0NYDFw7n3Mu99/gxZ0q77rdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NH1xG89UKlYJO70OKZeiAeCBYxgbaSefaDuq70UVbPLbiAxSVGWnmY9u+xW3CmcRYJyUoYc9Z791e1HJAmp0IRjpTrIjbWXYqkZ4TQrdRNFY0xGeEA7hgocUuWl0+sz59gofSeIpCmhnan6eyLFoVLj0DedIdZDNe9NxP+8TqKDCy9lIk40FWS2KEi4oyNnEoXTZ5ISzceGYCKZudUhQ2xS0CawkgkBzb+8SJrVCnIr6PasXLvK4yjCIRzBCSA4hxrcQB0aQOARnuEV3qwn68V6tz5mrQUrn9mHP7A+fwCyNZS6</latexit><latexit sha1_base64="j/sEXBgYlqMtNfw+6mENqkqlq10=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5Kpgq6k6MZlBfuANpbJdNIOnUzCzESoIfgrblwo4tb/cOffOG2z0NYDFw7n3Mu99/gxZ0q77rdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NH1xG89UKlYJO70OKZeiAeCBYxgbaSefaDuq70UVbPLbiAxSVGWnmY9u+xW3CmcRYJyUoYc9Z791e1HJAmp0IRjpTrIjbWXYqkZ4TQrdRNFY0xGeEA7hgocUuWl0+sz59gofSeIpCmhnan6eyLFoVLj0DedIdZDNe9NxP+8TqKDCy9lIk40FWS2KEi4oyNnEoXTZ5ISzceGYCKZudUhQ2xS0CawkgkBzb+8SJrVCnIr6PasXLvK4yjCIRzBCSA4hxrcQB0aQOARnuEV3qwn68V6tz5mrQUrn9mHP7A+fwCyNZS6</latexit><latexit sha1_base64="j/sEXBgYlqMtNfw+6mENqkqlq10=">AAAB/XicbVDLSsNAFL2pr1pf8bFzEyyCq5Kpgq6k6MZlBfuANpbJdNIOnUzCzESoIfgrblwo4tb/cOffOG2z0NYDFw7n3Mu99/gxZ0q77rdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NH1xG89UKlYJO70OKZeiAeCBYxgbaSefaDuq70UVbPLbiAxSVGWnmY9u+xW3CmcRYJyUoYc9Z791e1HJAmp0IRjpTrIjbWXYqkZ4TQrdRNFY0xGeEA7hgocUuWl0+sz59gofSeIpCmhnan6eyLFoVLj0DedIdZDNe9NxP+8TqKDCy9lIk40FWS2KEi4oyNnEoXTZ5ISzceGYCKZudUhQ2xS0CawkgkBzb+8SJrVCnIr6PasXLvK4yjCIRzBCSA4hxrcQB0aQOARnuEV3qwn68V6tz5mrQUrn9mHP7A+fwCyNZS6</latexit>

Disfavoured
Tri-maximal Mixing

C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798 



Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1� s

2
13)

1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

UTB =

0

B@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6
� 1p

3
1p
2

1

CA . (13)

Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,

UTM1 ⇡

0

B@

q
2
3 � �

� 1p
6
� �

1p
6
� �

1

CA . (14)

With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

UTM2 ⇡

0

B@
� 1p

3
�

� 1p
3
�

� � 1p
3
�

1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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|Ue1| = c12c13 =

r
2

3
<latexit sha1_base64="lM/X+7zIsDzNrOHPvK2zsc3ZtXQ=">AAACGHicbVC7TsMwFHV4lvIKMLJYVEhMJWmRYEGqYGEsEmkrNVXkuE5r1XlgO0iVm89g4VdYGECItRt/g9NmgJYjWT4+515d3+MnjAppWd/Gyura+sZmaau8vbO7t28eHLZEnHJMHByzmHd8JAijEXEklYx0Ek5Q6DPS9ke3ud9+IlzQOHqQ44T0QjSIaEAxklryzPOJ4yliZxN4DbGn7Fo2u+qZfrvikUvlBhxhVctUPctg2TMrVtWaAS4TuyAVUKDpmVO3H+M0JJHEDAnRta1E9hTikmJGsrKbCpIgPEID0tU0QiERPTVbLIOnWunDIOb6RBLO1N8dCoVCjENfV4ZIDsWil4v/ed1UBlc9RaMklSTC80FByqCMYZ4S7FNOsGRjTRDmVP8V4iHSQUidZR6CvbjyMmnVqrZVte8vKo2bIo4SOAYn4AzY4BI0wB1oAgdg8AxewTv4MF6MN+PT+JqXrhhFzxH4A2P6A0ALnqU=</latexit><latexit sha1_base64="lM/X+7zIsDzNrOHPvK2zsc3ZtXQ=">AAACGHicbVC7TsMwFHV4lvIKMLJYVEhMJWmRYEGqYGEsEmkrNVXkuE5r1XlgO0iVm89g4VdYGECItRt/g9NmgJYjWT4+515d3+MnjAppWd/Gyura+sZmaau8vbO7t28eHLZEnHJMHByzmHd8JAijEXEklYx0Ek5Q6DPS9ke3ud9+IlzQOHqQ44T0QjSIaEAxklryzPOJ4yliZxN4DbGn7Fo2u+qZfrvikUvlBhxhVctUPctg2TMrVtWaAS4TuyAVUKDpmVO3H+M0JJHEDAnRta1E9hTikmJGsrKbCpIgPEID0tU0QiERPTVbLIOnWunDIOb6RBLO1N8dCoVCjENfV4ZIDsWil4v/ed1UBlc9RaMklSTC80FByqCMYZ4S7FNOsGRjTRDmVP8V4iHSQUidZR6CvbjyMmnVqrZVte8vKo2bIo4SOAYn4AzY4BI0wB1oAgdg8AxewTv4MF6MN+PT+JqXrhhFzxH4A2P6A0ALnqU=</latexit><latexit sha1_base64="lM/X+7zIsDzNrOHPvK2zsc3ZtXQ=">AAACGHicbVC7TsMwFHV4lvIKMLJYVEhMJWmRYEGqYGEsEmkrNVXkuE5r1XlgO0iVm89g4VdYGECItRt/g9NmgJYjWT4+515d3+MnjAppWd/Gyura+sZmaau8vbO7t28eHLZEnHJMHByzmHd8JAijEXEklYx0Ek5Q6DPS9ke3ud9+IlzQOHqQ44T0QjSIaEAxklryzPOJ4yliZxN4DbGn7Fo2u+qZfrvikUvlBhxhVctUPctg2TMrVtWaAS4TuyAVUKDpmVO3H+M0JJHEDAnRta1E9hTikmJGsrKbCpIgPEID0tU0QiERPTVbLIOnWunDIOb6RBLO1N8dCoVCjENfV4ZIDsWil4v/ed1UBlc9RaMklSTC80FByqCMYZ4S7FNOsGRjTRDmVP8V4iHSQUidZR6CvbjyMmnVqrZVte8vKo2bIo4SOAYn4AzY4BI0wB1oAgdg8AxewTv4MF6MN+PT+JqXrhhFzxH4A2P6A0ALnqU=</latexit><latexit sha1_base64="lM/X+7zIsDzNrOHPvK2zsc3ZtXQ=">AAACGHicbVC7TsMwFHV4lvIKMLJYVEhMJWmRYEGqYGEsEmkrNVXkuE5r1XlgO0iVm89g4VdYGECItRt/g9NmgJYjWT4+515d3+MnjAppWd/Gyura+sZmaau8vbO7t28eHLZEnHJMHByzmHd8JAijEXEklYx0Ek5Q6DPS9ke3ud9+IlzQOHqQ44T0QjSIaEAxklryzPOJ4yliZxN4DbGn7Fo2u+qZfrvikUvlBhxhVctUPctg2TMrVtWaAS4TuyAVUKDpmVO3H+M0JJHEDAnRta1E9hTikmJGsrKbCpIgPEID0tU0QiERPTVbLIOnWunDIOb6RBLO1N8dCoVCjENfV4ZIDsWil4v/ed1UBlc9RaMklSTC80FByqCMYZ4S7FNOsGRjTRDmVP8V4iHSQUidZR6CvbjyMmnVqrZVte8vKo2bIo4SOAYn4AzY4BI0wB1oAgdg8AxewTv4MF6MN+PT+JqXrhhFzxH4A2P6A0ALnqU=</latexit>

|Uµ1| = |� s12c23 � c12s13s23e
i�| =

r
1

6
<latexit sha1_base64="6g3rfeWwhDBWIRGXYLVIAG1g7WA="></latexit><latexit sha1_base64="6g3rfeWwhDBWIRGXYLVIAG1g7WA=">AAACRHicbVBNbxMxEPW2hbbhK5RjLyMiJC5E6xRRLpWqcuHYSqStlA0rrzPbWvV+YM8iRY5/HJf+AG78Ai4cqKpeEd4kh9LyJMtv3pvR2C+rtbIUxz+ildW1Bw/XNzY7jx4/efqs+3zr2FaNkTiUla7MaSYsalXikBRpPK0NiiLTeJJdfGj9k69orKrKTzStcVyIs1LlSgoKUtoddWbD1CVFA9zPYA9m8AZs6vjAg0zdYMeHWi7qVt6ZX62Mn51KJqhJ+NkeJPaLIZfkRkjHvXvnPUAn7fbifjwH3Cd8SXpsicO0+z2ZVLIpsCSphbUjHtc0dsKQkhp9J2ks1kJeiDMcBVqKAu3YzUPw8CooE8grE05JMFdvTzhRWDststBZCDq3d71W/J83aih/P3aqrBvCUi4W5Y0GqqBNFCbKoCQ9DURIo8JbQZ6LkASF3NsQ+N0v3yfHgz6P+/zobW//YBnHBttmL9lrxtku22cf2SEbMsm+sZ/sN7uKLqNf0XV0s2hdiZYzL9g/iP78BReHrqk=</latexit><latexit sha1_base64="6g3rfeWwhDBWIRGXYLVIAG1g7WA="></latexit><latexit sha1_base64="6g3rfeWwhDBWIRGXYLVIAG1g7WA="></latexit>

|U⌧1| = |s12s23 � c12s13c23e
i�| =

r
1

6
<latexit sha1_base64="I94TbAw7P+X/qVri4oAvPKG0Xe0="></latexit><latexit sha1_base64="I94TbAw7P+X/qVri4oAvPKG0Xe0="></latexit><latexit sha1_base64="I94TbAw7P+X/qVri4oAvPKG0Xe0="></latexit><latexit sha1_base64="I94TbAw7P+X/qVri4oAvPKG0Xe0="></latexit>

cos � = � cot 2✓23(1� 5s213)

2
p
2s13

p
1� 3s213
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Favoured

Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1� s

2
13)

1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

UTB =

0

B@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6
� 1p

3
1p
2

1

CA . (13)

Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,

UTM1 ⇡

0

B@

q
2
3 � �

� 1p
6
� �

1p
6
� �

1

CA . (14)

With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

UTM2 ⇡

0

B@
� 1p

3
�

� 1p
3
�

� � 1p
3
�

1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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4 real input parameters

3 neutrino masses (m1=0),  
3 mixing angles, 
1 Dirac CP phase, 
2 Majorana phases (1 zero) 
1 BAU parameter YB 
= 10 observables 
of which 7 are constrained

Describes:

6.4 Future Tests of the Littlest Seesaw

Given the constantly evolving nature of particle physics and the rapid technological ad-
vances being made in neutrino experiments, it is to be expected that the precision of
PMNS parameter measurements will improve considerably in the coming years. With
this in mind, it seems pertinent to discuss the range of values of each observable for
which this analysis method of the Littlest Seesaw model remains a relevant and viable
test of neutrino masses and properties.

Table 4 below shows 1 �, 2 � and 3 � ranges for each of the observables predicted by the
Littlest Seesaw model in our analysis of Case A2.

1 � range 2 � range 3 � range

✓12/
� 34.254 ! 34.350 34.236 ! 34.365 34.217 ! 34.383

✓13/
� 8.370 ! 8.803 8.300 ! 8.878 8.218 ! 8.959

✓23/
� 45.405 ! 45.834 45.343 ! 45.910 45.269 ! 45.996

�m12
2
/10�5eV2 7.030 ! 7.673 6.930 ! 7.805 6.788 ! 7.952

�m31
2
/10�3eV2 2.434 ! 2.561 2.407 ! 2.587 2.377 ! 2.616

�/
�

�88.284 ! �86.568 �88.546 ! �86.287 �88.864 ! �85.966

YB/10�10 0.839 ! 0.881 0.831 ! 0.889 0.822 ! 0.898

Table 4: Ranges of observables for Case A2.

The same ranges are shown for Case D2 in Table 5. It is interesting to note that for
Case D, the values of ✓23 favoured by the model are slightly lower than in Case A, as
are the predicted values of �.

1 � range 2 � range 3 � range

✓12/
� 34.291 ! 34.379 34.278 ! 34.391 34.264 ! 34.404

✓13/
� 8.384 ! 8.784 8.329 ! 8.838 8.268 ! 8.902

✓23/
� 44.044 ! 44.434 43.991 ! 44.484 43.925 ! 44.539

�m12
2
/10�5eV2 7.058 ! 7.615 6.966 ! 7.688 6.875 ! 7.787

�m31
2
/10�3eV2 2.435 ! 2.562 2.407 ! 2.590 2.373 ! 2.624

�/
�

�93.708 ! �92.180 �93.919 ! �91.964 �94.160 ! �91.730

YB/10�10 0.838 ! 0.881 0.827 ! 0.893 0.820 ! 0.899

Table 5: Case D2 ranges for observables
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Predictions

Littlest Seesaw
Dirac texture zero 6.3 Perturbations around Best Fit Points

It is useful to show the best fit points we obtain with this analysis visually (see Table 2
for their numerical values). In this section, we vary our input parameters around these
benchmark points in both one and two dimensions, and we see that such perturbations
in parameter space yield variations around smooth, stable minima. Figure 4 shows
heat maps representing increases in �

2 as one moves away from the benchmark points, for
variations in a, b or Matm,Msol parameter space, respectively. Note the resulting shape
is never an exact circle, as the analysis is not sensitive to all parameters equally.

Figure 4: Perturbations around Case A2 benchmark point shown on the left, those for Case
D2 on the right. In each case, two parameters are varied at a time while the other two are

kept fixed. Di↵erently coloured circles represent approximate 1, 2 and 3 sigma deviations from

the best fit in each parameter, and the green cross marks the benchmark point.

We now vary each parameter individually around the best fit points given in Cases A2
and D2, whilst keeping the other three parameters fixed - Figure 5 shows such pertur-
bations. On the vertical axes, ��

2 is the deviation from minimum �
2; the stationary

point thus shows a vanishing ��
2 corresponding to the benchmark point itself.
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Best fit

Best fit

• Fit includes effects of RG corrections 
• Determines the RHN masses! Also predicts NO and m1=0 

From a neutrino mass matrix as given in Eqs. (8) and (9), one immediately obtains normal
ordering with m1 = 0. Furthermore, these scenarios only provide one physical Majorana
phase �. As discussed above, we choose to start in a flavour basis, where the right-
handed neutrino mass matrix MR and the charged-lepton mass matrix Ml are diagonal.
Consequently, the PMNS matrix is given by UPMNS = U

†
⌫L. We use the standard PDG

parametrisation for the mixing angles, and the CP-violating phase �. Within our LS
scenario, the standard PDG Majorana phase '1 vanishes and �'2/2 = �.

The low-energy phenomenology of Case A has been studied in detail both numeri-
cally [28, 32] and analytically [35], where it has been found that the best fit to experi-
mental data of neutrino oscillations is obtained for n = 3 for a particular choice of phase
⌘ ⇡ 2⇡/3, while for Case B the preferred choice is for n = 3 and ⌘ ⇡ �2⇡/3 [28,36]. Due
to the degeneracy of Cases A, C and Cases B, D at tree level, the preferred choice for
n and ⌘ carries over, respectively.

The prediction for the baryon number asymmetry in our Universe via leptogenesis within
Case A has been studied [34], where it was shown that Case C for positive BAU
predicts the CP-violating phase to be � ⇡ 90o which is disfavoured by current global fits
to neutrino oscillation data. It is straightforward to show that Case B is disfavoured
for a similar reason. Therefore, taking into account the positive sign of the BAU, and
the present experimentally favoured prediction of � ⇡ �90o, one is left with two cases
of interest, namely Case A with ⌘ = 2⇡/3 and Case D with ⌘ = �2⇡/3, respectively,
where n = 3 for both cases.

These successful cases, which define the two cases of the LS model as discussed in the
Introduction, are summarised below:

Case A : �
A
⌫ =

0

@
0 be

i⇡/3

a 3bei⇡/3

a be
i⇡/3

1

A with MR = diag(Matm,Msol) (11)

Case D : �D
⌫ =

0

@
be

�i⇡/3 0
be

�i⇡/3
a

3be�i⇡/3
a

1

A with MR = diag(Msol,Matm) (12)

where in both cases the columns are ordered so that the lighter right-handed neutrino of
mass M1 is in the first column and the heavier right-handed neutrino of mass M2 is in
the second column, with M1 < M2. In both cases a normal hierarchy is predicted with
m1 = 0 and the physical atmospheric neutrino mass m3 is dominantly controlled by the
combination ma = a

2
v
2
/Matm, while the solar neutrino mass m2 is dominantly controlled

by the combination mb = b
2
v
2
/Msol, which is the reason for the notation of the RHN

masses used above. These two cases of the LS model will form the focus of the numerical
studies in this paper.

5

MR =

✓
Matm 0
0 Msol

◆
Yν =

4 real input parameters
2 RHNs

Constrained 
couplings 

SFK,1304.6264; 1512.07531



Non-Abelian Family Symmetry   

A5T7 S4

A4

⌃(168) �(96) SO(3)

�(27)

SU(3)

These days can explain 
charged lepton 

corrections, TM1, TM2, 
Littlest seesaw,… 
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A4 and S4 Group Theory
that there exists only one more irreducible representation, namely the doublet 2. Its

matrix representation is presented, together with the other irreducible representations in

the following table.

S4 A4 S T U

1,1′ 1 1 1 ±1

2

(
1′′

1′

) (
1 0

0 1

) (
ω 0

0 ω2

) (
0 1

1 0

)

3,3′ 3 1
3




−1 2 2

2 −1 2

2 2 −1








1 0 0

0 ω2 0

0 0 ω



 ∓




1 0 0

0 0 1

0 1 0





The same table also shows the representations of the S4 subgroup A4, generated by S and

T only. Dropping the U generator, it is clear that both triplets of S4 coincide with the

single A4 triplet. Likewise, the two S4 singlets correspond to the trivial singlet of A4. The

S4 doublet, on the other hand, becomes reducible once the U generator is removed. Hence,

it decomposes into two separate non-trivial irreducible representations of A4, 1′′ and 1′.

The non-trivial S4 product rules in the T -diagonal basis are listed below, where we use

the number of primes within the expression

α(′) ⊗ β(′) → γ(′) , (C.2)

to classify the results. We denote this number by n, e.g. in 3⊗ 3′ → 3′ we get n = 2.

1(′) ⊗ 1(′) → 1(′)





n = even

1 ⊗ 1 → 1

1′ ⊗ 1′ → 1

1 ⊗ 1′ → 1′





αβ ,

1(′) ⊗ 2 → 2

{
n = even

n = odd

1 ⊗ 2 → 2

1′ ⊗ 2 → 2

}

α

(
β1

(−1)nβ2

)

,

1(′) ⊗ 3(′) → 3(′)





n = even

1 ⊗ 3 → 3

1′ ⊗ 3′ → 3

1 ⊗ 3′ → 3′

1′ ⊗ 3 → 3′





α




β1
β2
β3



 ,

2 ⊗ 2 → 1(′)

{
n = even

n = odd

2⊗ 2 → 1

2⊗ 2 → 1′

}

α1β2 + (−1)nα2β1 ,

2 ⊗ 2 → 2

{
n = even 2⊗ 2 → 2

} (
α2β2
α1β1

)

,

– 83 –

S.F.K., C.Luhn,
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Diagonalised by TB matrix

Pµµ = 1− (1− 4a2) sin2∆+
2

3
(1− s)α∆ sin 2∆

−
4

9
α2 sin

2A∆

A2
−

4

9
α2∆2 cos 2∆

+
4

9
α2 1

A

(
sin∆

sinA∆

A
cos(A− 1)∆ −

∆

2
sin 2∆

)

− r2
sin2(A− 1)∆

(A− 1)2

−
1

A− 1
r2
(
sin∆ cosA∆

sin(A− 1)∆

(A− 1)
−

A

2
∆ sin 2∆

)

−
4

3
rα cos δ cos∆

sinA∆

A

sin(A− 1)∆

(A− 1)
, (B.9)

Pµτ = (1− 4a2) sin2∆−
2

3
(1− s)α∆ sin 2∆+

4

9
α2∆2 cos 2∆

−
4

9
α2 1

A

(
sin∆

sinA∆

A
cos(A− 1)∆ −

∆

2
sin 2∆

)

+
1

A− 1
r2
(
sin∆ cosA∆

sin(A− 1)∆

(A− 1)
−

A

2
∆ sin 2∆

)

+
4

3
rα sin δ sin∆

sinA∆

A

sin(A− 1)∆

(A− 1)
. (B.10)

C. Generators and Clebsch-Gordan coefficients of S4, A4 and T7

In this section we list the generators of the groups S4, A4 and T7 in the basis where the

order three generator is diagonal. As this basis is particularly convenient for model building

purposes, we state the corresponding (basis dependent) Clebsch-Gordan coefficients for all

non-trivial Kronecker products. We first consider the two intimately linked groups S4 and

A4, before discussing the group T7.

C.1 The groups S4 and A4

The permutation group S4 can be defined in terms of three generators S, T and U satisfying

the presentation rules [146]

S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1 . (C.1)

Dropping the generator U and with it all relations involving U , we obtain the presentation

of the alternating group A4.

The triplet matrix representations of the three S4 generators in the T -diagonal basis

can be obtained from Eq. (5.9). Noticing that the b generator (corresponding to U) in

Eq. (5.7) occurs only quadratically, we immediately find another triplet representation

by changing the overall sign of U . The obtained irreducible representations are called 3

and 3′, respectively. Likewise we find the two singlet representations 1 and 1′. Summing

up the square of the dimensions of these representations, 12 + 12 + 32 + 32 = 20, shows

– 82 –



residual
symmetry

U S SU

1 − − −

1′ − 1 −

2 − (1 , −1)T −

3 (0 , 1 , −1)T (1 , 1 , 1)T (2 , −1 , −1)T

3′ (1 , 0 , 0)T − (0 , 1 , −1)T

Table 2: All available vacuum configurations which break the ZS
2 ×ZU

2 Klein symmetry of
the neutrino sector to the residual Z2 symmetries generated by U , S and SU , respectively.

one of the columns of the tri-bimaximal mixing matrix given in Eq. (2.4). For unbroken U ,
S and SU , these are the third, second and first columns, respectively. This can be seen by
realising that any U symmetric mass matrix has an eigenvector (0, 1,−1)T , while (1, 1, 1)T

and (2,−1,−1)T are eigenvectors of mass matrices which are symmetric under S and SU ,
respectively. Alternatively, one can apply the tri-bimaximal mixing matrix UTB on M of
Eq. (2.5),

M ′ = UT
TB(MTB +∆M)UTB = Mdiag

TB +∆M ′ , (2.7)

with

Mdiag
TB = UT

TBMTBUTB =




x1 − x2 + 3x3′ 0 0

0 x1 + 2x2 0
0 0 −x1 + x2 + 3x3′



 , (2.8)

and

∆M ′
U = y




1

√
2 0√

2 0 0
0 0 1



 , ∆M ′
S =

√
3 y




0 0 1
0 0 0
1 0 0



 , ∆M ′
SU =

√
6 y




0 0 0
0 0 1
0 1 0



 .

(2.9)
This shows that the full mixing matrix which diagonalises M has the form UTBUij , where
the second factor denotes a unitary transformation involving only generations i and j,
hence leaving one column of the tri-bimaximal mixing matrix unchanged.

The fact that one column of the mixing matrix is exactly known, allows to formulate
two predictions in each case.

• U symmetry. In this case, the third column of the mixing matrix takes the form

(0, 1,−1)/
√
2. Adopting the PDG parameterisation, we immediately find

θ13 = 0◦ , θ23 = 45◦ , (2.10)

while the solar mixing angle θ12 remains undetermined.

5

S4 vacuum alignments C.Luhn,
1306.2358

h�⌫
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@
1
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1

1
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0

@
1
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1
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.

h�SUi ⇠ 3 ⇠

0

@
2

�1
�1

1

A , preserves SU breaks T, U,

and the two important SU preserving alignments for 30 flavons,

h�0
atmi ⇠ 30

⇠

0

@
0
1

�1

1

A , preserves SU breaks T, U, (68)

h�0
soli ⇠ 30
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These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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3.4 Charged lepton mixing corrections and sum rules

Recall that the physical PMNS matrix in Eq.10 is given by UPMNS = U eU ⌫

TB. Now suppose that U ⌫

TB is
the TB matrix in Eq.14 while U e corresponds to small but unknown charged lepton corrections. This
was first discussed in [55–58] where the following sum rule involving the lepton mixing parameters,
including crucially the CP phase �, was first derived:

✓12 ⇡ 35.26o + ✓13 cos �, (24)

where 35.26o = sin�1 1p
3
. Eq.24 may be recast in terms of TB deviation parameters as [48],

s = r cos �. (25)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections involving
only (1,2) mixing, so that the PMNS matrix is given by [58],

UPMNS =

0

@
ce

12 se

12e
�i�

e
12 0

�se

12e
i�

e
12 ce

12 0
0 0 1

1

A

0

B@

q
2
3

1p
3

0

�
1p
6

1p
3

1p
2

1p
6

�
1p
3

1p
2

1

CA =

0

B@
· · · · · ·

s
e
12p
2
e�i�

e
12

· · · · · ·
c
e
12p
2

1p
6

�
1p
3

1p
2

1

CA (26)

Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],

|Ue3| = s13 =
se

12
p

2
, (27)

|U⌧1| = |s23s12 � s13c23c12e
i�
| =

1
p

6
, (28)

|U⌧2| = | � c12s23 � s12s13c23e
i�
| =

1
p

3
, (29)

|U⌧3| = c13c23 =
1

p
2
. (30)

The first equation implies a reactor angle ✓13 ⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓23, yield a new relation between the PMNS
parameters, ✓12, ✓13 and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1|

|U⌧2|
=

|s12s23 � c12s13c23ei�
|

| � c12s23 � s12s13c23ei�|
=

1
p

2
. (31)

This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23 = 0. However, since ✓e

23 cancels in the ratio, it also applies for ✓e

23 6= 0. It is not fully
general however since we are always assuming ✓e

13 = 0.
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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1

A , preserves SU breaks T, U,

and the two important SU preserving alignments for 30 flavons,

h�0
atmi ⇠ 30

⇠

0

@
0
1

�1

1

A , preserves SU breaks T, U, (68)

h�0
soli ⇠ 30

⇠

0

@
1
3

�1

1

A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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and the two important SU preserving alignments for 30 flavons,
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A , preserves SU breaks T, U, (68)
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A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1� s

2
13)

1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

UTB =

0

B@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6
� 1p

3
1p
2

1

CA . (13)

Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,

UTM1 ⇡

0

B@

q
2
3 � �

� 1p
6
� �

1p
6
� �

1

CA . (14)

With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

UTM2 ⇡

0

B@
� 1p

3
�

� 1p
3
�

� � 1p
3
�

1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).

7

Alternatively 
A4 with just     

S and T

break U

S4 flavour symmetry

SM⌫S = M⌫

TMET = ME



Charged 
Lepton Sector

Neutrino 
Sector

S,U  preserved 

G
T preserved   

�l �⌫

Family 
symmetry 

Generators 
S,T,U

Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.
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A , preserves SU breaks T, U,

and the two important SU preserving alignments for 30 flavons,

h�0
atmi ⇠ 30

⇠

0

@
0
1

�1

1

A , preserves SU breaks T, U, (68)

h�0
soli ⇠ 30

⇠

0

@
1
3

�1

1

A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1� s

2
13)

1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

UTB =

0

B@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6
� 1p

3
1p
2

1

CA . (13)

Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,

UTM1 ⇡

0

B@

q
2
3 � �

� 1p
6
� �

1p
6
� �

1

CA . (14)

With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

UTM2 ⇡

0

B@
� 1p

3
�

� 1p
3
�

� � 1p
3
�

1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓23 � 45� ⇡
p
2✓13 cos � (16)

a ⇡ �(r/2) cos �  ! ✓23 � 45� ⇡ � ✓13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓23 = 40� � 50� and ✓13 = 8� � 9�, leading
to |✓23�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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Origin of flavour symmetry
E.g. 7-plet

be obtained after the relevant irrep get a VEV. For instance, some of those subgroup
obtained by irreps up to 13 are shown in Table 1. The minimal irrep for SO(3) ! S4

is a 9-plet, while that for SO(3) ! A5 is a 13-plet. Applying a 9-plet flavon ⇢ and a
13-plet flavon  , respectively, we will realise these breakings in a SUSY framework in the
following.

irrep 1 3 5 7 9 11 13
subgroups SO(3) SO(2)

SO(3)
Z2 ⇥ Z2

SO(2)
SO(3)

1
A4

Z3

D4

SO(2)
SO(3)

S4 1
A4

S4

A5

Table 1: The not systematical stabiliser subgroups in the low-dimensional irreducible repre-
sentations of the group SO(3) [27].

2.2.1 SO(3) ! A4

The simplest irrep to break SO(3) ! A4 is using a 7-plet [26, 27]. In this work, we
introduce a 7-plet flavon ⇠ to achieve this goal. In the 3d flavour space, it is represented
as a rank-3 tensor ⇠ijk, which satisfies the requirements in Eq. (3), i.e.,

⇠ijk = ⇠jki = ⇠kij = ⇠ikj = ⇠jik = ⇠kji , ⇠iik = 0 . (5)

Constrained by Eq. (5), there are 7 free components of ⇠, which can be chosen as

⇠111, ⇠112, ⇠113, ⇠123, ⇠133, ⇠233, ⇠333 . (6)

For the A4 symmetry, we work in the Ma-Rajasekaran (MR) basis, where the generators
s and t in the 3d irreducible representation are given by

gs =

0

@
1 0 0
0 �1 0
0 0 �1

1

A , gt =

0

@
0 0 1
1 0 0
0 1 0

1

A . (7)

The A4-invariant VEV, satisfying

(gs)ii0(gs)jj0(gs)kk0h⇠i0j0k0i = h⇠ijki ,

(gt)ii0(gt)jj0(gt)kk0h⇠i0j0k0i = h⇠ijki , (8)

is given by

h⇠123i ⌘
v⇠
p
6
, h⇠111i = h⇠112i = h⇠113i = h⇠133i = h⇠233i = h⇠333i = 0 . (9)

The VEV of ⇠ is geometrically shown in Fig. 1.
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S.F.K. and Ye-Ling Zhou, 1809.10292  

Figure 1: A geometrical description of the 7-plet ⇠ijk as a tank-3 tensor with i, j, k = 1, 2, 3.
Points in the same colour represent the identical components, e.g., ⇠112 = ⇠121 = ⇠211 all in
green, etc. As a traceless tensor, points in grey are dependent upon the rest, e.g., ⇠122 =
⇠212 = ⇠221 = �⇠111� ⇠133. These properties leave only 7 independent components, showing in
7 di↵erent colours. For the A4-invariant VEV, only those in red, ⇠123 = ⇠132 = ⇠231 = ⇠213 =
⇠312 = ⇠321, take non-zero values.

The discussion of SO(3) ! A4 has been given in Refs. [26–28]. The main idea is con-
structing flavon potential and clarifying the A4-invariant one in Eq. (9) to be the minimum
of the potential, where v⇠ is determined by the minimisation. This idea cannot be di-
rectly applied to supersymmetric flavour models. In the later case, the flavon potential
is directly related to the flavon superpotential

Vf =
X

i

����
@wf

@�i

����
2

+ · · · , (10)

where �i represent any scalars in the theory, and the dots are negligible soft breaking
terms and D-terms for the fields charged under the gauge group. This potential is more
constrained than the non-supersymmetric version. If the minimisation of the superpo-
tential @wf/@�i = 0 has a solution, the minimisation of the potential @Vf/@�i = 0 is
identical to the minimisation of the superpotential. Since most flavour models have been
built in SUSY, it is necessary to consider if SO(3) ! A4 can be achieved in SUSY.

In order to break SO(3) to A4, we introduce two driving fields ⇠d1 ⇠ 1, ⇠d5 ⇠ 5 and consider
the following superpotential terms

w⇠ = ⇠d1
�
c1(⇠⇠)1 � µ2

⇠

�
+ c2

�
⇠d5(⇠⇠)5

�
1
, (11)
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be obtained after the relevant irrep get a VEV. For instance, some of those subgroup
obtained by irreps up to 13 are shown in Table 1. The minimal irrep for SO(3) ! S4

is a 9-plet, while that for SO(3) ! A5 is a 13-plet. Applying a 9-plet flavon ⇢ and a
13-plet flavon  , respectively, we will realise these breakings in a SUSY framework in the
following.

irrep 1 3 5 7 9 11 13
subgroups SO(3) SO(2)

SO(3)
Z2 ⇥ Z2

SO(2)
SO(3)

1
A4

Z3

D4

SO(2)
SO(3)

S4 1
A4

S4

A5

Table 1: The not systematical stabiliser subgroups in the low-dimensional irreducible repre-
sentations of the group SO(3) [27].

2.2.1 SO(3) ! A4

The simplest irrep to break SO(3) ! A4 is using a 7-plet [26, 27]. In this work, we
introduce a 7-plet flavon ⇠ to achieve this goal. In the 3d flavour space, it is represented
as a rank-3 tensor ⇠ijk, which satisfies the requirements in Eq. (3), i.e.,

⇠ijk = ⇠jki = ⇠kij = ⇠ikj = ⇠jik = ⇠kji , ⇠iik = 0 . (5)

Constrained by Eq. (5), there are 7 free components of ⇠, which can be chosen as

⇠111, ⇠112, ⇠113, ⇠123, ⇠133, ⇠233, ⇠333 . (6)

For the A4 symmetry, we work in the Ma-Rajasekaran (MR) basis, where the generators
s and t in the 3d irreducible representation are given by

gs =

0

@
1 0 0
0 �1 0
0 0 �1

1

A , gt =

0

@
0 0 1
1 0 0
0 1 0

1

A . (7)

The A4-invariant VEV, satisfying

(gs)ii0(gs)jj0(gs)kk0h⇠i0j0k0i = h⇠ijki ,

(gt)ii0(gt)jj0(gt)kk0h⇠i0j0k0i = h⇠ijki , (8)

is given by

h⇠123i ⌘
v⇠
p
6
, h⇠111i = h⇠112i = h⇠113i = h⇠133i = h⇠233i = h⇠333i = 0 . (9)

The VEV of ⇠ is geometrically shown in Fig. 1.
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Modular Symmetry
Lattice invariant under 
change of basis vectors 

⌧0 �0 Stab(⌧0)
i S ZS

4 =
�
1, S, S2, S3

 

e2⇡i/3 ST, S2 ZST
3 ⇥ ZS2

2 =
�
1, ST, (ST )2, S2, S3T, S2(ST )2

 

i1 T, S2 ZT
⇥ ZS2

2 =
�
1, S2, T, S2T, T 2, S2T 2, . . .

 

others S2 ZS2

2 =
�
1, S2

 

Table 1. The fixed points ⌧0 in the fundamental domain D and the corresponding stabilizers
Stab(⌧0) which are abelian subgroup of �. Notice that the cyclic Zg

m has the presentation rule
Zg
m = {g|gm = 1}. The stabilizer ZST

3 ⇥ZS2

2 of ⌧0 = e2⇡i/3 is isomorphic to the cyclic group ZS3T
6 ,

and the ZT denotes the infinite cyclic group generated by the translation T .

group in figure 4. From Eq. (3.8) we see that only the modular symmetry transformation
conjugate to �0 can have fixed point. In other words, �f and �0 must belong to the same
conjugacy class. It is straightforward to see that the stabilizer Stab(⌧f ) = �0Stab(⌧0)�0�1 is
isomorphic Stab(⌧0), and the isomorphism is given by a conjugation with �0. The alignment
of the modular form at the symmetric points are fixed so that the lepton mass matrices
and mixing parameters are strongly constrained, the phenomenological implications of the
residual symmetry fixed points would be discussed later.

3.4 Modular invariant supersymmetric theories

We work in the framework of the modular invariant supersymmetric theory [4–6]. In the
context of N = 1 global supersymmetry, the most general form of the action is

S =

Z
d4xd2✓d2✓̄K(�I , �̄I , ⌧, ⌧̄) +

Z
d4xd2✓W(�I , ⌧) + h.c.

�
, (3.9)

where K(�I , �̄I , ⌧, ⌧̄) is the Kähler potential, it is a real gauge invariant function of the chiral
superfields �I , the modulus ⌧ and their hermitian conjugates �̄, ⌧̄ . W(�, ⌧) stands for the
superpotential, and it is a holomorphic gauge invariant function of the chiral superfields
�I and ⌧ . The action S should be modular invariant and respect the SM (or GUT) gauge
symmetry. The transformation properties of �I are specified by its modular weight �kI
and the representation rI under �0

N ,

⌧ ! �⌧ =
a⌧ + b

c⌧ + d
, �I ! (c⌧ + d)�kI⇢rI (�)�I . (3.10)

The Kähler potential to be the minimal form [6],

K(�I , �̄I , ⌧, ⌧̄) = �h⇤2 log(�i⌧ + i⌧̄) +
X

I

(�i⌧ + i⌧̄)�kI |�I |
2 , (3.11)

where h is a positive constant. After the modulus ⌧ gets a vacuum expectation, this Kähler
potential gives the kinetic terms for the scalar components of the supermultiplet �I and
the modulus field ⌧ . Notice the Kähler potential is loosely constrained by the modular
symmetry, there are additional terms consistent with modular symmetry [7]. However, the
Kähler potential K is subject to strong constraint in some top-down models motivated by

– 5 –

Infinite group

which implies 1

⌧ 7! �⌧ = �(⌧) =
a⌧ + b

c⌧ + d
, Im(⌧) > 0 . (3.2)

where a, b, c, d are integers and they fulfill ad � bc = 1. A complex torus is a quotient
C/⇤ of the complex plane C by a lattice ⇤, it is obtained by gluing both opposite pairs of
edges of the fundamental parallelogram depicted in gray in figure 1. Obviously each linear

fractional transformation of Eq. (3.2) is associated with a 2 ⇥ 2 matrix � =

 
a b

c d

!
with

integer coefficients and determinant 1. All the linear fractional transformations form the
full modular group � which is isomorphic to SL(2,Z). Notice that � and �� act in the
same way on the modulus ⌧ , the faithful action group is the projective special linear group
� ⌘ PSL(2,Z) ⇠= SL(2,Z)/{12,�12}, where 12 stands for the two-dimensional identity
matrix. Note that the modular group is defined to be � In some literature. The modular
group is an infinite discrete group and it can be generated by two elements S and T [1, 2]

S =

 
0 1

�1 0

!
, T =

 
1 1

0 1

!
. (3.3)

Note that S and T are often referred to as modular inversion and translation respectively,

S : ⌧ 7! �
1

⌧
, T : ⌧ 7! ⌧ + 1 . (3.4)

It is straightforward to check that the two generators satisfy the following relations

S2 = �12, S4 = (ST )3 = 12, S2T = TS2 (3.5)

and also (TS)3 = 12 which is equivalent to (ST )3 = 12. The corresponding relations in �

are S2 = (ST )3 = 12, since 12 and �12 are indistinguishable in �.
As shown in figure 3, the � orbit of every modulus ⌧ has a representative in the standard

fundamental domain D
2 .

D = {⌧ |Im(⌧) > 0, |Re(⌧)| 
1

2
, |⌧ | � 1} , (3.7)

which is bounded by the vertical lines Re(⌧) = �
1
2 , Re(⌧) =

1
2 and the circle |⌧ | = 1 in the

upper half plane H. Every point in the upper half plane is equivalent to a point of D under
the action of SL(2,Z), and no two points inside D differ by a linear fraction transformation.
The transformation T pairs the two vertical lines Re(⌧) = ±

1
2 , and the transformation S

maps the arc of |⌧ | = 1 from i to e⇡i/3 into the arc from i to e2⇡i/3. Notice that the
fundamental domain is not unique, the transformed region �D by any element � of � can
also be taken as the fundamental domain.

1This modular transformation is well-defined, as it fulfills Im(�(⌧)) = Im(⌧)
|c⌧+d|2 > 0 and (��0)(⌧) =

�(�0(⌧)).
2More precisely, each orbit has a unique representative in the standard fundamental domain

D =
n
⌧
���|⌧ | > 1,�1

2
 Re(⌧) <

1
2

o
[
n
⌧
���|⌧ | = 1, Re(⌧)  0

o
, (3.6)
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fractional transformation of Eq. (3.2) is associated with a 2 ⇥ 2 matrix � =
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!
with

integer coefficients and determinant 1. All the linear fractional transformations form the
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successfully describe all quark and lepton (including neutrino) masses and mixing, using
a single modulus field ⌧ , and in which all charged fermion mass hierarchies originate from
a single weighton. We discuss these two viable models in some detail, both numerically
and analytically, showing how all fermion mass and mixing hierarchies emerge from the
modular symmetry. Section 6 concludes the paper.

2 Modular symmetry

The modular group � is the group of linear fraction transformations which acts on the
complex modulus ⌧ in the upper half complex plane as follow,

⌧ ! �⌧ =
a⌧ + b

c⌧ + d
, with a, b, c, d 2 Z, ad� bc = 1, =⌧ > 0 . (1)

We note that the map
a⌧ + b

c⌧ + d
7!

✓
a b

c d

◆
(2)

is an isomorphism from the modular group to the projective matrix group PSL(2,Z) ⇠=
SL(2,Z)/{±I}, where SL(2,Z) is the group of two-by-two matrices with integer entries
and determinant equal to one.

The modular group � can be generated by two generators S and T

S : ⌧ 7! �
1

⌧
, T : ⌧ 7! ⌧ + 1 , (3)

which are represented by the following two matrices of PSL(2,Z),

S =

✓
0 1
�1 0

◆
, T =

✓
1 1
0 1

◆
. (4)

We can check that the generators S and T obey the relations,

S
2 = (ST )3 = (TS)3 = 1 . (5)

The principal congruence subgroup of level N is the subgroup

�(N) =

⇢✓
a b

c d

◆
2 SL(2,Z), b = c = 0 (mod N), a = d = 1 (mod N)

�
, (6)

which is an infinite normal subgroup of SL(2,Z). It is easy to see that TN is an element
of �(N). The projective principal congruence subgroup is defined as �(N) = �(N)/{±I}

for N = 1, 2. For the values of N � 3, we have �(N) = �(N) because �(N) doesn’t
contain the element �I. The quotient group �N ⌘ �/�(N) is the finite modular group,
and it can be obtained by further imposing the condition T

N = 1 besides those in Eq. (5).

4

which implies 1

⌧ 7! �⌧ = �(⌧) =
a⌧ + b

c⌧ + d
, Im(⌧) > 0 . (3.2)

where a, b, c, d are integers and they fulfill ad � bc = 1. A complex torus is a quotient
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It is straightforward to check that the two generators satisfy the following relations

S2 = �12, S4 = (ST )3 = 12, S2T = TS2 (3.5)

and also (TS)3 = 12 which is equivalent to (ST )3 = 12. The corresponding relations in �
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upper half plane H. Every point in the upper half plane is equivalent to a point of D under
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2 , and the transformation S

maps the arc of |⌧ | = 1 from i to e⇡i/3 into the arc from i to e2⇡i/3. Notice that the
fundamental domain is not unique, the transformed region �D by any element � of � can
also be taken as the fundamental domain.
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successfully describe all quark and lepton (including neutrino) masses and mixing, using
a single modulus field ⌧ , and in which all charged fermion mass hierarchies originate from
a single weighton. We discuss these two viable models in some detail, both numerically
and analytically, showing how all fermion mass and mixing hierarchies emerge from the
modular symmetry. Section 6 concludes the paper.

2 Modular symmetry

The modular group � is the group of linear fraction transformations which acts on the
complex modulus ⌧ in the upper half complex plane as follow,

⌧ ! �⌧ =
a⌧ + b

c⌧ + d
, with a, b, c, d 2 Z, ad� bc = 1, =⌧ > 0 . (1)

We note that the map
a⌧ + b

c⌧ + d
7!

✓
a b

c d

◆
(2)

is an isomorphism from the modular group to the projective matrix group PSL(2,Z) ⇠=
SL(2,Z)/{±I}, where SL(2,Z) is the group of two-by-two matrices with integer entries
and determinant equal to one.

The modular group � can be generated by two generators S and T

S : ⌧ 7! �
1

⌧
, T : ⌧ 7! ⌧ + 1 , (3)

which are represented by the following two matrices of PSL(2,Z),

S =

✓
0 1
�1 0

◆
, T =

✓
1 1
0 1

◆
. (4)

We can check that the generators S and T obey the relations,

S
2 = (ST )3 = (TS)3 = 1 . (5)

The principal congruence subgroup of level N is the subgroup

�(N) =

⇢✓
a b

c d

◆
2 SL(2,Z), b = c = 0 (mod N), a = d = 1 (mod N)

�
, (6)

which is an infinite normal subgroup of SL(2,Z). It is easy to see that TN is an element
of �(N). The projective principal congruence subgroup is defined as �(N) = �(N)/{±I}

for N = 1, 2. For the values of N � 3, we have �(N) = �(N) because �(N) doesn’t
contain the element �I. The quotient group �N ⌘ �/�(N) is the finite modular group,
and it can be obtained by further imposing the condition T

N = 1 besides those in Eq. (5).

4

and TN = 1

54

have been explicitly constructed and the combinations transforming as irreducible representations of �N have been
identified for the first few weights. The results for �2 ⇡ S3(Kobayashi et al., 2018c), �3 ⇡ A4(Feruglio, 2019),
�4 ⇡ S4(Penedo and Petcov, 2019), �5 ⇡ A5(Ding et al., 2019c; Novichkov et al., 2019b), �7 ⇡ ⌃(168) (Ding et al.,
2020) are summarized in table X. Modular forms of generic integer weights have been discussed in ref. (Liu and Ding,
2019), together with their application to neutrino mass models. They have been shown to form representations of the
homogeneous finite modular groups �0

N
, double covering of �N .

dk(�(N)) k = 2 k = 4 k � 6

�2 ⇡ S3 k/2 + 1 2 1 + 2 . . .

�3 ⇡ A4 k + 1 3 1 + 10 + 3 . . .

�4 ⇡ S4 2k + 1 2 + 30 1 + 2 + 3 + 30 . . .

�5 ⇡ A5 5k + 1 3 + 30 + 5 1 + 3 + 30 + 4 + 5 + 5 . . .

�7 ⇡ ⌃(168) 14k � 2 3 + 7 + 8 + 80 1 + 3 + 6 + 60 + 7 + 70 + 8 + 80 + 800 . . .

TABLE X Dimension of Mk(�(N)) and decomposition of multiplets of modular forms in representations of the finite modular
group �N , for the first few levels and weights. Modular forms of higher weight can be obtained from polynomials of modular
forms of lower weight. Partial knowledge is available for modular forms of weight 2 for levels 8 and 16 (Kobayashi and Tamba,
2019).

C. Modular invariance and CP

The action of CP on ⌧ is uniquely determined, up to modular transformations (Baur et al., 2019a,b; Dent, 2001a,b;
Novichkov et al., 2019a):

⌧
CP��! �⌧

⇤
. (6.17)

Such a law corresponds to the outer automorphism of �:

S
CP��! S T

CP��! T
�1

. (6.18)

By choosing a suitable basis for the generators S and T , where both are described by symmetric matrices in any
representation of �N , the action of CP on matter multiplets � reduces to the canonical one:

�
CP��! XCP �

⇤
, XCP = 1 . (6.19)

In this basis the requirement of CP invariance amounts to restricting all the Lagrangian parameters to real values. In
such a theory CP invariance can only be spontaneously broken. The values of ⌧ preserving CP lie along the imaginary
⌧ axis or along the border of the fundamental region shown in fig. 4, where �⌧

⇤ = ⌧ , up to a modular transformation.

D. Modular invariance and standard flavour symmetries

It is worth to mention that in the low-energy theory arising from string theory compactification, the flavour group
generally comprises both modular transformations and ordinary transformations, acting linearly on matter fields.
The consistent combination of the two types of transformations have been analyzed in (Nilles et al., 2020a,b). The
ordinary linear transformations belong to a group G, leave the modulus ⌧ invariant and act on the fields �

(I) through
a unitary matrix U

(I)(g):

⌧ ! ⌧ �
(I) ! U

(I)(g)�(I)
. (6.20)

Finite 
level N 

Infinite 

Yukawa coupling transforms as an 
irrep of ΓN  and as a modular form  

Figure 4. The fixed points of the modular group, it is impossible to display all of them because
there are infinite fixed points. The red region and yellow region are the fundamental domains of
� and �(4) respectively. The fixed points are displayed in solid (hollow) circles and diamonds in
(outside) the fundamental domain of �(4).

string theory [8–10], and the above minimal Kähler potential as the leading order contribu-
tion could possibly be achieved. The superpotential W can be expanded into power series
of supermultiplets �I

W(�I , ⌧) =
X

n

YI1...In(⌧)�I1 ...�In . (3.12)

Modular invariance requires the function YI1...In(⌧) should be a modular form of weight kY
of level N and in the representation rY of �0

N :

Y (⌧) ! Y (�⌧) = (c⌧ + d)kY ⇢rY (�)Y (⌧) , (3.13)

where kY and rY should satisfy the conditions

kY = k1 + ...+ kn, ⇢rY ⌦ ⇢rI1 ⌦ . . .⌦ ⇢rIn 3 1 . (3.14)

– 6 –

Y (⌧)�1�2�3 �1 ! (c⌧ + d)k1⇢1(�)�1

kY = k1 + k2 + k3

⇢rY ⇥ ⇢1 ⇥ ⇢2 ⇥ ⇢3 = 1 + ...

 modular weights balance

contains singlet
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A4 triplet 3
Weight kY=2
Notation Y=Y3(2)

that there are three linearly independent such forms, which we call Yi(⌧). Three linearly
independent weight 2 and level-3 forms are constructed in the Appendix C. They read:

Y1(⌧) =
i

2⇡

"
⌘0
�
⌧
3

�

⌘
�
⌧
3

� +
⌘0
�
⌧+1
3

�

⌘
�
⌧+1
3

� +
⌘0
�
⌧+2
3

�

⌘
�
⌧+2
3

� � 27⌘0(3⌧)

⌘(3⌧)

#

Y2(⌧) =
�i

⇡

"
⌘0
�
⌧
3

�

⌘
�
⌧
3

� + !2 ⌘0
�
⌧+1
3

�

⌘
�
⌧+1
3

� + !
⌘0
�
⌧+2
3

�

⌘
�
⌧+2
3

�
#

(28)

Y2(⌧) =
�i

⇡

"
⌘0
�
⌧
3

�

⌘
�
⌧
3

� + !
⌘0
�
⌧+1
3

�

⌘
�
⌧+1
3

� + !2 ⌘0
�
⌧+2
3

�

⌘
�
⌧+2
3

�
#

.

where ⌘(⌧) is the Dedekind eta-function, defined in the upper complex plane:

⌘(⌧) = q1/24
1Y

n=1

(1� qn) q ⌘ ei2⇡⌧ . (29)

They transform in the three-dimensional representation of A4. In a vector notation where
Y T = (Y1, Y2, Y3) we have

Y (�1/⌧) = ⌧ 2 ⇢(S)Y (⌧) , Y (⌧ + 1) = ⇢(T )Y (⌧) ,

with unitary matrices ⇢(S) and ⇢(T )

⇢(S) =
1

3

0

@
�1 2 2
2 �1 2
2 2 �1

1

A , ⇢(T ) =

0

@
1 0 0
0 ! 0
0 0 !2

1

A , ! = �1

2
+

p
3

2
i .

The q-expansion of Yi(⌧) reads:

Y1(⌧) = 1 + 12q + 36q2 + 12q3 + ...

Y2(⌧) = �6q1/3(1 + 7q + 8q2 + ...)

Y3(⌧) = �18q2/3(1 + 2q + 5q2 + ...) .

From the q-expansion we see that the functions Yi(⌧) are regular at the cusps. Moreover
Yi(⌧) satisfy the constraint:

Y 2
2 + 2Y1Y3 = 0 . (30)

As discussed explicitly in Appendix D, the constraint (30) is essential to recover the correct
dimension of the linear space M2k(�(3)). On the one side from table 1 we see that this
space has dimension 2k + 1. On the other hand the number of independent homogeneous
polynomial Yi1Yi2 · · · Yik of degree k that we can form with Yi is (k + 1)(k + 2)/2. These
polynomials are modular forms of weight 2k and, to match the correct dimension, k(k�1)/2
among them should vanish. Indeed this happens as a consequence of eq. (30). Therefore
the ring M(�(3)) is generated by the modular forms Yi(⌧) (i = 1, 2, 3).
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kEi , kL, kd and k' such that kEi + kL + kd + k' = 0. Moreover, to forbid a dependence of
the charged lepton masses on Y (⌧) (and a dependence of the Weinberg operator on 'T ),
we take, for instance, k' = �3. The superpotential for the charged lepton sector reads:

we = ↵ Ec
1Hd(L 'T )1 + � Ec

2Hd(L 'T )10 + � Ec
3Hd(L 'T )100 . (35)

The VEV of eq. (34) leads to a diagonal mass matrix for the charged leptons:

me = diag(↵, �, �)u vd . (36)

The charged lepton masses can be reproduced by adjusting the parameters ↵, � and �,
with an ambiguity related to the freedom of permuting the eigenvalues. As a result, the
lepton mixing matrix UPMNS is determined up to a permutation of the rows. Finally, by
choosing kL = +1 and ku = 0, we uniquely determine the form of the Weinberg operator:

w⌫ =
1

⇤
(HuHu LL Y )1 (37)

r =
�m2

sol

|�m2
atm| sin2 ✓12 sin2 ✓13 sin2 ✓23

�CP
⇡

me
mµ

mµ

m⌧

best value 0.0292 0.297 0.0215 0.5 1.4 0.0048 0.0565

1� error 0.0008 0.017 0.0007 0.1 0.2 0.0002 0.0045

Table 4: Values of observables and their 1� errors used to optimize the model parameters,
through a �2 scan. Oscillation parameters are from ref. [68] and ratios of charged lepton
masses from ref. [69]. We use |�m2

atm| = |m2
3 � (m2

1 +m2
2)/2| where mi are the neutrino

masses. The ratios me
mµ

and mµ

m⌧
are evaluated at the scale 2⇥ 1016 GeV. For mµ

m⌧
the average

between the values obtained with tan � = 10 and tan � = 38 has been used. There is
a sizable di↵erence between the allowed 1� ranges of sin2 ✓23 for the cases of normal and
inverted ordering. For simplicity we have adapted the ranges quoted in ref. [68] and we
use a unique range for the two cases. The value of �CP

⇡ has not been used in the scan.

The superpotential w = we + w⌫ depends on the four parameters ↵, �, �,⇤. The charged
lepton masses me, mµ and m⌧ are in a one-to-one correspondence with ↵, � and �, which
can be taken real without loosing generality. The neutrino mass matrix is given by:

m⌫ =

0

@
2Y1 �Y3 �Y2

�Y3 2Y2 �Y1

�Y2 �Y1 2Y3

1

A v2u
⇤

(38)

We see that the fourth parameter, ⇤, controls the absolute scale of neutrino masses. A
remarkable feature of this model is that neutrino mass ratios, lepton mixing angles, Dirac
and Majorana phases are completely determined by the modulus ⌧ . We have eight dimen-
sionless physical quantities that do not depend on any coupling constant. Assuming the

14

Weinberg 
operator

kEi , kL, kd and k' such that kEi + kL + kd + k' = 0. Moreover, to forbid a dependence of
the charged lepton masses on Y (⌧) (and a dependence of the Weinberg operator on 'T ),
we take, for instance, k' = �3. The superpotential for the charged lepton sector reads:

we = ↵ Ec
1Hd(L 'T )1 + � Ec

2Hd(L 'T )10 + � Ec
3Hd(L 'T )100 . (35)

The VEV of eq. (34) leads to a diagonal mass matrix for the charged leptons:

me = diag(↵, �, �)u vd . (36)

The charged lepton masses can be reproduced by adjusting the parameters ↵, � and �,
with an ambiguity related to the freedom of permuting the eigenvalues. As a result, the
lepton mixing matrix UPMNS is determined up to a permutation of the rows. Finally, by
choosing kL = +1 and ku = 0, we uniquely determine the form of the Weinberg operator:

w⌫ =
1

⇤
(HuHu LL Y )1 (37)

r =
�m2

sol

|�m2
atm| sin2 ✓12 sin2 ✓13 sin2 ✓23

�CP
⇡

me
mµ

mµ

m⌧

best value 0.0292 0.297 0.0215 0.5 1.4 0.0048 0.0565

1� error 0.0008 0.017 0.0007 0.1 0.2 0.0002 0.0045

Table 4: Values of observables and their 1� errors used to optimize the model parameters,
through a �2 scan. Oscillation parameters are from ref. [68] and ratios of charged lepton
masses from ref. [69]. We use |�m2

atm| = |m2
3 � (m2

1 +m2
2)/2| where mi are the neutrino

masses. The ratios me
mµ

and mµ

m⌧
are evaluated at the scale 2⇥ 1016 GeV. For mµ

m⌧
the average

between the values obtained with tan � = 10 and tan � = 38 has been used. There is
a sizable di↵erence between the allowed 1� ranges of sin2 ✓23 for the cases of normal and
inverted ordering. For simplicity we have adapted the ranges quoted in ref. [68] and we
use a unique range for the two cases. The value of �CP

⇡ has not been used in the scan.

The superpotential w = we + w⌫ depends on the four parameters ↵, �, �,⇤. The charged
lepton masses me, mµ and m⌧ are in a one-to-one correspondence with ↵, � and �, which
can be taken real without loosing generality. The neutrino mass matrix is given by:

m⌫ =

0

@
2Y1 �Y3 �Y2

�Y3 2Y2 �Y1

�Y2 �Y1 2Y3

1

A v2u
⇤

(38)

We see that the fourth parameter, ⇤, controls the absolute scale of neutrino masses. A
remarkable feature of this model is that neutrino mass ratios, lepton mixing angles, Dirac
and Majorana phases are completely determined by the modulus ⌧ . We have eight dimen-
sionless physical quantities that do not depend on any coupling constant. Assuming the

14

3 3 3A4 rep:

Yukawa couplings involving twisted states whose modular 
weights do not add up to zero are modular forms 

modulus vev 

Figure 1: Fundamental domain for �(3).

be constructed by fundamental domain F = {⌧ 2 H|� 1/2  Re ⌧  1/2 and |⌧ | � 1} of
SL(2,Z) [39].

The modular forms of weight 2k and level N = 3 form a linear space M2k(�(3)), and
its dimension turns out to be 2k + 1 [25, 40]. For the lowest nontrivial weight 2k = 2,
the dimension is equal to 3. The modular space M2k(�(3)) can be constructed from the
Dedekind eta-function.

3 Modular forms of weight 2, 4, 6 at level N = 3

The modular form of modular weight 2 at level N = 3 have been given in ref []:

Y1(⌧) =
i

2⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)
�

27⌘0(3⌧)

⌘(3⌧)

◆
,

Y2(⌧) =
�i

⇡

✓
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⌘(⌧/3)
+ !2⌘

0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
,

Y3(⌧) =
�i

⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+ !

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !2⌘

0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
(10)

where ! = e2⇡i/3 , and ⌘(⌧) is the Dedekind eta-function, which is written by

⌘(⌧) = q1/24
1Y

n=1

(1� qn) (11)

where q = e2⇡i⌧ . The q�expansion of Yi reads:

Y =

0

@
Y1(⌧)
Y2(⌧)
Y3(⌧)

1

A =

0

@
1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + . . .
�6q1/3(1 + 7q + 8q2 + 18q3 + 14q4 + . . . )
�18q2/3(1 + 2q + 5q2 + 4q3 + 8q4 + . . . )

1

A (12)

4

1 1 2Modular weights k : no flavons (apart from tau)
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Example with weighton:  Level N=3 ~ A4

L e
c

3 e
c

2 e
c

1 N
c
Hu,d �

A4 3 1
0
1
00

1 3 1 1

kI 1 0 �1 �3 1 0 1

Table 2: A natural A4 model of leptons with a weighton �. Note that each supermultiplet
has a modular weight �kI .

The three right-handed charged leptons e
c

3,2,1 are assigned to three di↵erent singlets 1
0,

1
00 and 1 of A4 as before but now their modular weights are not identical, and correspond

to kec3,2,1
= 0,�1,�3 (i.e. weights 0, 1, 3) such that powers of � with k� = 1 are required

compensate the terms in the previous model, with the combinations ec3�, e
c

2�
2
, e

c

1�
4 each

having combined weights of unity as before. The weighton � is assumed to develop
a vacuum expectation value (vev) so that the corresponding terms are suppressed by
powers of

�̃ ⌘
h�i

Mfl

, (31)

where Mfl is a dimensionful cut-o↵ flavour scale.

The weighton vev in Eq.31 may be driven by a leading order superpotential term

Wdriv = �(Y (4)
1

�
4

M
2
fl

�M
2), (32)

where � is an A4 singlet driving superfield with zero modular weight, while M is a free
dimensionful mass scale. This is similar to the usual driving field mechanism familiar
from flavon models [5–11], except for the presence of the lowest weight singlet modular

form Y
(4)
1 listed in Eq.21, where the quadratic term �

2 is forbidden since Y
(2)
1 does not

exist, and we have dropped higher powers such as �
6, and so on. As usual [5–11], the

structure of the driving superpotential Wdriv may be enforced by a U(1)R symmetry,
with the driving superfield � having R = 2, the weighton � and Higgs superfields having
R = 0 and the matter superfields having R = 1, which prevents other superpotential
terms appearing 3. The F-flatness condition F� = @Wdriv

@�
= 0 applied to Eq.32 then

drives a weighton vev, h�i ⇠ (MMfl)1/2, leading to the suppression factor in Eq.31 being
given by �̃ ⇠ (M/Mfl)1/2, where we assume M ⌧ Mfl.

The suppression factor in Eq.31 generates the charged lepton mass hierarchy naturally,
with m⌧,µ,e / �̃, �̃

2
, �̃

4, with only the lowest weight modular form Y
(2)
3 being necessary

as before.

After the weighton develops its vev, the superpotential for the charged lepton masses

3At the low energy scale, after the inclusion of SUSY breaking e↵ects, the U(1)R symmetry will be
broken to the usual discrete R-parity [5]. Such SUSY breaking e↵ects may also modify the predictions
from modular symmetry [16]. However the study of SUSY breaking is beyond the scope of this paper.
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hierarchical charged lepton Yukawa matrix with me : mµ : m⌧ = ↵e�̃
4 : �e�̃

2 : �e�̃. The
empirically observed charged lepton mass ratios me/mµ = 1/207 and mµ/m⌧ = 1/17
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The small parameter �̃ ⇡ 1/15 defined to be the ratio of scales in Eq.31 now provides an
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⇣
Y

(2)
2 Y

(2)
2

⌘

2
=

⇣
Y

2
2 , Y

2
1

⌘T

,

Y
(4)
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Y

(2)
2 Y

(2)
3

⌘

3
=

⇣
Y1Y4 + Y2Y5, Y2Y3 + Y1Y5, Y1Y3 + Y2Y4

⌘T

,

Y
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2 Y

(2)
3

⌘

30
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Y1Y4 � Y2Y5,�Y2Y3 + Y1Y5, Y1Y3 � Y2Y4

⌘T

. (23)

Notice that the other possible modular multiplets are either vanishing or parallel to the
above modular multiplets:

Y
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(2)
2 Y

(2)
2

⌘

10
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3 Y
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3

⌘

3
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⌘
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(2)
3 Y

(2)
3

⌘

30
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p
3!Y (4)

30,I . (24)

The linear space of modular forms of level 4 and weight 6 has dimension 2k+1 = 2⇥6+1 = 13,
under the finite modular group S4 it can be decomposed into
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⌘

3
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,
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2
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2
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2
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2
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2
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2
1 Y4
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Y
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⌘
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2
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2
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2
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2
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2
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⌘T

. (25)

Higher weight modular forms can be constructed in the same fashion, see Refs. [25, 26] for
modular forms of weight 8 and weight 10. Note that in our working basis the representation
matrices are di↵erent from those of [25,26], and they are related to the choices of [25,26] by
unitary transformations.

3 Fixed points and residual modular symmetry

In this section, we shall first discuss the fixed point in the fundamental domain, subse-
quently we study all the possible fixed points in the upper half complex plane. Finally we
investigate the constraints on the neutrino and charged lepton mass matrices imposed by
the residual modular symmetries at fixed points.

3.1 Fixed point in the fundamental domain

If a modulus parameter ⌧0 is invariant under the action of a nontrivial SL(2,Z) transfor-
mation �0 6= ±I, we call ⌧0 is the fixed point of �0 and �0 is the stabilizer of ⌧0, i.e.

�0⌧0 = ⌧0 . (26)
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which implies 1

⌧ 7! �⌧ = �(⌧) =
a⌧ + b

c⌧ + d
, Im(⌧) > 0 . (3.2)

where a, b, c, d are integers and they fulfill ad � bc = 1. A complex torus is a quotient
C/⇤ of the complex plane C by a lattice ⇤, it is obtained by gluing both opposite pairs of
edges of the fundamental parallelogram depicted in gray in figure 1. Obviously each linear

fractional transformation of Eq. (3.2) is associated with a 2 ⇥ 2 matrix � =

 
a b

c d

!
with

integer coefficients and determinant 1. All the linear fractional transformations form the
full modular group � which is isomorphic to SL(2,Z). Notice that � and �� act in the
same way on the modulus ⌧ , the faithful action group is the projective special linear group
� ⌘ PSL(2,Z) ⇠= SL(2,Z)/{12,�12}, where 12 stands for the two-dimensional identity
matrix. Note that the modular group is defined to be � In some literature. The modular
group is an infinite discrete group and it can be generated by two elements S and T [1, 2]

S =

 
0 1

�1 0

!
, T =

 
1 1

0 1

!
. (3.3)

Note that S and T are often referred to as modular inversion and translation respectively,

S : ⌧ 7! �
1

⌧
, T : ⌧ 7! ⌧ + 1 . (3.4)

It is straightforward to check that the two generators satisfy the following relations

S2 = �12, S4 = (ST )3 = 12, S2T = TS2 (3.5)

and also (TS)3 = 12 which is equivalent to (ST )3 = 12. The corresponding relations in �

are S2 = (ST )3 = 12, since 12 and �12 are indistinguishable in �.
As shown in figure 3, the � orbit of every modulus ⌧ has a representative in the standard

fundamental domain D
2 .

D = {⌧ |Im(⌧) > 0, |Re(⌧)| 
1

2
, |⌧ | � 1} , (3.7)

which is bounded by the vertical lines Re(⌧) = �
1
2 , Re(⌧) =

1
2 and the circle |⌧ | = 1 in the

upper half plane H. Every point in the upper half plane is equivalent to a point of D under
the action of SL(2,Z), and no two points inside D differ by a linear fraction transformation.
The transformation T pairs the two vertical lines Re(⌧) = ±

1
2 , and the transformation S

maps the arc of |⌧ | = 1 from i to e⇡i/3 into the arc from i to e2⇡i/3. Notice that the
fundamental domain is not unique, the transformed region �D by any element � of � can
also be taken as the fundamental domain.

1This modular transformation is well-defined, as it fulfills Im(�(⌧)) = Im(⌧)
|c⌧+d|2 > 0 and (��0)(⌧) =

�(�0(⌧)).
2More precisely, each orbit has a unique representative in the standard fundamental domain

D =
n
⌧
���|⌧ | > 1,�1

2
 Re(⌧) <

1
2

o
[
n
⌧
���|⌧ | = 1, Re(⌧)  0

o
, (3.6)

– 2 –

S⌧S = ⌧S ⌧S = i

Alignments from fixed pointswhere �2ki (with ki being an integer) is the modular weight of �i, Ii denotes the represen-
tation of �i and ⇢Ii(�) is a unitary representation matrix of � with � 2 S4. The coe�cients
YIY transform as a multiplet modular form of weight 2kY and with the representation IY ,

YIY (⌧) ! YIY (�⌧) = (c⌧ + d)2kY ⇢IY (�)YIY (⌧) , (14)

where kY = ki1 + · · · + kin is required to be a non-negative integer. The representation
and weight of YIY are constrained due to the invariance of the operator under the S4

modular transformation. For kY = 1, there are 5 modular forms Yi(⌧) for i = 1, 2, 3, 4, 5,
which form a doublet 2 and a triplet 30 of S4,

Y
(2)

2 (⌧) =

✓
Y1(⌧)
Y2(⌧)

◆
, Y

(2)

30 (⌧) =

0

@
Y3(⌧)
Y4(⌧)
Y5(⌧)

1

A . (15)

Specifically, an algebra between Y3, Y4 and Y5

(Y 2

3
+ 2Y4Y5)

2 = (Y 2

4
+ 2Y3Y5)(Y

2

5
+ 2Y3Y4) (16)

is satisfied [53]. This constraint is independent of the value of ⌧ , and essential to cover
the modular space of �4. Contracting these modular forms gives rise to modular forms
with weights 2kY = 4,

Y
(4)

1 (⌧) = Y1Y2 , Y
(4)
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✓
Y
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Y
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1

◆
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Y1Y5 � Y2Y4

Y1Y3 � Y2Y4

1

A , Y
(4)

30 (⌧) =

0

@
Y1Y4 + Y2Y5

Y1Y5 + Y2Y4

Y1Y3 + Y2Y4

1

A . (17)

Modular forms with higher weights can all be constructed from Yi. We refer to [53] for
detailed discussions.

It is helpful to summarise the special properties of stabilisers and their relations with
residual modular symmetries. We gave a thorough discussion on this issue in [59]. Here
we will mention four stabilisers which are relevant to the current work,

⌧T = ! = �1

2
+ i

p
3

2
, ⌧S = i1 , ⌧U =

1

2
+

i

2
, ⌧SU = �1

2
+

i

2
. (18)

Given any element � in a modular group, a stabiliser of � is a special value of the
modulus field, denoted as ⌧�, which satisfies �⌧� = ⌧�. If the modulus ⌧ gains a VEV
at the stabiliser, h⌧i = ⌧�, an Abelian residual modular symmetry generated by � is
preserved. Specifically, for h⌧i = ⌧T , ⌧S, ⌧U , ⌧SU , residual symmetries Z

T
3
, ZS

2
, ZU

2
and

Z
SU
2

are preserved, respectively 10.

A modular form at a stabiliser takes an interesting weight-dependent direction. Starting
from YI(�⌧�) = YI(⌧�) and following the standard transformation property in Eq. (14),
one arrives at

⇢I(�)YI(⌧�) = (c⌧� + d)�2k
YI(⌧�) . (19)

10The stabiliser of an element � may not be unique. We will not discuss other stabilisers that preserve
Z

T
3 , Z

S
2 , Z

U
2 or Z

SU
2 .
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Modular forms with higher weights can all be constructed from Yi. We refer to [53] for
detailed discussions.

It is helpful to summarise the special properties of stabilisers and their relations with
residual modular symmetries. We gave a thorough discussion on this issue in [59]. Here
we will mention four stabilisers which are relevant to the current work,
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Given any element � in a modular group, a stabiliser of � is a special value of the
modulus field, denoted as ⌧�, which satisfies �⌧� = ⌧�. If the modulus ⌧ gains a VEV
at the stabiliser, h⌧i = ⌧�, an Abelian residual modular symmetry generated by � is
preserved. Specifically, for h⌧i = ⌧T , ⌧S, ⌧U , ⌧SU , residual symmetries Z

T
3
, ZS

2
, ZU

2
and

Z
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2

are preserved, respectively 10.

A modular form at a stabiliser takes an interesting weight-dependent direction. Starting
from YI(�⌧�) = YI(⌧�) and following the standard transformation property in Eq. (14),
one arrives at

⇢I(�)YI(⌧�) = (c⌧� + d)�2k
YI(⌧�) . (19)

10The stabiliser of an element � may not be unique. We will not discuss other stabilisers that preserve
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T
3 , Z

S
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U
2 or Z
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2 .
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where �2ki (with ki being an integer) is the modular weight of �i, Ii denotes the represen-
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YIY (⌧) ! YIY (�⌧) = (c⌧ + d)2kY ⇢IY (�)YIY (⌧) , (14)

where kY = ki1 + · · · + kin is required to be a non-negative integer. The representation
and weight of YIY are constrained due to the invariance of the operator under the S4
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Specifically, an algebra between Y3, Y4 and Y5
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Modular transformation

Fixed point relations

Eigenvalue equation gives alignments directly Eigenvector
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Table 2: The representation matrices for the S4 generators T , S and U used in the main text,
where ! is the cube root of unit ! = e

2⇡i/3.

(ab)3 = (2a1b1 � a2b3 � a3b2, 2a3b3 � a1b2 � a2b1, 2a2b2 � a3b1 � a1b3)
T
,

(ab)30 = (a2b3 � a3b2, a1b2 � a2b1, a3b1 � a1b3)
T
. (55)

Here, 3 and 30 represent the symmetric and antisymmetric triplet contractions, respec-
tively 14. For a ⇠ 3 and b ⇠ 30, the contractions are given by

(ab)10 = a1b1 + a2b3 + a3b2 ,

(ab)2 = (a2b2 + a1b3 + a3b1, � (a3b3 + a1b2 + a2b1))
T
,

(ab)30 = (2a1b1 � a2b3 � a3b2, 2a3b3 � a1b2 � a2b1, 2a2b2 � a3b1 � a1b3)
T
,

(ab)3 = (a2b3 � a3b2, a1b2 � a2b1, a3b1 � a1b3)
T
. (56)

The products of two doublets a = (a1, a2)T and b = (b1, b2)T are divided into

(ab)1 = a1b2 + a2b1 , (ab)10 = a1b2 � a2b1 , (ab)2 = (a2b2, a1b1)
T
. (57)
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The alignments of triplet modular forms Y3,30(�⌧S) of level 3 up to weight 6
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The alignments of triplet modular forms Y3,30(�⌧T ) of level 3 up to weight 6
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Table 5: The alignments of the triplet modular forms Y (2)
3,30(⌧f ), Y

(4)
3,30(⌧f ) and Y (6)

3,30(⌧f ) of level 3 at the
fixed point ⌧f = �⌧S , �⌧ST , �⌧TS , �⌧T with � 2 A4. We have identified the modulus parameter ⌧ with
T 3⌧ = ⌧ + 3 in the second column because Yr(⌧) = Yr(⌧ + 3) for any modular multiplet Yr of level 3.

As shown in section 3, the modular group has infinite nontrivial fixed points while the
nonequivalent alignments of the modular forms at fixed points are finite. It is su�cient to
only consider the fixed points �N⌧S, �N⌧ST , �N⌧TS and �N⌧T . We report the nonequivalent
fixed points and the alignments of the triplet modular forms for N = 3 in table 5.

In the framework of tri-direct modular model with two-right handed neutrinos, we have
considered all possible residual symmetries in di↵erent sectors, yet no viable models can be
found if the modular weights of Yatm and Ysol are equal to 2 or 4. Some models compatible
with experimental data can be obtained if either Yatm or Ysol is a weight 6 modular form
transforming as 3 under A4 such that its alignment is not fixed uniquely. We give one
example in the following, the residual symmetry of the charged lepton sector is Ge = Z

T
3

and

Yatm ⇠ Y
(2)
3 , Ysol ⇠ Y

(6)
3 , ⌧f,atm = ST ⌧S =

�1 + i

2
, ⌧f,sol = ⌧S = i . (100)

The neutrino mass matrix is of the form of Eq. (88), and the measured values of the mixing
parameters and neutrino masses can be accommodated very well, e.g.

ma = 2.090meV, r1 = 0.982, ⌘1 = 1.354⇡, r2 = 0.385, ⌘2 = 1.683⇡ ,

sin2
✓13 = 0.0224, sin2

✓12 = 0.310, sin2
✓23 = 0.563, �CP = �0.399⇡,

� = �0.124⇡, m1 = 0meV, m2 = 8.597meV, m3 = 50.279meV . (101)

In the tri-direct modular model with three right-handed neutrinos, we can also find many
phenomenologically viable models from A4 modular symmetry. We shall not list all the pos-
sibilities but give an example, we take Ge = Z

ST
3 and the atmospheric, solar and “decoupled”

22

A4 Fixed points in 
fundamental domain



Figure 1: The fixed points of the modular group, it is impossible to display all of them because there are

infinite fixed points. The red region and yellow region are the fundamental domains of � and �(4) respectively.
The fixed points are displayed in solid (hollow) circles and diamonds in (outside) the fundamental domain
of �(4).

Hence the number of the independent modulus in the orbit �N⌧0 is equal to |�N |/|Stab�(⌧0)|
which is the number of distinct right cosets of Stab�N (⌧0). Here the notation |G| denotes
the order of a group G. Furthermore, after some algebra, we can show that the modular
multiplet Yr(⌧f ) has the following property

Yr(⌧f ) = Jk(�0, ⌧0)⇢r(�f )Yr(⌧f ) , (64)

which gives rise to
⇢r(�f )Yr(⌧f ) = J

�1
k (�0, ⌧0)Yr(⌧f ) . (65)

This means that the modular multiplet Yr(⌧f ) at the fixed point ⌧f is an eigenvector of the
representation matrix ⇢r(�f ) with the eigenvalue J

�1
k (�0, ⌧0) given in Eq. (55). We give the

nontrivial and nonequivalent fixed points and the corresponding alignments of the triplet
modular forms of level 4 in table 2. As we shall show in the present work, these alignments
at the fixed points could give a rich phenomenology of neutrino mixing in the framework of
tri-direct modular approach.
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The alignments of triplet modular forms Y3,30(�⌧S) of level 4 up to weight 6
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38 (0, 0, 1) (0, 1, 0) (1, 0, 0)

{S, T 3
, STS} ! (0, 1, 0) (0, 0, 1) (1, 0, 0)

{T 3
ST, T

2
ST

2
, ST

2
ST} 3 + (�1)5/6p

3
(1,�1

2 , 1) (1, 1,�1
2) (1,�2,�2)

{TST 3
, T, T

2
S} 19+i

p
3

26 (1,�1
2!

2
,!) (1,!2

,�1
2!) (1,�2!2

, 2!)

{TST 2
S, ST

2
, TSTS} 3+i

p
3

6 (1,�1
2!,!

2) (1,!,�1
2!

2) (1,�2!,�2!2)

The alignments of triplet modular forms Y3,30(�⌧T ) of level 4 up to weight 6

� �⌧T Y
(2)
3 (�⌧T ), Y

(4)
3 (�⌧T ), Y

(6)
3,I (�⌧T ), Y

(6)
3,II(�⌧T ) Y

(4)
30 (�⌧T ), Y

(6)
30 (�⌧T )

{1, T, T 2
, T

3} i1
(1,!2

,!)

(0, 0, 0)

{ST 2
S, ST

2
ST, (ST 2)2, TST 2

S} �1
2

{ST, (TS)2, S, ST 2} 0
(1,!,!2){T 2

ST, T
2
ST

3
, T

2
ST

2
, T

2
S} 2

{TS, TST 2
, TST

3
, TST} 1

(1, 1, 1){(ST )2, T 3
ST

2
, T

3
ST, STS} �1

Table 2: The alignments of the triplet modular forms Y (2)
3,30(⌧f ), Y

(4)
3,30(⌧f ) and Y (6)

3,30(⌧f ) of level 4 at the fixed
point ⌧f . As shown in section 3, it is su�cient to only consider the fixed points ⌧f = �⌧S , �⌧ST , �⌧TS ,
�⌧T with � 2 S4. In the second column of the table, we have identified the modulus parameter ⌧ with
T 4⌧ = ⌧ + 4, the reason is T 4 = 1 in the S4 group and Yr(⌧) = Yr(⌧ + 4) for any modular multiplet Yr.

3.3 Residual modular symmetry and its implication

We assume that neutrinos are Majorana particles in the following. The charged lepton
and neutrino mass terms in modular invariant approach can be generally written as

Wm = �(ye)ijE
c
iYe(⌧)LjHd �

1

2⇤
(y⌫)ij LiLjY⌫(⌧)HuHu , (66)

where the two-component notation of the fermion fields is used. The fields Li and E
c
i =

e
c
, µ

c
, ⌧

c stand for the left-handed lepton doublets and the right-handed charged leptons
respectively, Hu and Hd are Higgs doublets, and Ye(⌧) and Y⌫(⌧) are modular forms. The
neutral components of the Higgs fields acquire vacuum expectation values hH0

u,di = vu,d after
the electroweak symmetry breaking, then the charged lepton and neutrino mass matrices
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Example with SU(5) GUT: Level N=4 ~ S4

G.J.Ding, S.F.K. and C.Y.Yao, 2103.16311

b

t

c
s

u
d

e

SU(5)

S4

Field T3 T = (T2, T1)T F Na Ns H5 H5 H45 � �0

SU(5) 10 10 5 1 1 5 5 45 1 1
S4 1 2 3 1 10 10 1 1 1 1
kI 4 1 3 4 �1 �2 1 1 1 0

Table 3: The modular S4 ⇥ SU(5) model with matter and Higgs fields and their associated
representations and modular weights given by �kI . We have also included a weighton field �,
a driving field �

0.

4.2 The weighton

The weighton was introduced in [45] as a means of naturally generating fermion mass
hierarchies. The weighton will develop a vacuum expectation value (VEV) which may be
driven by a leading order superpotential term

Wdriv = �0(Y (4)
1

�4

M2
fl

�M2) , (26)

where �0 is an S4 singlet driving superfield with zero modular weight, while M is a free
dimensionful mass scale, where we assume M ⌧ Mfl. This is similar to the usual driving
field mechanism familiar from flavon models [2, 95–100], except for the presence of the
lowest weight singlet modular form Y (4)

1 listed in Eq. (26), where the quadratic term �2

is forbidden since Y (2)
1 does not exist, and we have dropped higher powers such as �6,

and so on. As usual [2,95–100], the structure of the driving superpotential Wdriv may be
enforced by a U(1)R symmetry, with the driving superfield �0 having R = 2, the weighton
� and Higgs superfields having R = 0 and the matter superfields having R = 1, which
prevents other superpotential terms appearing5. The F -flatness condition gives

@Wdriv

@�0
= Y (4)

1

�4

M2
fl

�M2 = 0 , (27)

which leads to the following VEV of the weighton �,

h�i =
⇣
M2M2

fl/Y
(4)
1

⌘1/4

. (28)

After the weighton � develops a VEV, the non-renormalisable terms are suppressed by
powers of

�̃ ⌘
h�i

Mfl
⇠

✓
M

Mfl

◆1/2

, (29)

where Mfl is a dimensionful cut-off flavour scale.
5At the low energy scale, after the inclusion of SUSY breaking effects, the U(1)R symmetry will be

broken to the usual discrete R-parity [95]. Such SUSY breaking effects may also modify the predictions
from modular symmetry [22]. However the study of SUSY breaking is beyond the scope of this paper.
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4.3 Yukawa Matrices

In this subsection, we consider the leading order Yukawa operators, allowed by modular
symmetry. There are no flavons, but we shall assume that there are several moduli which
are located at different fixed points, as discussed earlier. As shown in [65,66,77], different
residual symmetries are preserved at different points in multi-dimensional moduli space
such that fields which live at different locations in moduli space feel a different amount of
modular symmetry. However, constructing a model with four different moduli in the up-
type quarks, down-type quarks and neutrino sectors is out of the scope of the present work,
and our approach is purely phenomenological here. Furthermore concrete models with
several moduli frozen at distinct fixed points could be constructed, and certain flavons
which are bi-triplets of the multiple finite modular groups are generally necessary [55,
57,81]. For the up type quarks we write down the allowed non-renormalisable operators,
and allow all possible group contractions, making use of the weighton field to generate
mass hierarchies of the up and charm quarks as compared to the top quark mass which
appears at the renormalisable level. For the down type quarks and charged leptons, the
weighton field can also help to generate the mass hierarchies, and a mild fine-tuning is
necessary to obtain the measured Cabibbo angle. There is a texture zero in the (1,1)
element such that the GST relation is approximately satisfied. The neutrino masses and
mixing arise from having two right-handed neutrinos with CSD(3.45).

4.3.1 Up-type quarks

The Yukawa matrix of the up-type quarks can be constructed by considering the non-
renormalisable operators TTH5, T3TH5 and the renormalisable operator T3T3H5 for the
(33) element. The non-renormalisable operators are suppressed by powers of a common
mass scale Mfl leading to powers of the flavor factor �̃ as in Eq. (29). We assume that
the modular symmetry is broken down to the Z3 subgroup generated by TS. We shall
use the modular forms at the fixed point ⌧TS = �!2, namely the weight 2 modular
form Y (2)

2 = YTS(1, 0)T , the weight 4 modular form Y (4)
2 = Y 2

TS(0, 1)
T , and the weight 6

modular form Y (6)
10 = �Y 3

ST , as shown in table 2. The most important operators which
generate a contribution to the up Yukawa matrix are6

↵u�̃
4Y (4)

2 (TT )2H5 + �u�̃
2Y (2)

2 (TT )2H5 + �uY
(6)
10 T3T3H5 + ✏u�̃T3(TY

(4)
2 )10H5 . (30)

Note that the lowest non-trivial modular weight containing the singlet is weight 4 and
that is zero at the fixed point Y (4)

1 (⌧TS) = 0. This implies that the doublet contraction
(TT )2 plays an important role, leading to a diagonal up type Yukawa matrix, using the
Clebsch-Gordan coefficients for 2 ⌦ 2 in the Appendix A, and the fixed point values of

6The term (TT )10H5 is exactly vanishing because the S4 contraction rule for 2 ⌦ 2 ! 10 implies
(TT )10 = (0, 0)T . Although the term �̃

6
Y

(6)
10 (TT )1H5 would lead to non-vanishing (12) and (21) entries

of up-type quark mass matrix, its contribution is suppressed by �̃
6.
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the modular forms above, we have

Y
u
GUT ⇡

0

@
↵u�̃4 0 0
0 �u�̃2 ✏u�̃
0 ✏u�̃ �u

1

A , (31)

where the factors Y 2
TS, YTS, Y (6)

10 and Y 2
TS have been absorbed into the coupling constants

↵u, �u, �u and ✏u respectively. The parameters �u and �u can be taken real by exploiting
field redefinitions of T and T3. Moreover, the phase of ↵u is irrelevant to both quark
masses and CKM mixing matrix, and its phase can be absorbed into the right-handed
charm quark. However, ✏u is generally a complex parameter. The suppression factor
in Eq. (29) generates the up and charm quark mass hierarchy naturally, with mu,c,t /

�̃4, �̃2, 1, assuming ↵u ⇠ �u ⇠ �u ⇠ O(1). It is well-known that mass hierarchy among the
up quarks is mu : mc : mt ' �8 : �4 : 1 with � ' 0.22 being the Wolfenstein parameter.
As a consequence, the weighton VEV �̃ is expected to be of order �2.

4.3.2 Down-type quarks and charged leptons

We assign the three generations of the matter fields F to an S4 triplet 3, the first two
generations of the 10-plet transform as a doublet 2 under S4. Thus there are two options:
(T1, T2)T ⇠ 2 and (T2, T1)T ⇠ 2.

• (T1, T2)T ⇠ 2
We have the following contractions for T and F :

(TF )3 ⇠

0

@
T1F2 + T2F3

T1F3 + T2F1

T1F1 + T2F2

1

A , (TF )30 ⇠

0

@
T1F2 � T2F3

T1F3 � T2F1

T1F1 � T2F2

1

A (32)

We see that T1F1 and T2F2, which are related to the down and strange quark masses
respectively, appear simultaneously as the third component of both contractions
(TF )3 and (TF )30 . The operators TFH5 and TFH45 combining with modular
form Y3 or Y30 , generate the masses of the down quarks and charged leptons. As a
result, the down and strange quark messes would be of the same order except for
the case that the contributions of (TF )3 and (TF )30 cancel with each other.

• (T2, T1)T ⇠ 2
We have the following contractions for T and F :

(TF )3 ⇠

0

@
T2F2 + T1F3

T2F3 + T1F1

T2F1 + T1F2

1

A , (TF )30 ⇠

0

@
T2F2 � T1F3

T2F3 � T1F1

T2F1 � T1F2

1

A (33)

We see that T2F2 and T1F1 appear in the 1st and 2nd components of these contrac-
tions respectively. Hence fine-tuning is not necessary to explain the mass hierar-
chies between the down and strange quarks. This is the reason why the assignment
(T2, T1)T ⇠ 2 is chosen in the model [101].
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weighton

Then the Yukawa matrices of the down-type quarks and the charged leptons can be
deduced from the leading superpotential operators7

↵d1�̃
3(Y (8)

3 (TF )3)1H5 + ↵d2�̃
3(Y (8)

30 (TF )30)1H5 + �d1�̃(Y
(6)
3 (TF )3)1H5

+�d2�̃(Y
(6)
30 (TF )30)1H5 + �d(Y

(8)
3 F )1T3H5 + ✏d�̃

2(Y (10)
3 F )1T3H5

+↵0
d1�̃

3(Y (8)
3 (TF )3)1H45 + ↵0

d2�̃
3(Y (8)

30 (TF )30)1H45 + �0
d1�̃(Y

(6)
3 (TF )3)1H45

+�0
d2�̃(Y

(6)
30 (TF )30)1H45 + �0

d(Y
(8)
3 F )1T3H45 + ✏0d�̃

2(Y (10)
3 F )1T3H45 . (34)

Notice that the Yukawa couplings to H45 replicate those of H5 because both Higgs multi-
plets H5 and H45 are S4 singlets with the same modular weight. The phase of the coupling
�d is irrelevant and it can be absorbed by redefinition of the supermultiplet F . The mod-
ular symmetry is assumed to be spontaneously broken down to a Z3 subgroup generated
by ST , and the alignments of the modular forms are Y (6)

3 = Y (6)
30 =

p
3!Y 3

ST (1, 0, 0),
Y (8)
3,30 / (0, 1, 0) and Y (10)

3 / (0, 0, 1) at the fixed point ⌧ST , as shown in table 2. Using the
Clebsch-Gordan coefficients for the different S4 contractions as in the Appendix A and
separating the contributions of H5 and H45, we find

Y5 ⇡

0

@
0 (↵d1 + ↵d2)�̃3 0

(↵d1 � ↵d2)�̃3 (�d1 + �d2)�̃ ✏d�̃2

(�d1 � �d2)�̃ 0 �d

1

A ,

Y45 ⇡

0

@
0 (↵0

d1 + ↵0
d2)�̃

3 0
(↵0

d1 � ↵0
d2)�̃

3 (�0
d1 + �0

d2)�̃ ✏0d�̃
2

(�0
d1 � �0

d2)�̃ 0 �0
d

1

A , (35)

where the convention for the above Yukawa coupling is Fi(Y5)ijTj and Fi(Y45)ijTj. Notice
that the (11) and (32) elements of Y5 and Y45 can arise from the operators �̃5(Y (10)

3 (TF )3)1H5,
�̃5(Y (10)

30 (TF )30)1H5, �̃5(Y (10)
3 (TF )3)1H45 and �̃5(Y (10)

30 (TF )30)1H45, and they are sup-
pressed by �̃5. Similarly �̃4(Y (12)

3 F )1T3H5 and �̃4(Y (12)
3 F )1T3H45 can lead to non-vanishing

(13) entry. The Yukawa matrices of the down-type quarks and the charged leptons are lin-
ear combinations of the two structures in Eq. (35). Following the construction proposed
by Georgi and Jarlskog [84], we have

Y
e
GUT = Y5 � 3Y45, Y

d
GUT = (Y5 + Y45)

T . (36)

Thus the charged lepton and down quark mass matrices are given by Me = Y
e
GUTvd and

Md = Y
d
GUTvd respectively. The phase of �d can be removed by the field redefinition of

the 5 matter field F while all the other parameters are complex. Since the (11) element
of the down quark Yukawa coupling matrix is vanishing, the Gatto-Sartori-Tonin (GST)
relation ✓q12 '

p
md/ms [83] is approximately satisfied. However, the (12) and (21)

entries are suppressed by �̃3 so that the Cabibbo angle is expected to be of order �̃2 if
7Here Y

(6)
3 refers to Y

(6)
3,II since Y

(6)
3,I is vanishing with Y

(6)
3,I = (0, 0, 0) at the fixed point ⌧ = ⌧ST ,

as shown in table 2. Moreover, Y (8)
3 and Y

(8)
30 stand for the two independent weight 8 triplet modular

forms transforming as 3 and 30 respectively, and they are proportional to (0, 1, 0) at residual modular
symmetry conserving point ⌧ST . Y

(10)
3 denotes the three independent weight 10 modular forms in the

representation 3, and its values is proportional to (0, 0, 1) at the fixed point ⌧ = ⌧ST .
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all coupling constants are of order one. Thus the parameters ↵d1,d2 and ↵0
d1,d2 should be

relatively large to reproduce the correct size of Cabibbo angle. This point is confirmed
in the numerical calculation, as shown in section 5.

4.3.3 Neutrino Mass and Mixing

In the neutrino sector we have two right-handed neutrinos in S4 representations Na ⇠ 10

and Ns ⇠ 1, where the respective Dirac Yukawa couplings are determined by the fixed
points from Eq. (23) and table 2:

Y (6)
30 /

0

@
0
1
�1

1

A , Y (2)
3 /

0

@
1

1 +
p
6

1�
p
6

1

A (37)

We note that, in the CSD(n) model, the two columns of the Dirac mass matrix are pro-
portional to (0, 1,�1) and (1, n, 2� n) respectively, [14, 15, 19, 102], so this corresponds
approximately to the case CSD(3.45) [40]. By comparison, the predictive Littlest Seesaw
model and its variant are the cases of n = 3 [14–18], n = 4 [19–21,103] and n = �1/2 [102]
respectively. It has been shown that the CSD(n) model can be reproduced from the S4

flavour symmetry in the tri-direct CP approach [104, 105], where the parameter n is
constrained to be a generic real parameter by the S4 flavour symmetry and CP sym-
metry [104, 105]. Here the modular symmetry can fix the alignment parameter n to be
1 +

p
6 ⇡ 3.45. This is a remarkable advantage of modular symmetry with respect to

discrete flavour symmetry.

The most important operators for the neutrino masses are
↵⌫�̃(Y

(6)
30 F )10NaH5 + �⌫�̃

2(Y (2)
3 F )1NsH5

�
1

2
M (8)

1 Y (8)
1 NaNa �

1

2
M (0)

1 NsNs�̃
2
�M (6)

10 Y
(6)
10 NaNs�̃

3 . (38)

The neutrino Dirac mass matrix and the Majorana mass matrix of right-handed neutrinos
are,

mD =
⇣
�⌫�̃2Y (2)

3 vu, ↵⌫�̃Y
(6)
30 vu

⌘
, mN =

 
M (0)

1 �̃2 M (6)
10 �̃3

M (6)
10 �̃3 M (8)

1

!
, (39)

where the Clebsch-Gordan coefficients in both contractions are omitted for notation sim-
plicity, Y (8)

1 and Y (6)
10 are absorbed into M (8)

1 and M (6)
10 respectively. The heavy Majorana

mass matrix is approximately diagonal to excellent approximation. The effective light
neutrino mass matrix is given by the seesaw formula m⌫ = �mDm

�1
N mT

D which implies

m⌫ = �
↵2
⌫�̃

2v2u

M (8)
1

Y (6)
30 Y (6)

30
T
�

�2
⌫ �̃

2v2u

M (0)
1

Y (2)
3 Y (2)

3

T
, (40)

where the two terms are equally suppressed by �̃2. From Eq. (40), we find the neutrino
mass matrix is predicted to be

m⌫ = ma

0

@
0 0 0
0 1 �1
0 �1 1

1

A+mse
i⌘

0

@
1 1�

p
6 1 +

p
6

1�
p
6 7� 2

p
6 �5

1 +
p
6 �5 7 + 2

p
6

1

A . (41)
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all coupling constants are of order one. Thus the parameters ↵d1,d2 and ↵0
d1,d2 should be

relatively large to reproduce the correct size of Cabibbo angle. This point is confirmed
in the numerical calculation, as shown in section 5.

4.3.3 Neutrino Mass and Mixing

In the neutrino sector we have two right-handed neutrinos in S4 representations Na ⇠ 10

and Ns ⇠ 1, where the respective Dirac Yukawa couplings are determined by the fixed
points from Eq. (23) and table 2:

Y (6)
30 /

0

@
0
1
�1

1

A , Y (2)
3 /

0

@
1

1 +
p
6

1�
p
6

1

A (37)

We note that, in the CSD(n) model, the two columns of the Dirac mass matrix are pro-
portional to (0, 1,�1) and (1, n, 2� n) respectively, [14, 15, 19, 102], so this corresponds
approximately to the case CSD(3.45) [40]. By comparison, the predictive Littlest Seesaw
model and its variant are the cases of n = 3 [14–18], n = 4 [19–21,103] and n = �1/2 [102]
respectively. It has been shown that the CSD(n) model can be reproduced from the S4

flavour symmetry in the tri-direct CP approach [104, 105], where the parameter n is
constrained to be a generic real parameter by the S4 flavour symmetry and CP sym-
metry [104, 105]. Here the modular symmetry can fix the alignment parameter n to be
1 +

p
6 ⇡ 3.45. This is a remarkable advantage of modular symmetry with respect to

discrete flavour symmetry.

The most important operators for the neutrino masses are
↵⌫�̃(Y

(6)
30 F )10NaH5 + �⌫�̃

2(Y (2)
3 F )1NsH5

�
1

2
M (8)

1 Y (8)
1 NaNa �

1

2
M (0)

1 NsNs�̃
2
�M (6)

10 Y
(6)
10 NaNs�̃

3 . (38)

The neutrino Dirac mass matrix and the Majorana mass matrix of right-handed neutrinos
are,

mD =
⇣
�⌫�̃2Y (2)

3 vu, ↵⌫�̃Y
(6)
30 vu

⌘
, mN =

 
M (0)

1 �̃2 M (6)
10 �̃3

M (6)
10 �̃3 M (8)

1

!
, (39)

where the Clebsch-Gordan coefficients in both contractions are omitted for notation sim-
plicity, Y (8)

1 and Y (6)
10 are absorbed into M (8)

1 and M (6)
10 respectively. The heavy Majorana

mass matrix is approximately diagonal to excellent approximation. The effective light
neutrino mass matrix is given by the seesaw formula m⌫ = �mDm

�1
N mT

D which implies

m⌫ = �
↵2
⌫�̃

2v2u

M (8)
1

Y (6)
30 Y (6)

30
T
�

�2
⌫ �̃

2v2u

M (0)
1

Y (2)
3 Y (2)

3

T
, (40)

where the two terms are equally suppressed by �̃2. From Eq. (40), we find the neutrino
mass matrix is predicted to be

m⌫ = ma

0

@
0 0 0
0 1 �1
0 �1 1

1

A+mse
i⌘

0

@
1 1�

p
6 1 +

p
6

1�
p
6 7� 2

p
6 �5

1 +
p
6 �5 7 + 2

p
6

1

A . (41)
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Littlest Modular Seesaw from fixed point  alignments

Then the Yukawa matrices of the down-type quarks and the charged leptons can be
deduced from the leading superpotential operators7

↵d1�̃
3(Y (8)

3 (TF )3)1H5 + ↵d2�̃
3(Y (8)

30 (TF )30)1H5 + �d1�̃(Y
(6)
3 (TF )3)1H5

+�d2�̃(Y
(6)
30 (TF )30)1H5 + �d(Y

(8)
3 F )1T3H5 + ✏d�̃

2(Y (10)
3 F )1T3H5

+↵0
d1�̃

3(Y (8)
3 (TF )3)1H45 + ↵0

d2�̃
3(Y (8)

30 (TF )30)1H45 + �0
d1�̃(Y

(6)
3 (TF )3)1H45

+�0
d2�̃(Y

(6)
30 (TF )30)1H45 + �0

d(Y
(8)
3 F )1T3H45 + ✏0d�̃

2(Y (10)
3 F )1T3H45 . (34)

Notice that the Yukawa couplings to H45 replicate those of H5 because both Higgs multi-
plets H5 and H45 are S4 singlets with the same modular weight. The phase of the coupling
�d is irrelevant and it can be absorbed by redefinition of the supermultiplet F . The mod-
ular symmetry is assumed to be spontaneously broken down to a Z3 subgroup generated
by ST , and the alignments of the modular forms are Y (6)

3 = Y (6)
30 =

p
3!Y 3

ST (1, 0, 0),
Y (8)
3,30 / (0, 1, 0) and Y (10)

3 / (0, 0, 1) at the fixed point ⌧ST , as shown in table 2. Using the
Clebsch-Gordan coefficients for the different S4 contractions as in the Appendix A and
separating the contributions of H5 and H45, we find

Y5 ⇡

0

@
0 (↵d1 + ↵d2)�̃3 0

(↵d1 � ↵d2)�̃3 (�d1 + �d2)�̃ ✏d�̃2

(�d1 � �d2)�̃ 0 �d

1

A ,

Y45 ⇡

0

@
0 (↵0

d1 + ↵0
d2)�̃

3 0
(↵0

d1 � ↵0
d2)�̃

3 (�0
d1 + �0

d2)�̃ ✏0d�̃
2

(�0
d1 � �0

d2)�̃ 0 �0
d

1

A , (35)

where the convention for the above Yukawa coupling is Fi(Y5)ijTj and Fi(Y45)ijTj. Notice
that the (11) and (32) elements of Y5 and Y45 can arise from the operators �̃5(Y (10)

3 (TF )3)1H5,
�̃5(Y (10)

30 (TF )30)1H5, �̃5(Y (10)
3 (TF )3)1H45 and �̃5(Y (10)

30 (TF )30)1H45, and they are sup-
pressed by �̃5. Similarly �̃4(Y (12)

3 F )1T3H5 and �̃4(Y (12)
3 F )1T3H45 can lead to non-vanishing

(13) entry. The Yukawa matrices of the down-type quarks and the charged leptons are lin-
ear combinations of the two structures in Eq. (35). Following the construction proposed
by Georgi and Jarlskog [84], we have

Y
e
GUT = Y5 � 3Y45, Y

d
GUT = (Y5 + Y45)

T . (36)

Thus the charged lepton and down quark mass matrices are given by Me = Y
e
GUTvd and

Md = Y
d
GUTvd respectively. The phase of �d can be removed by the field redefinition of

the 5 matter field F while all the other parameters are complex. Since the (11) element
of the down quark Yukawa coupling matrix is vanishing, the Gatto-Sartori-Tonin (GST)
relation ✓q12 '

p
md/ms [83] is approximately satisfied. However, the (12) and (21)

entries are suppressed by �̃3 so that the Cabibbo angle is expected to be of order �̃2 if
7Here Y

(6)
3 refers to Y

(6)
3,II since Y

(6)
3,I is vanishing with Y

(6)
3,I = (0, 0, 0) at the fixed point ⌧ = ⌧ST ,

as shown in table 2. Moreover, Y (8)
3 and Y

(8)
30 stand for the two independent weight 8 triplet modular

forms transforming as 3 and 30 respectively, and they are proportional to (0, 1, 0) at residual modular
symmetry conserving point ⌧ST . Y

(10)
3 denotes the three independent weight 10 modular forms in the

representation 3, and its values is proportional to (0, 0, 1) at the fixed point ⌧ = ⌧ST .
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Figure 1: The contour plots of sin2 ✓l12, sin
2
✓
l
13, sin

2
✓
l
23 and m

2
2/m

2
3 in the plane r = ms/ma

versus ⌘/⇡. The cyan, red, green and blue areas denote the 3� regions of sin2 ✓l12, sin
2
✓
l
13,

sin2 ✓l23 and m
2
2/m

2
3 respectively. The solid lines denote the 3 sigma upper bounds, the thin

lines denote the 3 sigma lower bounds and the dashed lines refer to their best fit values [107].
The panel (a) is for CSD(3.45) without charged lepton correction [40]. For the panel (b), the
input parameters (except ms, ma and ⌘) are taken to be the best fit values shown in table 4.
The panels (c) and (d) show two very similar plots for another two local minima of �2, namely
the first and second local minima, respectively, discussed in Appendix B.

do not work if strictly imposed.

In the considered model we have included a single weighton field to ameliorate the large
hierarchies in the charged fermion mass matrices, although some tuning will remain at
the per cent level. The best fit to the parameters of the model indicates that the largest
charged lepton corrections to CSD(3.45) mixing are of order the Cabibbo angle, but
occurring in both the (1,2) and (2,3) entries of the charged lepton mixing matrix. Nev-
ertheless the model leads to robust predictions for lepton mixing parameters, which we
have compared to those from the pure CSD(3.45) model with no charged lepton cor-
rections. We have performed a numerical analysis, showing quark and lepton mass and
mixing correlations around the best fit points. Since the lightest neutrino mass is zero,
and the phases are predicted, the neutrinoless double beta decay parameter is found to

18

ms
ma

all coupling constants are of order one. Thus the parameters ↵d1,d2 and ↵0
d1,d2 should be

relatively large to reproduce the correct size of Cabibbo angle. This point is confirmed
in the numerical calculation, as shown in section 5.

4.3.3 Neutrino Mass and Mixing

In the neutrino sector we have two right-handed neutrinos in S4 representations Na ⇠ 10

and Ns ⇠ 1, where the respective Dirac Yukawa couplings are determined by the fixed
points from Eq. (23) and table 2:

Y (6)
30 /

0

@
0
1
�1

1

A , Y (2)
3 /

0

@
1

1 +
p
6

1�
p
6

1

A (37)

We note that, in the CSD(n) model, the two columns of the Dirac mass matrix are pro-
portional to (0, 1,�1) and (1, n, 2� n) respectively, [14, 15, 19, 102], so this corresponds
approximately to the case CSD(3.45) [40]. By comparison, the predictive Littlest Seesaw
model and its variant are the cases of n = 3 [14–18], n = 4 [19–21,103] and n = �1/2 [102]
respectively. It has been shown that the CSD(n) model can be reproduced from the S4

flavour symmetry in the tri-direct CP approach [104, 105], where the parameter n is
constrained to be a generic real parameter by the S4 flavour symmetry and CP sym-
metry [104, 105]. Here the modular symmetry can fix the alignment parameter n to be
1 +

p
6 ⇡ 3.45. This is a remarkable advantage of modular symmetry with respect to

discrete flavour symmetry.

The most important operators for the neutrino masses are
↵⌫�̃(Y

(6)
30 F )10NaH5 + �⌫�̃

2(Y (2)
3 F )1NsH5

�
1

2
M (8)

1 Y (8)
1 NaNa �

1

2
M (0)

1 NsNs�̃
2
�M (6)

10 Y
(6)
10 NaNs�̃

3 . (38)

The neutrino Dirac mass matrix and the Majorana mass matrix of right-handed neutrinos
are,

mD =
⇣
�⌫�̃2Y (2)

3 vu, ↵⌫�̃Y
(6)
30 vu

⌘
, mN =

 
M (0)

1 �̃2 M (6)
10 �̃3

M (6)
10 �̃3 M (8)

1

!
, (39)

where the Clebsch-Gordan coefficients in both contractions are omitted for notation sim-
plicity, Y (8)

1 and Y (6)
10 are absorbed into M (8)

1 and M (6)
10 respectively. The heavy Majorana

mass matrix is approximately diagonal to excellent approximation. The effective light
neutrino mass matrix is given by the seesaw formula m⌫ = �mDm

�1
N mT

D which implies

m⌫ = �
↵2
⌫�̃

2v2u

M (8)
1

Y (6)
30 Y (6)

30
T
�

�2
⌫ �̃

2v2u

M (0)
1

Y (2)
3 Y (2)

3

T
, (40)

where the two terms are equally suppressed by �̃2. From Eq. (40), we find the neutrino
mass matrix is predicted to be

m⌫ = ma

0

@
0 0 0
0 1 �1
0 �1 1

1

A+mse
i⌘

0

@
1 1�

p
6 1 +

p
6

1�
p
6 7� 2

p
6 �5

1 +
p
6 �5 7 + 2

p
6

1

A . (41)
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all coupling constants are of order one. Thus the parameters ↵d1,d2 and ↵0
d1,d2 should be

relatively large to reproduce the correct size of Cabibbo angle. This point is confirmed
in the numerical calculation, as shown in section 5.

4.3.3 Neutrino Mass and Mixing

In the neutrino sector we have two right-handed neutrinos in S4 representations Na ⇠ 10

and Ns ⇠ 1, where the respective Dirac Yukawa couplings are determined by the fixed
points from Eq. (23) and table 2:

Y (6)
30 /

0

@
0
1
�1

1

A , Y (2)
3 /

0

@
1

1 +
p
6

1�
p
6

1

A (37)

We note that, in the CSD(n) model, the two columns of the Dirac mass matrix are pro-
portional to (0, 1,�1) and (1, n, 2� n) respectively, [14, 15, 19, 102], so this corresponds
approximately to the case CSD(3.45) [40]. By comparison, the predictive Littlest Seesaw
model and its variant are the cases of n = 3 [14–18], n = 4 [19–21,103] and n = �1/2 [102]
respectively. It has been shown that the CSD(n) model can be reproduced from the S4

flavour symmetry in the tri-direct CP approach [104, 105], where the parameter n is
constrained to be a generic real parameter by the S4 flavour symmetry and CP sym-
metry [104, 105]. Here the modular symmetry can fix the alignment parameter n to be
1 +

p
6 ⇡ 3.45. This is a remarkable advantage of modular symmetry with respect to

discrete flavour symmetry.

The most important operators for the neutrino masses are
↵⌫�̃(Y

(6)
30 F )10NaH5 + �⌫�̃

2(Y (2)
3 F )1NsH5

�
1

2
M (8)

1 Y (8)
1 NaNa �

1

2
M (0)

1 NsNs�̃
2
�M (6)

10 Y
(6)
10 NaNs�̃

3 . (38)

The neutrino Dirac mass matrix and the Majorana mass matrix of right-handed neutrinos
are,

mD =
⇣
�⌫�̃2Y (2)

3 vu, ↵⌫�̃Y
(6)
30 vu

⌘
, mN =

 
M (0)

1 �̃2 M (6)
10 �̃3

M (6)
10 �̃3 M (8)

1

!
, (39)

where the Clebsch-Gordan coefficients in both contractions are omitted for notation sim-
plicity, Y (8)

1 and Y (6)
10 are absorbed into M (8)

1 and M (6)
10 respectively. The heavy Majorana

mass matrix is approximately diagonal to excellent approximation. The effective light
neutrino mass matrix is given by the seesaw formula m⌫ = �mDm

�1
N mT

D which implies

m⌫ = �
↵2
⌫�̃

2v2u

M (8)
1

Y (6)
30 Y (6)

30
T
�

�2
⌫ �̃

2v2u

M (0)
1

Y (2)
3 Y (2)

3

T
, (40)

where the two terms are equally suppressed by �̃2. From Eq. (40), we find the neutrino
mass matrix is predicted to be

m⌫ = ma

0

@
0 0 0
0 1 �1
0 �1 1

1

A+mse
i⌘

0

@
1 1�

p
6 1 +

p
6

1�
p
6 7� 2

p
6 �5

1 +
p
6 �5 7 + 2

p
6

1

A . (41)
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for weights 2kl = 6, 4, 2, respectively. These modular forms will lead to diagonal Yukawa
couplings for the charged leptons. We have also seen that the Dirac neutrino Yukawa
matrix is proportional to P23. Therefore all lepton mixing arises from the heavy Majorana
neutrino mass matrix, to which we now turn.

In the neutrino sector, the right-handed neutrino mass matrix is explicitly written to be

MR =

0

@
M1 0 0
0 0 M1

0 M1 0

1

A+

0

@
0 M2,1 M2,2

M2,1 M2,2 0
M2,2 0 M2,1

1

A+

0

@
2M3,1 �M3,3 �M3,2

�M3,3 2M3,2 �M3,1

�M3,2 �M3,1 2M3,3

1

A , (38)

where Mr,i is the i-th component of Mr(⌧), i = 1, 2 for r = 2 and i = 1, 2, 3 for r = 3.
The Dirac mass matrix is trivially given by

MD = yDP23vu , (39)

The active neutrino mass matrix is obtained by applying the seesaw formula

M⌫ = �MDM
�1

R M
T
D = �y

2

Dv
2

uP23M
�1

R P23 . (40)

Specifically, the mass eigenvalues of M⌫ , mi for i = 1, 2, 3, are given by mi = y
2

Dv
2

u/Mi.
The (1,1) entry of M⌫ gives rise to the e↵ective mass parameter in neutrinoless double
beta decay mee ⌘ |(M⌫)(1,1)| = y

2

Dv
2

u|(M�1

R )(1,1)|.

Since the charged lepton mass matrix is diagonal, the PMNS matrix is determined by
the structure of neutrino mass matrix which is governed by the VEV of ⌧⌫ . We assume
the stabiliser in the neutrino sector 13 , h⌧⌫i = ⌧SU = �1

2
+ i

2
. At this stabiliser, we

are left with a residual Z
SU
2

symmetry. In former discussion in the framework of flavour
symmetry, the Z

SU
2

residual symmetry is crucial to realise the TM1 mixing [59]. M2

13Note that if we had selected h⌧⌫i = ⌧S = i1, we would have obtained M2(⌧S) / (1, 1)T and
M3(⌧S) / (1, 1, 1)T , with a residual Z

S
2 flavour symmetry preserved in the neutrino sector [59], leading

to tri-bimaximal mixing. Alternatively the choice h⌧⌫i by ⌧U = 1/2 + i/2 would preserve a residual Z
U
2

flavour symmetry corresponding to a mu-tau permutation symmetry in the neutrino sector. Since both
patterns are excluded, due to the prediction of vanishing ✓13, we will not discuss them any further here.
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Example with two groups: Level N=4 ~ S4

and M3 take directions M2 / (1, 1)T and M3 / (
p
2,

p
2 �

p
3,

p
2 +

p
3)T , respectively.

Together with M1, we write them in the following way,

M1(⌧SU) = a , M2(⌧SU) = b

✓
1
1

◆
, M3(⌧SU) = c

0

@

p
2p

2 �
p
3p

2 +
p
3

1

A . (41)

Thus, the Majorana mass matrix for right-handed neutrinos are written in the form

MR = a

0

@
1 0 0
0 0 1
0 1 0

1

A+ b

0

@
0 1 1
1 1 0
1 0 1

1

A+ c

p
2

0

@
2 �1 �1

�1 2 �1
�1 �1 2

1

A � c

p
3

0

@
0 1 �1
1 2 0

�1 0 �2

1

A , (42)

where a, b and c are complex parameters. As discussed in the next subsection, the above
heavy Majorana neutrino mass matrix, together with a Dirac neutrino Yukawa matrix
proportional to P23, and a diagonal charged lepton mass matrix, will lead to Trimaximal
TM1 lepton mixing which preserves the first column on the tri-bimaximal mixing matrix,

UTM1 =

0

B@

2p
6

� �
� 1p

6
� �

� 1p
6

� �

1

CA . (43)

It is worth mentioning that in classical flavour models without modular symmetry, such
as [12], coe�cients for the third and fourth terms on the right hand side of Eq. (42)
are fully arbitrary, but here they are constrained by a fixed ratio �

p
2/3. Thus, in the

modular symmetry model here, MR depends on three complex parameters, while in the
classical (non-modular symmetry) model in [12]MR depends on four complex parameters.
We will show that having fewer parameters leads to a new neutrino mass sum rule, not
present in the previous flavon models of TM1 mixing which do not rely on modular
symmetry.

3.3 Results for neutrino mass and mixing

The heavy Majorana mass matrix MR in Eq. (42) can be put into block diagonal form
by applying the TBM mixing matrix,

U
T
TBM

MRUTBM =

0

@
�� � 2� 0 0

0 ↵ �

0 � �

1

A , (44)

where ↵ = a+2b, � = b� a+3
p
2c and � = �3

p
2c. Since the remaining (2,3) rotations

required to diagonalise MR leave the first column of the TBM matrix unchanged, this
implies that MR is diagonalised by the TM1 matrix in Eq. (43). Then, since the Dirac
neutrino Yukawa matrix proportional to P23, the seesaw mass matrix M⌫ in Eq. (40) will
also be diagonalised by UTM1 . Hence, as claimed, we have trimaximal TM1 lepton mixing,
given that the charged lepton mass matrix is diagonal.
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Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.

h�SUi ⇠ 3 ⇠

0

@
2

�1
�1

1

A , preserves SU breaks T, U,

and the two important SU preserving alignments for 30 flavons,

h�0
atmi ⇠ 30

⇠

0

@
0
1

�1

1

A , preserves SU breaks T, U, (68)

h�0
soli ⇠ 30

⇠

0

@
1
3

�1

1

A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S4 can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �

l

⇤ LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM2 mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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SU

is identical to be represented in the form

⌘

✓
4ka + a 4kb + b

4kc + c 4kd + d

◆
, (8)

where the integers ka, kb, kc and kd satisfy 4kakd+akd+dka = 4kbkc+bkc+ckb and ⌘ = ±1.
This is just a mathematical redundancy. Selecting a di↵erent two by two representation
matrix gives no physical di↵erence.

The finite modular group �4 is isomorphic to S4, the permutation group of four objects. In
other word, S⌧ and T⌧ which satisfy S

2

⌧ = (S⌧T⌧ )3 = T
4

⌧ = 1, can be used as generators of
S4. In the literature of flavour symmetry studies, it is more popular to use a di↵erent set
of generators, S, T and U , which satisfy S

2 = T
3 = U

2 = (ST )3 = (SU)2 = (TU)2 = 1,
to generate S4. These generators can be represented by S⌧ and T⌧ as

T = S⌧T⌧ , S = T
2

⌧ , U = T⌧S⌧T
2

⌧ S⌧ . (9)

With the requirement ⌧ = ⌧ + 4, S, T and U can be represented by two by two matrices
such as

T =

✓
0 1

�1 �1

◆
, S =

✓
1 2
0 1

◆
, U =

✓
1 �1
2 �1

◆
. (10)

Again, we mention that representation matrices of these elements are not unique. Di↵er-
ent representation matrices are obtained by considering the correlation between Eqs. (7)
and (8). We also list a two by two matrix for SU = S⌧T⌧S⌧T

�1

⌧ S⌧
9

SU =

✓
�1 �1
2 1

◆
. (11)

This generator is important for the trimaximal TM1 mixing in the classical flavour model
building (see, e.g., [12]) and will also be used for our model construction next section.

In the framework of N = 1 supersymmetry with the S4 modular symmetry, the superpo-
tential W (�i; ⌧) is in general a function of the modulus field ⌧ and superfields �i. Under
the modular transformation, the superpotential should be invariant [37]. Expanding the
superpotential W (�i; ⌧) in powers of the superfields �i, we obtain

W (�i; ⌧) =
X

n

X

{i1,··· ,in}

X

IY

(YIY �i1 · · ·�in)1 , (12)

where YIY represents a collection of coe�cients of the couplings. The chiral superfield �i,
as a function of ⌧ (but does not need to be a modular form), transforms as [37],

�i(⌧) ! �i(�⌧) = (c⌧ + d)�2ki⇢Ii(�)�i(⌧) , (13)

9The product SU gives
✓

5 �3
2 �1

◆
= (�1)

✓
4 ⇥ (�1) � 1 4 ⇥ 1 � 1
4 ⇥ (�1) + 2 4 ⇥ 0 + 1

◆
.

Applying Eq. (8), we arrive at Eq. (11).

4

Use S4 basis:
Fixed points:

S
l
4, ⌧l S

⌫
4 , ⌧⌫

S4, ⌧l, ⌧⌫

h�i

Figure 1: Diagram of the breaking of S
l
4 ⇥ S

⌫
4 ! S4, their diagonal subgroup, through the

VEV of �.

for weights 2kl = 6, 4, 2, respectively. These modular forms will lead to diagonal Yukawa
couplings for the charged leptons. We have also seen that the Dirac neutrino Yukawa
matrix is proportional to P23. Therefore all lepton mixing arises from the heavy Majorana
neutrino mass matrix, to which we now turn.

In the neutrino sector, the right-handed neutrino mass matrix is explicitly written to be

MR =

0

@
M1 0 0
0 0 M1

0 M1 0

1

A+

0

@
0 M2,1 M2,2

M2,1 M2,2 0
M2,2 0 M2,1

1

A+

0

@
2M3,1 �M3,3 �M3,2

�M3,3 2M3,2 �M3,1

�M3,2 �M3,1 2M3,3

1

A , (38)

where Mr,i is the i-th component of Mr(⌧), i = 1, 2 for r = 2 and i = 1, 2, 3 for r = 3.
The Dirac mass matrix is trivially given by

MD = yDP23vu , (39)

The active neutrino mass matrix is obtained by applying the seesaw formula

M⌫ = �MDM
�1

R M
T
D = �y

2

Dv
2

uP23M
�1

R P23 . (40)

Specifically, the mass eigenvalues of M⌫ , mi for i = 1, 2, 3, are given by mi = y
2

Dv
2

u/Mi.
The (1,1) entry of M⌫ gives rise to the e↵ective mass parameter in neutrinoless double
beta decay mee ⌘ |(M⌫)(1,1)| = y

2

Dv
2

u|(M�1

R )(1,1)|.

Since the charged lepton mass matrix is diagonal, the PMNS matrix is determined by
the structure of neutrino mass matrix which is governed by the VEV of ⌧⌫ . We assume
the stabiliser in the neutrino sector 13 , h⌧⌫i = ⌧SU = �1

2
+ i

2
. At this stabiliser, we

are left with a residual Z
SU
2

symmetry. In former discussion in the framework of flavour
symmetry, the Z

SU
2

residual symmetry is crucial to realise the TM1 mixing [59]. M2

13Note that if we had selected h⌧⌫i = ⌧S = i1, we would have obtained M2(⌧S) / (1, 1)T and
M3(⌧S) / (1, 1, 1)T , with a residual Z

S
2 flavour symmetry preserved in the neutrino sector [59], leading

to tri-bimaximal mixing. Alternatively the choice h⌧⌫i by ⌧U = 1/2 + i/2 would preserve a residual Z
U
2

flavour symmetry corresponding to a mu-tau permutation symmetry in the neutrino sector. Since both
patterns are excluded, due to the prediction of vanishing ✓13, we will not discuss them any further here.
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where P23⇢
T
3 (�) = ⇢3(��1)P23 has been used. It is obvious that h�i is invariant if �l = �⌫ .

Therefore, the diagonal part of Sl
4

⇥ S
⌫
4
is preserved in the vacuum. y⌫

⇤
L�⌫c

Hu is the
only term which breaks S

l
4

⇥ S
⌫
4
to a single S4. Fix � at its VEV, this term is left

with yD(L1⌫
c
1
+ L2⌫

c
3
+ L3⌫

c
2
)Hu, where we have denoted yD = y⌫v�/⇤. It appears as a

renormalisable Dirac neutrino Yukawa interaction at low energy, which is proportional to
P23. Therefore all neutrino mixing arises from the heavy Majorana neutrino mass matrix.

To summarise, after � gains the VEV, superpotential w is e↵ectively given by

we↵ = [LYe(⌧l)e
c + LYµ(⌧l)µ

c + LY⌧ (⌧l)⌧
c]Hd

+ yDL⌫
c
Hu +

1

2
M1(⌧⌫)(⌫

c
⌫
c)1 +

1

2
M2(⌧⌫)(⌫

c
⌫
c)2 +

1

2
M3(⌧⌫)(⌫

c
⌫
c)3 . (33)

The full e↵ective superpotential involves two moduli fields. It is not invariant in S
l
4
⇥ S

⌫
4

but their diagonal subgroup S4.

Under this symmetry, a modular transformation appears to be

� : (⌧l, ⌧⌫) ! (�⌧l, �⌧⌫) =

✓
a⌧l + b

c⌧l + d
,
a⌧⌫ + b

c⌧⌫ + d

◆
(34)

for any � 2 S4. We also write out transformation properties of leptons

L(⌧⌫) ! L(�⌧⌫) = (c⌧⌫ + d)2⇢3(�)L(⌧⌫) ,

↵
c(⌧l, ⌧⌫) ! ↵

c(�⌧l, �⌧⌫) = (c⌧l + d)�2k↵(c⌧⌫ + d)�2
↵
c(⌧l, ⌧⌫) ,

⌫
c(⌧⌫) ! ⌫

c(�⌧⌫) = (c⌧⌫ + d)�2
⇢3(�)⌫

c(⌧⌫) , (35)

and those for modular forms

Y↵(⌧l) ! Y↵(�⌧l) = (c⌧l + d)2k↵⇢3(�)Y↵(⌧l) ,

Mr(⌧⌫) ! Mr(�⌧⌫) = (c⌧⌫ + d)4⇢r(�)Mr(⌧⌫) , (36)

where ↵ = e, µ, ⌧ , ke,µ,⌧ = 3, 2, 1 and r = 1,2,3. Note that in the residual S4 symmetry,
we have not induced any correlation between the moduli fields ⌧l and ⌧⌫ . Namely, ⌧l and
⌧⌫ can gain independent VEVs. Furthermore, there is no flavon fields involved in the
e↵ective superpotential.

Geometically, we represent the idea of Sl
4
⇥ S

⌫
4

! S4 in the sketch shown in Fig. 1.

3.2 Flavour structure after S4 breaking

In the charged lepton sector, we assume the VEV of ⌧l fixed at h⌧li = ⌧T = !, which is
a stabiliser of T . At this stabiliser, a residual modular ZT

3
symmetry is preserved in the

charged lepton sector. It has been proven in [59] that Ye,µ,⌧ (⌧T ) are eigenvectors of the
3 ⇥ 3 representation matrix of T for eigenvalues 1, ! and !

2, respectively. Namely, the
Yukawa coupling vectors are

Ye(⌧T ) /

0

@
1
0
0

1

A , Yµ(⌧T ) /

0

@
0
0
1

1

A , Y⌧ (⌧T ) /

0

@
0
1
0

1

A , (37)
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The modular transformation �0 and the corresponding fixed point ⌧0 are found to be
given by

�0 =

✓
�1 �1
1 0

◆
= (ST )2, ⌧0 =

�1 + i
p
3

2
,

�0 =

✓
�1 1
�1 0

◆
= TS, ⌧0 =

1 + i
p
3

2
,

(47)

or

�0 =

✓
0 �1
1 �1

◆
= (TS)2, ⌧0 =

1 + i
p
3

2
,

�0 =

✓
0 1
�1 �1

◆
= ST, ⌧0 =

�1 + i
p
3

2
.

(48)

We see that ⌧ST = �1+i
p
3

2 and ⌧TS = 1+i
p
3

2 are the fixed points of the modular
transformation ±ST and ±TS respectively. Moreover they are related by modular
transformation T ,

T ⌧ST = ⌧TS . (49)

Furthermore, there is a fourth fixed point ⌧0 = i1. It is easy to check that i1 is
invariant under the action of T as T (i1) = i1 + 1 = i1. We shall denote ⌧T ⌘ i1
in the following. In short, we have only the following four nontrivial fixed points in
the fundamental domain,

⌧S = i, ⌧ST = �1

2
+ i

p
3

2
, ⌧TS =

1

2
+ i

p
3

2
, ⌧T = i1 . (50)

In general, a modular multiplet Y (k)
r (⌧) of weight k in the irreducible representation r of

the finite modular group �N satisfies the following property,

Y
(k)
r (�⌧) = Jk(�, ⌧)⇢r(�)Y

(k)
r (⌧) , (51)

where Jk(�, ⌧) is the so-called automorphy factor [50],

Jk(�, ⌧) ⌘ (c⌧ + d)k, � =

✓
a b

c d

◆
2 � . (52)

At the fixed point ⌧0, Eq. (51) gives us,

Y
(k)
r (⌧0) = Y

(k)
r (�0⌧0) = (c0⌧0 + d0)

k
⇢r(�0)Y

(k)
r (⌧0) , (53)

which implies
⇢r(�0)Yr(⌧0) = J

�1
k (�0, ⌧0)Yr(⌧0) , (54)

Hence the modular multiplets Yr(⌧0) at the fixed point ⌧0 is actually the eigenvector of the
representation matrix ⇢r(�0) with eigenvalue J

�1
k (�0, ⌧0). It is straightforward to obtain

S =

✓
0 1
�1 0

◆
, J1(S, ⌧S) = �i ,

ST =

✓
0 1
�1 �1

◆
, J1(ST, ⌧ST ) = !

2
,

TS =

✓
�1 1
�1 0

◆
, J1(TS, ⌧TS) = !

2
,
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Y (⌧SU ) /

0

@
2
�1
�1

1

A



Summary
Flavour problem motivates family/flavour symmetry

U(1) with FN for hierarchies and small mixing

Neutrino mass and mixing motivates non-Abelian 

TBM, TM1/TM2, Littlest Seesaw…enforced by S4 and 
flavon alignments…gauged or modular origin

Large literature on bottom-up modular models

Weightons for charged fermion hierarchies 

Stabilizers/fixed points for Yukawa alignments 

SU(5) GUT with S4 and Littlest Modular Seesaw

Twin modular S4 symmetries for TM1



