

Flavour Symmetries and their Modular Origin

Steve King, 2nd May 2022

Bethe Forum

Modular Flavor Symmetries

The Standard Model

Left-handed

Right-handed

(Including three right-handed neutrinos)

The Flavour Problem

Masses

Mixing

PMNS Lepton mixing matrix

Pontecorvo Maki Nakagawa Sakata

Standard Model states

$$\begin{pmatrix} \mathbf{v}_e \\ e^- \end{pmatrix}_L \quad \begin{pmatrix} \mathbf{v}_{\mu} \\ \mu^- \end{pmatrix}_L \quad \begin{pmatrix} \mathbf{v}_{\tau} \\ \mathbf{\tau}^- \end{pmatrix}_L$$

Neutrino mass states

PMNS Lepton mixing matrix

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

Atmospheric Reactor Solar Majorana

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

 $\times \operatorname{diag}(1, e^{i\alpha_{21}/2}, e^{i\alpha_{31}/2})$

			Normal Ordering (best fit)		
NuFIT 5.1 (2021)			$bfp \pm 1\sigma$	3σ range	
		$\sin^2 heta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.269 \to 0.343$	
40	ata	$ heta_{12}/^\circ$	$33.45^{+0.77}_{-0.75}$	$31.27 \rightarrow 35.87$	
parameters	ric d	$\sin^2 heta_{23}$	$0.450^{+0.019}_{-0.016}$	$0.408 \rightarrow 0.603$	
ame	sphe	$ heta_{23}/^\circ$	$42.1_{-0.9}^{+1.1}$	$39.7 \rightarrow 50.9$	
par	atmospheric data	$\sin^2 heta_{13}$	$0.02246^{+0.00062}_{-0.00062}$	$0.02060 \rightarrow 0.02435$	
INS	SK	$ heta_{13}/^\circ$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	
B	with S	$\delta_{ m CP}/^\circ$	230^{+36}_{-25}	$144 \rightarrow 350$	
		$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
		$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \to +2.593$	

Isidor Issac Rabi

SM Yukawa couplings

$$y_{ij}H\overline{\psi}_{Li}\psi_{Rj}$$

Is there a symmetry at work?

Family/Flavour Symmetry

Basic idea is to distinguish the families by some quantum numbers under a new "horizontal" family/flavour symmetry

The symmetry is assumed to be spontaneously broken by "flavons"

3rd family

Family/Flavour Symmetry

Example: U(1) Family/Flavour Symmetry

Consider a U(1) family symmetry spontaneously broken by a flavon vev

Suppose U(1) charges are Q (
$$\psi_3$$
)=0, Q (ψ_2)=1, Q (ψ_1)=3, Q(H)=0, Q(ϕ)=-1

Then the lowest order allowed Yukawa coupling is H ψ_3 ψ_3

$$Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The other Yukawa couplings are generated from higher order operators

$$\frac{\frac{-1+0+1+0=0}{\Phi}}{M}H\psi_{2}\psi_{3} + \left(\frac{\Phi}{M}\right)^{2}H\psi_{2}\psi_{2} + \left(\frac{\Phi}{M}\right)^{3}H\psi_{1}\psi_{3} + \left(\frac{\Phi}{M}\right)^{4}H\psi_{1}\psi_{2} + \left(\frac{\Phi}{M}\right)^{6}H\psi_{1}\psi_{1}$$

When the flavon gets its VEV it generates small effective Yukawa couplings in terms

of an expansion parameter $\varepsilon = \frac{\langle \phi \rangle}{}$

$$\varepsilon = \frac{\langle \phi \rangle}{M}$$

Approximate texture zero
$$Y = \begin{pmatrix} \epsilon^6 & \epsilon^4 & \epsilon^3 \\ \epsilon^4 & \epsilon^2 & \epsilon \\ \epsilon^3 & \epsilon & 1 \end{pmatrix}$$

Froggatt-Nielsen Mechanism (1979)

What is the origin of the higher order operators?

Froggatt and Nielsen took their inspiration from the see-saw mechanism

$$rac{H^2}{M_{{f v}_R}} {f v}_L {f v}_L$$

$$\frac{\Phi}{\Psi_{2}} \times \frac{H}{\chi} \times \frac{H}{\chi}$$

$$\frac{H}{\chi}$$

$$\frac{H}{\chi}$$

$$\frac{H}{\chi}$$

$$\frac{\Phi}{M_{\chi}}H\psi_{2}\psi_{3}$$

Where χ are heavy fermion messengers c.f. heavy RH neutrinos

Froggatt-Nielsen Mechanism (1979)

There may be Higgs messengers or fermion messengers

Fermion messengers may be SU(2)_L doublets or singlets

Neutrinos motivate new family/flavour symmetries

CKM Matrix

PMNS Matrix

Froggatt-Nielsen tends to predict small mixing

What symmetry gives this?

Mu-Tau Symmetry $\nu_{\mu} \leftrightarrow \nu_{\tau}^*$

$$\theta_{13} \neq 0$$

$$\theta_{23} = 45^{\circ},$$

$$\theta_{13} \neq 0$$
, $\theta_{23} = 45^{\circ}$, $\delta_{CP} = \pm 90^{\circ}$

Mu-Tau Symmetry $\nu_{\mu} \leftrightarrow \nu_{\tau}^*$

•
$$\theta_{13} \neq 0$$
, $\theta_{23} = 45^{\circ}$, $\delta_{CP} = \pm 90^{\circ}$

$$V_0 = \begin{pmatrix} |V_{e1}| & |V_{e2}| & |V_{e3}| \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} \\ V_{\mu 1}^* & V_{\mu 2}^* & V_{\mu 3}^* \end{pmatrix} \text{Generalisation of:} \\ V_{\mu 1} & V_{\mu 2} & V_{\mu 3} & \text{Mu-tau reflection symmetry} \\ V_{\mu 1}^* & V_{\mu 2}^* & V_{\mu 3}^* \end{pmatrix}_{\text{P.F.Harrison and W.G.Scott, hep-ph/0210197}} \text{Generalisation of:}$$

P.F.Harrison, D.H.Perkins and W.G.Scott, hep-ph/0202074

Tri-Bimaximal Mixing

Allowed at Allowed a 3 sigma

Excluded at many sigma

Tri-Bimaximal-Reactor

$$\frac{|U_{e2}|^2}{|U_{e1}|^2} = \frac{1}{2}, \quad \frac{|U_{\mu 3}|^2}{|U_{\tau 3}|^2} = 1.$$

$$1:1 \qquad \begin{pmatrix} \sqrt{\frac{2}{3}}(1-\frac{1}{4}\lambda^{2}) & \frac{1}{\sqrt{3}}(1-\frac{1}{4}\lambda^{2}) & \frac{1}{\sqrt{2}}\lambda e^{-i\delta} \\ -\frac{1}{\sqrt{6}}(1+\lambda e^{i\delta}) & \frac{1}{\sqrt{3}}(1-\frac{1}{2}\lambda e^{i\delta}) & \frac{1}{\sqrt{2}}(1-\frac{1}{4}\lambda^{2}) \\ \frac{1}{\sqrt{6}}(1-\lambda e^{i\delta}) & -\frac{1}{\sqrt{3}}(1+\frac{1}{2}\lambda e^{i\delta}) & \frac{1}{\sqrt{2}}(1-\frac{1}{4}\lambda^{2}) \end{pmatrix}$$

$$\frac{\frac{1}{\sqrt{3}}(1 - \frac{1}{4}\lambda^2)}{\frac{1}{\sqrt{3}}(1 - \frac{1}{2}\lambda e^{i\delta})}$$
$$-\frac{1}{\sqrt{3}}(1 + \frac{1}{2}\lambda e^{i\delta})$$

$$\frac{\frac{1}{\sqrt{2}}\lambda e^{-i\delta}}{\frac{1}{\sqrt{2}}(1-\frac{1}{4}\lambda^2)}$$

$$\frac{1}{\sqrt{2}}(1-\frac{1}{4}\lambda^2)$$

$$\sin \theta_{12} = \frac{1}{\sqrt{3}}$$

Allowed at 3 sigma

$$\sin \theta_{23} = \frac{1}{\sqrt{2}}$$
Allowed at 3 sigma

$$\sin \theta_{13} = \frac{\lambda}{\sqrt{2}}$$
Allowed

Huge literature e.g. Antusch and SFK, hep-ph/0508044; I.Girardi, S.T.Petcov and A.V.Titov,1410.8056, ..

Charged lepton corrections

Charged lepton rotation Tri-bimaximal neutrinos

$$U_{\text{PMNS}} = \begin{pmatrix} c_{12}^e & s_{12}^e e^{-i\delta_{12}^e} & 0\\ -s_{12}^e e^{i\delta_{12}^e} & c_{12}^e & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} \cdots & \cdots & \frac{s_{12}^e}{\sqrt{2}}e^{-i\delta_{12}^e} \\ \cdots & \cdots & \frac{c_{12}^e}{\sqrt{2}} \end{pmatrix} \rightarrow s_{13} = \frac{s_{12}^e}{\sqrt{2}} \quad \begin{array}{l} \text{Suggests} \\ \theta_{12}^e \approx \theta_C \\ \end{array}$$

$$c_{23}c_{13} = \frac{1}{\sqrt{2}} \rightarrow s_{23}^2 < \frac{1}{2}$$

Prediction for CP phase

$$\frac{|U_{\tau 1}|}{|U_{\tau 2}|} = \frac{|s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta}|}{|-c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta}|} = \frac{1}{\sqrt{2}} \longrightarrow \cos \delta = \frac{t_{23}s_{12}^2 + s_{13}^2c_{12}^2/t_{23} - \frac{1}{3}(t_{23} + s_{13}^2/t_{23})}{\sin 2\theta_{12}s_{13}}$$

This derivation: P.Ballett, S.F.K., C.Luhn, S.Pascoli and M.A.Schmidt, 1410.7573

Tri-maximal Mixing

C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798

Tri-maximal Mixing

Tri-maximal Mixing

Littlest Seesaw

- Fit includes effects of RG corrections
- Determines the RHN masses!

SFK, 1304.6264; 1512.07531 SFK, Molina Sedgwick, Rowley, 1808.01005

4 real input parameters Describes:

3 neutrino masses $(m_1=0)$,

3 mixing angles,

1 Dirac CP phase,

2 Majorana phases (1 zero)

1 BAU parameter Y_B

= 10 observables

of which 7 are constrained

Predictions	1σ range
$ heta_{12}/^\circ$	$34.254 \rightarrow 34.350$
$ heta_{13}/^\circ$	$8.370 \to 8.803$
$ heta_{23}/^\circ$	$45.405 \to 45.834$
$\Delta m_{12}^2 / 10^{-5} \mathrm{eV}^2$	$7.030 \rightarrow 7.673$
$\Delta m_{31}^2 / 10^{-3} \mathrm{eV}^2$	$2.434 \rightarrow 2.561$
$\delta/^{\circ}$	$-88.284 \rightarrow -86.568$
$Y_B/10^{-10}$	$0.839 \to 0.881$

Also predicts NO and $m_1=0$

Non-Abelian Family Symmetry

S.F.K., C.Luhn, 1301.1340

$S^2 = T^3 = U^2 = (ST)^3 = (SU)^2 = (TU)^2 = (STU)^4 = 1$						
S_4	A_4	S	T	U		
1,1'	1	1	1	±1		
2	$egin{pmatrix} 1'' \ 1' \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		
3 , 3 '	3	$\frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}$			

Diagonalised by TB matrix

S4 vacuum alignments

$$\langle \phi_{3'}^{\nu} \rangle = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\langle\phi_{3'}^{
u}
angle=egin{pmatrix}1\\1\\1\end{pmatrix}$$
 preserves S,U $\qquad \langle\phi_{3'}^{l}
angle=egin{pmatrix}1\\0\\0\end{pmatrix}$ preserves T

residual symmetry	U	S	SU
1		<u>—</u>	<u>—</u>
1'	_	1	_
2		$(1, -1)^T$	<u></u>
3	$(0, 1, -1)^T$	$(1,1,1)^T$	$(2,-1,-1)^T$
3′	$(1,0,0)^T$	<u>—</u>	$(0,1,-1)^T$

S.F.K., C.Luhn, 1301.1340

S.F.K., C.Luhn, 1301.1340

$$TM^{E}T = M^{E}$$

$$SM^{\nu}S = M^{\nu}$$

$$UM^{\nu}U = M^{\nu}$$

$$V = M^{\nu}$$

TB mixing excluded so need to break S,T,U

break T

Family symmetry

 S_4

Generators **S,T,U**

break T

T preserved

 ϕ^l

S,U preserved

 ϕ^{ι}

Charged
Lepton Sector

Neutrino Sector

$$U_{\text{PMNS}} = \begin{pmatrix} c_{12}^e & s_{12}^e e^{-i\delta_{12}^e} & 0\\ -s_{12}^e e^{i\delta_{12}^e} & c_{12}^e & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Charged lepton rotation

$$\begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

S.F.K., C.Luhn, 1301.1340

Y.Shimizu, M.Tanimoto, A.Watanabe, 1105.2929; S.F.K., C.Luhn, 1107.5332

break U

S.F.K., C.Luhn, 1301.1340

Y.Shimizu, M.Tanimoto, A.Watanabe, 1105.2929; S.F.K., C.Luhn, 1107.5332

break U

Alternatively
A4 with just
S and T

$$TM^ET = M^E$$
$$SM^{\nu}S = M^{\nu}$$

$$U_{\rm TM2} \approx \begin{bmatrix} - \\ - \end{bmatrix}$$

S.F.K., C.Luhn, 1301.1340

break S,U separately preserve SU

Family symmetry S_4 Generators s,T,U SU preserved ϕ^l

D.Hernandez and A.Y.Smirnov 1204.0445,1212.21 49,1304.7738; C.Luhn, 1306.2358 S.F.K.,C.Luhn 1607.05276

break S,U separately preserve SU

Charged Lepton Sector

Neutrino Sector

$$TM^{E}T = M^{E}$$
 $U_{TM1} \approx \begin{pmatrix} \sqrt{\frac{2}{3}} & - & - \\ -\frac{1}{\sqrt{6}} & - & - \\ \frac{1}{\sqrt{6}} & - & - \end{pmatrix}$

Y.Koide,0705.2275; T.Banks and N.Seiberg,1011.5120;
Y.L.Wu,1203.2382; A.Merle and R.Zwicky,1110.4891;
B.L.Rachlin and T.W.Kephart,1702.08073; C. Luhn, 1101.2417

Origin of flavour symmetry

Break SO(3) using large Higgs reps E.g. 7-plet

S.F.K. and Ye-Ling Zhou, 1809.10292

irrep	<u>1</u>	3	<u>5</u>	7
subgroups	SO(3)	SO(2)	$Z_2 \times Z_2$ $SO(2)$	1
		SO(3)	SO(2)	A_4
			SO(3)	Z_3
				D_4
				SO(2)
				SO(3)

A4 preserving direction of 7-plet VEV

$$\langle \xi_{123} \rangle \equiv \frac{v_{\xi}}{\sqrt{6}}, \quad \langle \xi_{111} \rangle = \langle \xi_{112} \rangle = \langle \xi_{113} \rangle = \langle \xi_{133} \rangle = \langle \xi_{233} \rangle = \langle \xi_{333} \rangle = 0$$

Modular Symmetry

Lattice invariant under change of basis vectors

$$\{\omega_1,\omega_2\} \longrightarrow \{-\omega_2,\omega_1-2\omega_2\}$$

$$\tau \equiv \omega_1/\omega_2$$

$$\tau \to -1/(\tau - 2)$$

General modular transformation

$$au o \gamma au = rac{a au + b}{c au + d}$$
 Integers a,b,c,d $\gamma = egin{pmatrix} a & b \\ c & d \end{pmatrix}$ Infinite group $\Gamma = SL(2,\mathbb{Z})$

$$ad - bc = 1$$

$$\Gamma \equiv SL(2,\mathbb{Z})$$

$$S: \ \tau \mapsto -\frac{1}{\tau}, \qquad T: \ \tau \mapsto \tau + 1$$

$$: \tau \mapsto \tau + 1$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

From Infinite to Finite Modular Symmetry

$$\Gamma \equiv SL(2,\mathbb{Z})$$
 $S^2 = -\mathbb{1}_2$, $S^4 = (ST)^3 = \mathbb{1}_2$, $S^2T = TS^2$

$$\overline{\Gamma} \equiv PSL(2,\mathbb{Z})$$
 $S^2 = (ST)^3 = (TS)^3 = 1$ Infinite

Finite

 $\Gamma_3 \approx A_4$

 $\Gamma_4 \approx S_4$

 $\Gamma_5 \approx A_5$

 $\Gamma_7 \approx \Sigma(168)$

$$\Gamma_N$$
 $S^2 = (ST)^3 = (TS)^3 = 1$ and $T^N = 1$

Yukawa coupling transforms as an $\Gamma_2 \approx S_3$ irrep of Γ_N and as a modular form

$$Y(\tau) \to Y(\gamma \tau) = (c\tau + d)^{k_Y} \rho_{\mathbf{r}_Y}(\gamma) Y(\tau)$$

$$Y(\tau)\phi_1\phi_2\phi_3$$
 $\phi_1 \to (c\tau+d)^{k_1}\rho_1(\gamma)\phi_1$

$$k_Y = k_1 + k_2 + k_3$$
 modular weights balance

$$\rho_{\mathbf{r}_Y} \times \rho_1 \times \rho_2 \times \rho_3 = 1 + \dots$$
 contains singlet

	Leptons	Quarks	SU(5)	SO(10)
N=2, S ₃	T.Kobayashi, K.Tanaka and T.H.Tatsuishi, 1803.10391,		T.Kobayashi, Y.Shimizu, K.Takagi, M.Tanimoto and T.H.Tatsuishi 1906.10341,	
N=3, A ₄	F.Feruglio,1706.08749 J.C.Criado and F.Feruglio,1807.01125 G.J.Ding,S.F.King and X.G.Liu, 1907.11714,	H.Okada, M.Tanimoto, 1812.09677; 1905.13421; S.J.D. King, S.F.King, 2002.00969,	F.J.de Anda, S.F.King, E.Perdomo, 1812.05620; P.Chen, G.J.Ding and S.F.King, 2101.12724,	G.J.Ding, S.F.King, J.N.Lu, 2108.09655
N=4, S ₄	J.T.Penedo, S.T.Petcov, 1806.11040; P.P.Novichkov J.T.Penedo, S.T.Petcov, A.V.Titov, 1811.04933, J.C.Criado, F.Feruglio, S.J.D.King, 1908.11867,		Y.Zhao and H.H.Zhang, 2101.02266; G.J.Ding, S.F.King and C.Y.Yao, 2103.16311 ,	
N=5, A ₅	P.P.Novichkov, J.T.Penedo, S.T.Petcov, A.V.Titov, 1812.02158; G.J.Ding, S.F.King, X.G.Liu, 1903.12588,			
N=6, S ₃ xA ₄				
N=7, Σ(168)	G.J.Ding, S.F.King, C.C.Li, Y.L.Zhou, 2004.12662			

For integer/fractional/CP/eclectic/stabilisation... see other talks

Example: Level N=3 ~ A₄

Yukawa couplings involving twisted states whose modular weights do not add up to zero are modular forms

A4 triplet 3
Weight ky=2
Notation Y=Y₃(2) $Y = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \\ Y_3(\tau) \end{pmatrix} = \begin{pmatrix} 1 + 12q + 36q^2 + 12q^3 + 84q^4 + 72q^5 + \dots \\ -6q^{1/3}(1 + 7q + 8q^2 + 18q^3 + 14q^4 + \dots) \\ -18q^{2/3}(1 + 2q + 5q^2 + 4q^3 + 8q^4 + \dots) \end{pmatrix}$

$$q \equiv e^{i2\pi\tau}$$
 modulus vev

Weinberg
$$\frac{1}{\Lambda}(H_uH_u\ LL) \longrightarrow m_{\nu} = \begin{pmatrix} 2Y_1 & -Y_3 & -Y_2 \\ -Y_3 & 2Y_2 & -Y_1 \\ -Y_2 & -Y_1 & 2Y_3 \end{pmatrix} \frac{v_u^2}{\Lambda}$$
 Modular weights k : | | | 2 | no flavons (apart from tau)

Example with weighton: Level $N=3 \sim A_4$

	\overline{L}	e_3^c	e_2^c	e_1^c	N^c	$H_{u,d}$	ϕ
A_4	3	1'	1"	1	3	1	1
k_I	1	0	$\overline{-1}$	$\overline{-3}$	1	0	1

$$W_{driv} = \chi(Y_1^{(4)} \frac{\phi^4}{M_{fl}^2} - M^2)$$

$$ilde{\phi} \equiv rac{\langle \phi
angle}{M_{fl}} \sim (M/M_{fl})^{1/2} egin{array}{c} {
m small} \\ {
m parameter} \end{array}$$

$$W_e = \alpha_e e_1^c \tilde{\phi}^4 (LY_3^{(2)})_1 H_d + \beta_e e_2^c \tilde{\phi}^2 (LY_3^{(2)})_{1'} H_d + \gamma_e e_3^c \tilde{\phi} (LY_3^{(2)})_{1''} H_d$$

$$Y_{e} = \begin{pmatrix} \alpha_{e}\tilde{\phi}^{4}Y_{1} & \alpha_{e}\tilde{\phi}^{4}Y_{3} & \alpha_{e}\tilde{\phi}^{4}Y_{2} \\ \beta_{e}\tilde{\phi}^{2}Y_{2} & \beta_{e}\tilde{\phi}^{2}Y_{1} & \beta_{e}\tilde{\phi}^{2}Y_{3} \\ \gamma_{e}\tilde{\phi}Y_{3} & \gamma_{e}\tilde{\phi}Y_{2} & \gamma_{e}\tilde{\phi}Y_{1} \end{pmatrix} \quad \begin{array}{c} \text{Natural explanation} \\ \text{of charged lepton} \\ \text{hierarchy c.f. FN} \\ \end{pmatrix}$$

Natural explanation

Unlike the FN flavon, the weighton phi does not break the flavour symmetry

Stabilizers and Fixed points

$$\gamma_0 \tau_0 = \tau_0$$

e.g.
$$S\tau_S = \tau_S \longrightarrow \tau_S = i$$

$$\tau_S = i$$

Invariant under
$$S: \tau \mapsto -\frac{1}{\tau}$$

Alignments from fixed points

Modular transformation

$$Y_{I_Y}(\gamma \tau) = (c\tau + d)^{2k_Y} \rho_{I_Y}(\gamma) Y_{I_Y}(\tau)$$

Fixed point relations

$$\gamma \tau_{\gamma} = \tau_{\gamma} \quad Y_I(\gamma \tau_{\gamma}) = Y_I(\tau_{\gamma})$$

Eigenvalue equation gives alignments directly

$$\rho_I(\gamma)Y_I(\tau_\gamma) = (c\tau_\gamma + d)^{-2k}Y_I(\tau_\gamma)$$

Example

Eigenvalue equation

$$\rho(S)Y(\tau_S) = Y(\tau_S)$$

$$\frac{1}{3} \left(\begin{array}{ccc} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{array} \right)$$

Eigenvector
$$Y(au_S) \propto egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}$$

Level 3 fixed points and alignments G.J.Ding, S.F.K., X.G.Liu and J.N.Lu, 1910.03460

The alignments of triplet modular forms $Y_{3,3'}(\gamma \tau_S)$ of level 3 up to weight 6						Г:	
$A_4 \gamma$	γau_S	$Y_{3}^{(2)}(\gamma \tau_S), Y_{3,I}^{(6)}(\gamma \tau_S)$	$Y_{3}^{(4)}(\gamma au_S)$	$Y_{3,II}^{(6)}(\gamma \tau_S)$		Fixed points in	
$\{1,S\}$	i	$(1, 1 - \sqrt{3}, \sqrt{3} - 2)$	(1, 1, 1)	$(1, -2 - \sqrt{3}, 1 + \sqrt{3})$	fun	damental doma	ain
$\{T, TS\}$	1+i	$(1,(1-\sqrt{3})\omega,(\sqrt{3}-2)\omega^2)$	$(1,\omega,\omega^2)$	$(1,(-2-\sqrt{3})\omega,(1+\sqrt{3})\omega^2)$		$ au_{m}$.	
$\{ST, STS\}$	$\frac{-1+i}{2}$	$(1,(1+\sqrt{3})\omega,(-2-\sqrt{3})\omega^2)$	$(1,\omega,\omega^2)$	$(1,(\sqrt{3}-2)\omega,(1-\sqrt{3})\underline{\omega}^2)$		$ au_T$ • $i\infty$	
$\{T^2, T^2S\}$	2+i	$(1,(1-\sqrt{3})\omega^2,(-2+\sqrt{3})\omega)$	$(1,\omega^2,\omega)$	$(1,(-2-\sqrt{3})\omega^2,(1+\sqrt{3})\omega)$	$oxed{\mathcal{L}}$	Fundamenta	
$\{ST^2, ST^2S\}$	$\frac{-2+i}{5}$	$(1,(1+\sqrt{3})\omega^2,(-2-\sqrt{3})\omega)$	$(1,\omega^2,\omega)$	$(1,(\sqrt{3}-2)\omega^2,(1-\sqrt{3})\omega)$		_	LI
$\{T^2ST, TST^2\}$	$\frac{3+i}{2}$	$(1, 1 + \sqrt{3}, -2 - \sqrt{3})$	(1,1,1)	$(1,\sqrt{3}-2,1-\sqrt{3})$		domain	
The al	ignments	of triplet modular forms $Y_{3,3'}$	$(\gamma \tau_{ST})$ of level 3	3 up to weight 6		T	
γ	γau_{ST}	$Y_{3}^{(2)}(\gamma \tau_{ST}), Y_{3,I}^{(6)}(\gamma \tau_{ST})$	$Y_{3}^{(4)}(\gamma au_{ST})$	$Y_{3,II}^{(6)}(\gamma au_{ST})$			
$\{1, ST, T^2S\}$	$\frac{-1+i\sqrt{3}}{2}$	$(1,\omega,\frac{-1}{2}\omega^2)$	$(1,\frac{-1}{2}\omega,\omega^2)$	$(1, -2\omega, -2\omega^2)$			
$\{T, ST^2S, S\}$	$\frac{1+i\sqrt{3}}{2}$	$(1,\omega^2,-\frac{1}{2}\omega)$	$(1,-\frac{1}{2}\omega^2,\omega)$	$(1, -2\omega^2, -2\omega)$			
$\{TS, T^2, T^2ST\}$	$2+\omega$	$(1,1,-\frac{7}{2})$	$(1, -\frac{1}{2}, 1)$	(1, -2, -2)		•	
${STS, ST^2, TST^2}$	$\frac{-3+i\sqrt{3}}{6}$	(0,0,1)	(0, 1, 0)	(1,0,0)		l	
The al	ignments	of triplet modular forms $Y_{3,3'}$	$(\gamma \tau_{TS})$ of level 3	3 up to weight 6	$e^{\frac{2\pi i}{3}}$	$ au_S$	$\rho^{\frac{\pi i}{3}}$
γ	$\gamma \tau_{TS}$	$Y_{3}^{(2)}(\gamma \tau_{TS}), Y_{3,I}^{(6)}(\gamma \tau_{TS})$	$Y_{3}^{(4)}(\gamma \tau_{TS})$	$Y_{3,II}^{(6)}(\gamma au_{TS})$	$-\mathcal{T}_{ST}$		TTC
$\{1, TS, ST^2\}$	$\frac{1+i\sqrt{3}}{2}$	$(1,\omega^2,-\frac{1}{2}\omega)$	$(1, -\frac{1}{2}\omega^2, \omega)$	$(1, -2\omega^2, -2\omega)$		S	1 1 5
$\{T, T^2S, TST^2\}$	$\frac{3+i\sqrt{3}}{2}$	$(1,1,-\frac{1}{2})$	$(1, -\frac{1}{2}, 1)$	(1, -2, -2)			
$\{ST, ST^2S, T^2ST\}$	$\frac{(-1)^{5/6}}{\sqrt{3}}$	(0,0,1)	(0, 1, 0)	(1,0,0)			
$\{STS, T^2, S\}$	$2+\omega$	$(1,\omega,\frac{-1}{2}\omega^2)$	$(1, \frac{-1}{2}\omega, \omega^2)$	$(1, -2\omega, -2\omega^2)$			
The a	lignments	s of triplet modular forms $Y_{3,3'}$	$(\gamma \tau_T)$ of level 3	B up to weight 6			
γ	γau_T	$Y_{3}^{(2)}(\gamma \tau_T), Y_{3,I}^{(6)}(\gamma \tau_T), Y_{3}^{(6)}(\gamma \tau$	$_{3}^{(4)}(\gamma au_{T})$	$Y_{3,II}^{(6)}(\gamma au_T)$			
$\{1, T, T^2\}$	$i\infty$	(1,0,0)		(0,1,0)			i
$\{ST, ST^2, S\}$	0	(1, -2, -2)		$ \begin{array}{c} (1, -\frac{1}{2}, 1) \\ (1, -\frac{1}{2}\omega, \omega^2) \\ (1, -\frac{1}{2}\omega^2, \omega) \end{array} $	-0.5	0	0.5
$\{TS, ST^2S, TST^2\}$	1	$(1, -2\omega, -2\omega^2)$		$(1, -\frac{1}{2}\omega, \omega^2)$			
$\{STS, T^2S, T^2ST\}$	-1	$(1, -2\omega^2, -2\omega)$		$(1, -\frac{1}{2}\omega^2, \omega)$			

Level 4 fixed points and alignments

G.J.Ding, S.F.K., X.G.Liu and J.N.Lu, 1910.03460

The alignments of triplet modular forms $Y_{\mathbf{3,3'}}(\gamma \tau_S)$ of level 4 up to weight 6									
S 4 γ	γau_S	$Y_{3}^{(2)}$	$(\gamma \tau_S), Y_{3,\mathbf{I}}^{(6)}(\gamma \tau_S)$	$Y_{\bf 3}^{(4)}(\gamma \tau_S), Y_{\bf 3'}^{(6)}(\gamma \tau_S)$	$Y_{\mathbf{3'}}^{(4)}(\gamma \tau_S), Y_{\mathbf{3,II}}^{(6)}(\gamma \tau_S)$				
$\{1,S\}$	i	(1, 1	$1 + \sqrt{6}, 1 - \sqrt{6})$	$(1, -\frac{1}{2}, -\frac{1}{2})$	$(1,1-\sqrt{\frac{3}{2}},1+\sqrt{\frac{3}{2}})$				
$\{T^2, T^2S\}$	2+i	$(1,\frac{1}{3}(-1-$	$+i\sqrt{2}$), $\frac{1}{3}(-1+i\sqrt{2})$)	(0,1,-1)	$\left(1, -\frac{i}{\sqrt{2}}, -\frac{i}{\sqrt{2}}\right)$				
$\{ST^2S, ST^2\}$	$-\frac{2}{5} + \frac{i}{5}$	$(1, -\frac{1}{3}(1 -$	$+i\sqrt{2}), -\frac{1}{3}(1+i\sqrt{2}))$	(0,1,-1)	$(1,\frac{i}{\sqrt{2}},\frac{i}{\sqrt{2}})$				
$\{(ST^2)^2, T^2ST^2\}$	$-\frac{8}{13} + \frac{i}{13}$	(1, 1	$1 - \sqrt{6}, 1 + \sqrt{6})$	$(1, -\frac{1}{2}, -\frac{1}{2})$	$(1,1+\sqrt{\frac{3}{2}},1-\sqrt{\frac{3}{2}})$				
$\{ST, STS\}$	$-\frac{1}{2} + \frac{i}{2}$	$(1, \omega^2(1$	$+\sqrt{6}$), $\omega(1-\sqrt{6})$)	$(1,-\frac{\omega^2}{2},-\frac{\omega}{2})$	$(1,\omega^2(1-\sqrt{\frac{3}{2}}),\omega(1+\sqrt{\frac{3}{2}}))_{1.5}$				
$\{TS,T\}$	1+i	$(1, -\frac{\omega}{3}(1 +$	$-i\sqrt{2}$, $-\frac{\omega^2}{3}(1+i\sqrt{2})$	$(0,1,-\omega)$	$(1, \frac{i\omega}{\sqrt{2}}, \frac{i\omega^2}{\sqrt{2}})$				
$\{(ST)^2, T^3\}$	-1+i	$(1,\omega(1$	$+\sqrt{6}$), $\omega(1-\sqrt{6})$)	$(1, -\frac{\omega}{2}, -\frac{\omega^2}{2})$	$(1,\omega(1-\sqrt{\frac{3}{2}}),\omega^2(1+\sqrt{\frac{3}{2}}))$				
$\{(TS)^2, TST\}$	$\frac{1}{2} + \frac{i}{2}$	$(1, \frac{\omega^2}{3}(-1-$	$+i\sqrt{2}$), $\frac{\omega}{3}(-1+i\sqrt{2})$)	$(0,1,-\omega^2)$	$(1, -\frac{i\omega^2}{\sqrt{2}}, -\frac{i\omega}{\sqrt{2}})$ 0.5				
$\{(T^2ST, TST^3\}$	$\frac{3}{2} + \frac{i}{2}$	$(1,\omega^2(1$	$-\sqrt{6}), \omega(1+\sqrt{6}))$	$(1,-\frac{\omega^2}{2},-\frac{\omega}{2})$	$(1,\omega^2(1+\sqrt{\frac{3}{2}}),\omega(1-\sqrt{\frac{3}{2}}))$				
$\{(TST^2, TST^2S\}$	$\frac{3}{5} + \frac{i}{5}$	$(1,\omega(1-1))$	$-\sqrt{6}),\omega^2(1+\sqrt{6}))$	$(1,-\frac{\omega}{2},-\frac{\omega^2}{2})$	$(1,\omega(1+\sqrt{\frac{3}{2}}),\omega^2(1-\sqrt{\frac{3}{2}}))$				
$\{T^3ST^2, ST^2ST\}$	$\frac{13}{5} + \frac{i}{5}$	$(1, \frac{\omega}{3}(-1 +$	$-i\sqrt{2}$), $\frac{\omega^2}{3}(-1+i\sqrt{2})$)	$(0,1,-\omega)$	$(1, -\frac{i\omega}{\sqrt{2}}, -\frac{i\omega^2}{\sqrt{2}})$				
$\{T^2ST^3, T^3ST\}$	$\frac{17}{10} + \frac{i}{10}$	$(1, -\frac{\omega^2}{3}(1 -$	$+i\sqrt{2}$), $-\frac{\omega}{3}(1+i\sqrt{2})$)	$(0,1,-\omega^2)$	$ \frac{\left(1, -\frac{i\omega}{\sqrt{2}}, -\frac{i\omega^2}{\sqrt{2}}\right)}{\left(1, \frac{i\omega^2}{\sqrt{2}}, \frac{i\omega}{\sqrt{2}}\right)} $				
T		ts of triplet mo	odular forms $Y_{3,3'}(\gamma \tau_{ST})$ of	f level 4 up to weight 6	V 2 V 2				
γ	γau_{ST}	$Y_{3}^{(2)}(\gamma au_{ST})$	$Y_{\bf 3}^{(4)}(\gamma \tau_{ST}) , Y_{\bf 3'}^{(4)}(\gamma \tau_{ST})$	$Y_{3,II}^{(6)}(\gamma \tau_{ST}), Y_{3'}^{(6)}(\gamma \tau_{ST})$	$Y_{3,I}^{(6)}(\gamma \tau_{ST})$				
$\{1, ST, (ST)^2\}$	ω	(0, 1, 0)	(0,0,1)	(1,0,0)	2,2 1 1				
$\{T^2, TS, T^2ST\}$	$\omega + 2$	$(1, -\frac{\omega^2}{2}, \omega)$	$(1,\omega^2,-\frac{\omega}{2})$	$(1, 1 + i\sqrt{3}, 1 - i\sqrt{3})$					
$\{ST^2S, (TS)^2, TST^2\}$	$\frac{-5+i\sqrt{3}}{14}$	$(1, -\frac{\omega}{2}, \omega^2)$	$(1,\omega,-\frac{\omega^2}{2})$	$(1, 1 - i\sqrt{3}, 1 + i\sqrt{3})$	1.5				
$\{(ST^2)^2, T^3ST^2, T^2ST^3\}$	$\frac{-9+i\sqrt{3}}{14}$	$(1, -\frac{1}{2}, 1)$	$(1,1,-\frac{1}{2})$	(1, -2, -2)	[0,0,0)				
$\{(S,T,TST\}$	$-\omega^2$	$(1,1,-\frac{1}{2})$	$(1, -\frac{1}{2}, 1)$	(1, -2, -2)	(U, U, U) E				
$\{T^3ST, T^3, T^2S\}$	$\omega + 3$	$(1,\omega,-\frac{\omega^2}{2})$	$(1, -\frac{\omega}{2}, \omega^2)$	$(1, -2\omega, -2\omega^2)$					
$\{TST^3, T^2ST^2, TST^2S\}$	$\frac{9+i\sqrt{3}}{14}$	(0,0,1)	(0,1,0)	(1,0,0)	0.5				
$\{ST^2ST, ST^2, STS\}$	$\frac{-3+i\sqrt{3}}{6}$	$(1,\omega^2,-\frac{\omega}{2})$	$(1, -\frac{\omega^2}{2}, \omega)$	$(1, -2\omega^2, -2\omega)$					
Т	he alignment		odular forms $Y_{3,3'}(\gamma \tau_{TS})$ of						
γ	γau_{TS}	$Y_{3}^{(2)}(\gamma \tau_{TS})$	$Y_{\bf 3}^{(4)}(\gamma \tau_{TS}), Y_{\bf 3'}^{(4)}(\gamma \tau_{TS})$	$Y_{3,II}^{(6)}(\gamma \tau_{TS}), Y_{3'}^{(6)}(\gamma \tau_{TS})$	$Y_{3,I}^{(6)}(\gamma \tau_{TS})$				
$\{1, TS, (TS)^2\}$	$-\omega^2$	$(1,1,-\frac{1}{2})$	$(1, -\frac{1}{2}, 1)$	(1, -2, -2)					
$\{T^2, (ST)^2, T^2ST^3\}$	$ \frac{5+i\sqrt{3}}{2} $ $ \frac{\sqrt{3}i-3}{6} $	$(1,\omega,-\frac{1}{2}\omega^2)$	$(1, -\frac{1}{2}\omega, \omega^2)$	$(1, -2\omega, -2\omega^2)$					
$\{ST^2S, ST, T^3ST^2\}$	$\frac{\sqrt{3i-3}}{6}$	$(1,\omega^2,-\frac{1}{2}\omega)$	$(1, -\frac{1}{2}\omega^2, \omega)$	$(1, -2\omega^2, -2\omega)$					
$\{(ST^2)^2, T^2ST, TST^2\}$	$\frac{\sqrt{3}i - 23}{38}$	(0,0,1)	(0,1,0)	(1,0,0)	(0,0,0)				
$\{S, T^3, STS\}$	ω (1)5/6	(0,1,0)	(0,0,1)	(1,0,0)					
$\{T^3ST, T^2ST^2, ST^2ST\}$	$ \begin{array}{r} 3 + \frac{(-1)^{5/6}}{\sqrt{3}} \\ \underline{19 + i\sqrt{3}} \\ \underline{26} \\ \underline{3 + i\sqrt{3}} \end{array} $	$(1, -\frac{1}{2}, 1)$	$(1,1,-\frac{1}{2})$	(1, -2, -2)					
$\{TST^3, T, T^2S\}$	$\frac{19+i\sqrt{3}}{26}$	$(1,-\frac{1}{2}\omega^2,\omega)$	$(1,\omega^2,-\frac{1}{2}\omega)$	$(1, -2\omega^2, 2\omega)$					
$\{TST^2S, ST^2, TSTS\}$	$\frac{3+i\sqrt{3}}{6}$	$(1,-\frac{1}{2}\omega,\omega^2)$	$(1,\omega,-\frac{1}{2}\omega^2)$	$(1, -2\omega, -2\omega^2)$					
П	The alignmen	ts of triplet me	odular forms $Y_{3,3'}(\gamma \tau_T)$ of	level 4 up to weight 6					
γ	γau_T	$Y_{3}^{(i)}$	$(\gamma \tau_T), Y_{3}^{(4)}(\gamma \tau_T), Y_{3,\mathbf{I}}^{(6)}(\gamma \tau_T)$	$(\tau_T), Y_{3,\mathbf{II}}^{(6)}(\gamma \tau_T)$	$Y_{\mathbf{3'}}^{(4)}(\gamma \tau_T), Y_{\mathbf{3'}}^{(6)}(\gamma \tau_T)$				
$\{1, T, T^2, T^3\}$	$i\infty$		$(1,\omega^2,\omega)$						
$\{ST^2S, ST^2ST, (ST^2)^2, TST^2S\}$	$-\frac{1}{2}$		(1, \omega, \omega)						
	0		$(1,\omega,\omega^2)$		(0,0,0)				
$\frac{\{T^2ST, T^2ST^3, T^2ST^2, T^2S\}}{\{TS, TST^2, TST^3, TST\}}$	2 1		,		-				
$ \frac{\{(ST)^2, T^3ST^2, T^3ST, STS\}}{\{(ST)^2, T^3ST^2, T^3ST, STS\}} $	-1		(1, 1, 1)						
	_	i .			,				

Example with SU(5) GUT: Level $N=4 \sim S_4$

weighton

0.20

Field	T_3	$T = (T_2, T_1)^T$	\overline{F}	$N_{\rm a}$	$N_{ m s}$	H_5	$H_{\overline{5}}$	$H_{\overline{45}}$	ϕ	χ^0
SU(5)	10	10	$\overline{5}$	1	1	5	$\overline{f 5}$	$\overline{45}$	1	1
S_4	1	2	3	1	1'	1'	1	1	1	1
k_I	4	1	3	4	-1	-2	1	1	1	0

$$\alpha_u \tilde{\phi}^4 Y_{\mathbf{2}}^{(4)}(TT)_{\mathbf{2}} H_5 + \beta_u \tilde{\phi}^2 Y_{\mathbf{2}}^{(2)}(TT)_{\mathbf{2}} H_5 + \gamma_u Y_{\mathbf{1}'}^{(6)} T_3 T_3 H_5 + \epsilon_u \tilde{\phi} T_3 (TY_{\mathbf{2}}^{(4)})_{\mathbf{1}'} H_5$$

$$\mathcal{Y}_{\mathrm{GUT}}^d = (\mathcal{Y}_{\overline{5}} + \mathcal{Y}_{\overline{45}})^T$$

$$\mathcal{Y}_{\mathrm{GUT}}^e = \mathcal{Y}_{\overline{5}} - 3\mathcal{Y}_{\overline{45}}$$

Littlest Modular Seesaw from fixed point alignments

$$Y_{\mathbf{3'}}^{(6)} \propto \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad Y_{\mathbf{3}}^{(2)} \propto \begin{pmatrix} 1 \\ 1 + \sqrt{6} \\ 1 - \sqrt{6} \end{pmatrix}$$

$$m_{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + m_s e^{i\eta} \begin{pmatrix} 1 & 1 - \sqrt{6} & 1 + \sqrt{6} \\ 1 - \sqrt{6} & 7 - 2\sqrt{6} & -5 \\ 1 + \sqrt{6} & -5 & 7 + 2\sqrt{6} \end{pmatrix}^{0.05}$$

$$Y_{\mathbf{3'}}^{(6)}Y_{\mathbf{3'}}^{(6)^T}$$

$$Y_{\mathbf{3}}^{(2)}Y_{\mathbf{3}}^{(2)^{T}}$$

Example with two groups: Level $N=4 \sim S_4$

Use S₄ basis: $T=S_{\tau}T_{\tau}$, $S=T_{\tau}^2$, $U=T_{\tau}S_{\tau}T_{\tau}^2S_{\tau}$

$$T = S_{\tau} T_{\tau}$$
,

$$S = T_{\tau}^2,$$

$$U = T_{\tau} S_{\tau} T_{\tau}^2 S_{\tau}$$

Fixed points:

$$\langle \tau_{\nu} \rangle = \tau_{SU} = -\frac{1}{2} + \frac{i}{2}$$

 $\langle \tau_{l} \rangle = \tau_{T} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$

$$Y(\tau_{SU}) \propto \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$

$$U_{\text{TM}_1} = \begin{pmatrix} \frac{2}{\sqrt{6}} & - & -\\ -\frac{1}{\sqrt{6}} & - & -\\ -\frac{1}{\sqrt{6}} & - & - \end{pmatrix}$$

Summary

- □ Flavour problem motivates family/flavour symmetry
- U(1) with FN for hierarchies and small mixing
- Neutrino mass and mixing motivates non-Abelian
- □ TBM, TM1/TM2, Littlest Seesaw…enforced by S₄ and flavon alignments…gauged or modular origin
- □ Large literature on bottom-up modular models
- Weightons for charged fermion hierarchies
- Stabilizers/fixed points for Yukawa alignments
- □ SU(5) GUT with S₄ and Littlest Modular Seesaw
- □ Twin modular S₄ symmetries for TM1