Southampion elusiPes in(PisiblesPlus
School of Physics and Astronomy

Flavour Symmetries and their Modular Origin

Steve King, 2nd May 2022

Bethe Forum

Modular Flavor Symmetries

The Standard Model

Left-handed

Right-handed

(Including three right-handed neutrinos)

The Flavour Problem

Masses

Mixing

CKM

PMNS
v_{1}
v_{2}
v_{3}

$\nu_{\tau} \quad \square$

PMNS Lepton mixing matrix

Standard Model states

$$
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{lll}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

PMNS Lepton mixing matrix

$$
U_{P M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i \frac{\alpha_{31}}{2}}
\end{array}\right)
$$

Atmospheric
Reactor
Solar
Majorana

$$
\begin{array}{r}
\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} & c_{13} s_{23} \\
s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta} & c_{13} c_{23}
\end{array}\right) \\
\times \operatorname{diag}\left(1, e^{i \alpha_{21} / 2}, e^{i \alpha_{31} / 2}\right)
\end{array}
$$

Who ordered all of that?

Isidor Issac Rabi

SM Yukawa couplings

$$
y_{i j} H \bar{\psi}_{L i} \psi_{R j}
$$

Is there a symmetry at work?

Family/Flavour Symmetry

Basic idea is to distinguish the families by some quantum numbers

under a new "horizontal"
 family/flavour symmetry

The symmetry is assumed to be spontaneously broken by
"flavons"

Family/Flavour Symmetry

Example: U(1) Family/Flavour Symmetry

Consider a $U(1)$ family symmetry spontaneously broken by a flavon vev $\quad\langle\phi\rangle \neq 0$

Suppose $\mathrm{U}(1)$ charges are $\mathrm{Q}\left(\psi_{3}\right)=0, \mathrm{Q}\left(\psi_{2}\right)=1, \mathrm{Q}\left(\psi_{1}\right)=3, \mathrm{Q}(\mathrm{H})=0, \mathrm{Q}(\phi)=-1$

Then the lowest order allowed Yukawa coupling is $\mathrm{H} \psi_{3} \psi_{3}$

$$
Y=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The other Yukawa couplings are generated from higher order operators which respect $\mathrm{U}(1)$ family symmetry due to flavon ϕ insertions:

$$
\frac{-1+0+1+0=0}{M} H \psi_{2} \psi_{3}+\left(\frac{\phi}{M}\right)^{2} H \psi_{2} \psi_{2}+\left(\frac{\phi}{M}\right)^{3} H \psi_{1} \psi_{3}+\left(\frac{\phi}{M}\right)^{4} H \psi_{1} \psi_{2}+\left(\frac{\phi}{M}\right)^{6} H \psi_{1} \psi_{1}
$$

When the flavon gets its VEV it generates small effective Yukawa couplings in terms
of an expansion parameter

$$
\varepsilon=\frac{\langle\phi\rangle}{M}
$$

$\underset{\text { texture zero }}{\text { Approximate }} \xrightarrow[Y]{ }=\left(\begin{array}{lll}\varepsilon^{6} & \varepsilon^{4} & \varepsilon^{3} \\ \varepsilon^{4} & \varepsilon^{2} & \varepsilon \\ \varepsilon^{3} & \varepsilon & 1\end{array}\right)$

Froggatt-Nielsen Mechanism (1979)

What is the origin of the higher order operators?
Froggatt and Nielsen took their inspiration from the see-saw mechanism

$$
\frac{H^{2}}{M_{v_{R}}} v_{L} \nu_{L}
$$

$$
\frac{\phi}{M_{\chi}} H \psi_{2} \psi_{3}
$$

Where χ are heavy fermion messengers c.f. heavy RH neutrinos

Froggatt-Nielsen Mechanism (1979)

There may be Higgs messengers or fermion messengers

$\psi_{2} \quad \psi_{3}$
Fermion messengers may be $\operatorname{SU}(2)_{\llcorner }$doublets or singlets

Neutrinos motivate new family/flavour symmetries

CKM Matrix

PMNS Matrix

Froggatt-Nielsen tends to predict small mixing

What symmetry gives this?

Mu-Tau Symmetry $\nu_{\mu} \leftrightarrow \nu_{\tau}^{*}$

Basic Idea:
Two rows have equal magnitudes Z.z.Xing and S.Zhou, 0804.3512

$$
\rightarrow \quad \theta_{13} \neq 0, \quad \theta_{23}=45^{\circ}, \quad \delta_{\mathrm{CP}}= \pm 90^{\circ}
$$

Mu-Tau Symmetry $\nu_{\mu} \leftrightarrow \nu_{\tau}^{*}$

$$
\begin{gathered}
\mathrm{Bi}^{(}\left\{\begin{array}{c}
- \\
\rightarrow
\end{array}\right) \begin{array}{c}
\text { Basic Idea: } \\
\text { Two rows have }
\end{array} \\
\theta_{13} \neq 0, \quad \theta_{23}=45^{\circ}, \quad \begin{array}{c}
\text { equal magnitudes } \\
\text { e.z.xing and s.zhou, o804.3512 }
\end{array} \\
\delta_{\mathrm{CP}}= \pm 90^{\circ}
\end{gathered}
$$

Tri-Bimaximal-Reactor

$\sin \theta_{12}=\frac{1}{\sqrt{3}}$
Allowed at 3 sigma
$\sin \theta_{23}=\frac{1}{\sqrt{2}} \quad \sin \theta_{13}=\frac{\lambda}{\sqrt{2}}$
Allowed at
3 sigma

Huge literature e.g. Antusch and SFK, hep-ph/0508044; I.Girardi, S.T.Petcov and A.V.Titov,1410.8056, .. Charged lepton corrections

Charged lepton rotation Tri-bimaximal neutrinos

$$
\begin{aligned}
& U_{\text {PMNS }}=\left(\begin{array}{ccc}
c_{12}^{e} & s_{12}^{e} e^{-i \delta_{12}^{e}} & 0 \\
-s_{12}^{e} e^{i \delta_{12}} & c_{12}^{e} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
& \begin{array}{r}
=\left(\begin{array}{ccc}
\cdots & \cdots & \left.\frac{s_{12}^{e}}{\sqrt{2}} e^{-i \delta_{1}^{e}}\right) \\
\cdots & \ldots & \frac{c_{12}^{e}}{1 / 2} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
\end{array}
\end{aligned}
$$

Tri-maximal Mixing

$$
\begin{aligned}
& (T M 2)^{T r i} \\
& \left\{\left(\begin{array}{ll}
0 & \mathrm{TMI} \\
0 & { }^{0}
\end{array}\right) \not U_{\mathrm{TM} 1} \approx\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & - & - \\
-\frac{1}{\sqrt{6}} & - & - \\
\frac{1}{\sqrt{6}} & - & -
\end{array}\right)\right. \\
& \text { Second column of TBM } \\
& U_{\mathrm{TM} 2} \approx\left(\begin{array}{ccc}
- & \frac{1}{\sqrt{3}} & - \\
- & \frac{1}{\sqrt{3}} & - \\
- & -\frac{1}{\sqrt{3}} & -
\end{array}\right) \\
& \text { First column of TBM }
\end{aligned}
$$

C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798

Tri-maximal Mixing

C.H.Albright and W.Rodejohann, 0812.0436; C.H.Albright, A.Dueck and W.Rodejohann, 1004.2798

Tri-maximal Mixing

Littlest Seesaw

- Fit includes effects of RG corrections
- Determines the RHN masses!

SFK,1304.6264; 1512.07531 SFK, Molina Sedgwick, Rowley, 1808.01005

4 real input parameters
Describes:
3 neutrino masses ($m_{1}=0$), 3 mixing angles, 1 Dirac CP phase, 2 Majorana phases (1 zero) 1 BAU parameter Y_{B} = 10 observables of which 7 are constrained

Predictions	1σ range
$\theta_{12} /^{\circ}$	$34.254 \rightarrow 34.350$
$\theta_{13} /{ }^{\circ}$	$8.370 \rightarrow 8.803$
$\theta_{23} /^{\circ}$	$45.405 \rightarrow 45.834$
$\Delta m_{12}{ }^{2} / 10^{-5} \mathrm{eV}^{2}$	$7.030 \rightarrow 7.673$
$\Delta m_{31}{ }^{2} / 10^{-3} \mathrm{eV}^{2}$	$2.434 \rightarrow 2.561$
$\delta /{ }^{\circ}$	$-88.284 \rightarrow-86.568$
$Y_{B} / 10^{-10}$	$0.839 \rightarrow 0.881$

Non-Abelian Family Symmetry

Traditionally used for TB mixing

S.F.K. and G.G. Ross,
hep-ph/0108112; hep-ph/0307190
E.Ma and G.Rajasekaran, hep-ph/0106291;
K.S.Babu, E.Ma, J.W.F.Valle, hep-ph/0206292;
G.Altarelli and F.Feruglio, hep-ph/0504165,hep-ph/0512103
I.de Medeiros Varzielas
S.F.K. and G.G. Ross,
hep-ph/0512313;
hep-ph/0607045

These days can explain charged lepton corrections, TMI,TM2, Littlest seesaw,...

Reviews

F.Feruglio and A.Romanino, 1912.06028 S.F.K. and C.Luhn, 1301.1340
S.F.K., A.Merle, S.Morisi, Y.Shimizu and M.Tanimoto, 1402.4271

$S^{2}=T^{3}=U^{2}=(S T)^{3}=(S U)^{2}=(T U)^{2}=(S T U)^{4}=1$				
S_{4}	A_{4}	S	T	U
$\mathbf{1}, \mathbf{1}^{\prime}$	$\mathbf{1}$	1	1	± 1
$\mathbf{2}$	$\binom{\mathbf{1}^{\prime \prime}}{\mathbf{1}^{\prime}}$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{2}\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$\mathbf{3}, \mathbf{3}^{\prime}$	$\mathbf{3}$	$\frac{1}{3}\left(\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega^{2} & 0 \\ 0 & 0 & \omega\end{array}\right)$	$\mp\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$

Diagonalised by TB matrix

S_{4} vacuum alignments ${ }^{\substack{\text { ciatachise }}}$

$\left\langle\phi_{3^{\prime}}^{\nu}\right\rangle=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ preserves $\mathbb{S}, \cup \quad\left\langle\phi_{3^{\prime}}^{l}\right\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ preserves T

residual symmetry	U	S	$S U$
$\mathbf{1}$	-	-	-
$\mathbf{1}^{\prime}$	-	1	-
$\mathbf{2}$	-	$(1,-1)^{T}$	-
$\mathbf{3}$	$(0,1,-1)^{T}$	$(1,1,1)^{T}$	$(2,-1,-1)^{T}$
$\mathbf{3}^{\prime}$	$(1,0,0)^{T}$	-	$(0,1,-1)^{T}$

S_{4} flavour symmetry

$T M^{E} T=M^{E}$
$S M^{\nu} S=M^{\nu}$
$U M^{\nu} U=M^{\nu}$
$\frac{\sqrt{2}}{3}$
$-\frac{1}{\sqrt{6}}$
$\frac{1}{\sqrt{6}}$

$$
\left.\begin{array}{cc}
\frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

TB mixing excluded so need to break S,T,U
S_{4} flavour symmetry

S_{4} flavour symmetry

S_{4} flavour symmetry

Y.Koide,0705.2275; T.Banks and N.Seiberg,1011.5120;
Y.L.Wu,1203.2382; A.Merle and R.Zwicky,1110.4891;
B.L.Rachlin and T.W.Kephart,1702.08073; C. Luhn, 1101.2417

Origin of flavour symmetry

Break SO(3) using large Higgs reps E.g. 7-plet

irrep	$\underline{1}$	$\underline{3}$	$\underline{5}$	7
subgroups	$S O(3)$	$S O(2)$	$Z_{2} \times Z_{2}$	1
		$S O(3)$	$S O(2)$	A_{4}
			$S O(3)$	Z_{3}
				D_{4}
			$S O(2)$	
			$S O(3)$	

A4 preserving direction of 7-PletVEV
$\left\langle\xi_{123}\right\rangle \equiv \frac{v_{\xi}}{\sqrt{6}}, \quad\left\langle\xi_{111}\right\rangle=\left\langle\xi_{112}\right\rangle=\left\langle\xi_{113}\right\rangle=\left\langle\xi_{133}\right\rangle=\left\langle\xi_{233}\right\rangle=\left\langle\xi_{333}\right\rangle=0$
S.F.K. and Ye-Ling Zhou, 1809.10292

Modular Symmetry

General modular transformation

$$
\left.\begin{array}{ccc}
\tau \rightarrow \gamma \tau=\frac{a \tau+b}{c \tau+d} & \begin{array}{c}
\text { Integers a,b,c,d } \\
a d-b c=1
\end{array} & \gamma=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)
\end{array} \begin{array}{c}
\text { Infinite group } \\
\Gamma \equiv S L(2, \mathbb{Z})
\end{array}\right] \begin{array}{cc}
\\
S: \tau \mapsto-\frac{1}{\tau}, \quad T: \tau \mapsto \tau+1 & S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
\end{array}
$$

From Infinite to Finite Modular Symmetry

$$
\Gamma \equiv S L(2, \mathbb{Z}) \quad S^{2}=-\mathbb{1}_{2}, \quad S^{4}=(S T)^{3}=\mathbb{1}_{2}, \quad S^{2} T=T S^{2}
$$

$\longrightarrow \bar{\Gamma} \equiv \operatorname{PSL}(2, \mathbb{Z}) \quad S^{2}=(S T)^{3}=(T S)^{3}=1 \quad$ Infinite
Finite
level N
$\Gamma_{N} \quad S^{2}=(S T)^{3}=(T S)^{3}=1 \quad$ and $\quad T^{N}=1$

$\Gamma_{2} \approx S_{3}$
$\Gamma_{3} \approx A_{4}$
$\Gamma_{4} \approx S_{4}$
$\Gamma_{5} \approx A_{5}$
$\Gamma_{7} \approx \Sigma(168)$

Yukawa coupling transforms as an irrep of Γ_{N} and as a modular form

$$
\begin{aligned}
& Y(\tau) \rightarrow Y(\gamma \tau)=(c \tau+d)^{k_{Y}} \rho_{\mathbf{r}_{Y}}(\gamma) Y(\tau) \\
& Y(\tau) \phi_{1} \phi_{2} \phi_{3} \quad \phi_{1} \rightarrow(c \tau+d)^{k_{1}} \rho_{1}(\gamma) \phi_{1}
\end{aligned}
$$

$k_{Y}=k_{1}+k_{2}+k_{3}$ modular weights balance
$\rho_{\mathbf{r}_{Y}} \times \rho_{1} \times \rho_{2} \times \rho_{3}=1+\ldots \quad$ contains singlet

	Leptons	Quarks	$S \circlearrowleft(5)$	$S O(10)$
$N=2, S 3$	T.Kobayashi, K.Tanaka and T.H.Tatsuishi, 1803.10391,...		T.Kobayashi, Y. Shimizu, K.Takagi, M.Tanimoto and T.H.Tatsuishi 1906.10341,...	
$N=3, A_{4}$	F.Feruglio,1706.08749 J.C.Criado and F.Feruglio, 1807. 01125 G.J.Ding,S.F.King and X.G.Liu, 1907.11714,...	H.Okada, M.Tanimoto, 1812.09677; 1905.13421; S.J.D. King,S.F.King, $2002.00969, \ldots$	F.J.de Anda, S.F.King, E.Perdomo, 1812.05620; P.Chen, G.J.Ding and S.F.King, 2101.12724, ...	G.J.Ding, S.F.King, J.N.Lu, 2108.09655
$N=4, S_{4}$	J.T.Penedo,S.T.Petcov, 1806.11040;P.P.Novichkov J.T.Penedo,S.T.Petcov, A.V.Titov,1811.04933, J.C.Criado,F.Feruglio, S.J.D.King, 1908.11867....		Y. Zhao and H.H.Zhang, 2101.02266; G.J.Ding, S.F.King and C.Y.Yao, 2103.16311 , ...	
$N=5, A_{5}$	P.P.Novichkov, J.T.Penedo, S.T.Petcov, A.V.Titov, 1812.02158; G.J.Ding, S.F.King, X.G.Liu, 1903.12588,...			
$\mathrm{N}=6, \mathrm{~S}_{3} \times \mathrm{A}_{4}$				
$N=7, \quad \sum(168)$	G.J.Ding, S.F.King, C.C.Li, Y.L.Zhou, 2004.12662			

For integer/fractional/CP/eclectic/stabilisation... see other talks

See Ferruccio's talk F.Feruglio, 1706.08749

Example: Level $\mathrm{N}=3 \sim \mathrm{~A}_{4}$

Yukawa couplings involving twisted states whose modular weights do not add up to zero are modular forms

A 4 triplet 3
Weight ky $=2 \quad Y=\left(\begin{array}{l}Y_{1}(\tau) \\ Y_{2}(\tau) \\ Y_{3}(\tau)\end{array}\right)=\left(\begin{array}{c}1+12 q+36 q^{2}+12 q^{3}+84 q^{4}+72 q^{5}+\ldots \\ -6 q^{1 / 3}\left(1+7 q+8 q^{2}+18 q^{3}+18 q^{4}+\ldots\right) \\ -18 q^{2 / 3}\left(1+2 q+5 q^{2}+4 q^{3}+8 q^{4}+\ldots\right)\end{array}\right)$
Notation $Y=Y_{3}(2)$

$$
q \equiv e^{i 2 \pi \tau} \pi \text { modulus vev }
$$

Weinberg $\frac{1}{\Lambda}$
operator
$\Lambda$$H_{u} H_{u} L L Y Y\left(\begin{array}{ccc}2 Y_{1} & -Y_{3} & -Y_{2} \\ -Y_{3} & 2 Y_{2} & -Y_{1} \\ -Y_{2} & -Y_{1} & 2 Y_{3}\end{array}\right) \frac{v_{u}^{2}}{\Lambda}$ A ${ }_{4}$ rep: 333
Modular weights k: I I 2
no flavons (apart from tau)

\section*{Example with weighton: Level $\mathrm{N}=3 \sim \mathrm{~A}_{4}$
 | | L | e_{3}^{c} | e_{2}^{c} | e_{1}^{c} | N^{c} | $H_{u, d}$ | ϕ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{4} | $\mathbf{3}$ | $\mathbf{1}^{\prime}$ | $\mathbf{1}^{\prime \prime}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| k_{I} | 1 | 0 | -1 | -3 | 1 | 0 | 1 |
 \[

W_{d r i v}=\chi\left(Y_{1}^{(4)} \frac{\phi^{4}}{M_{f l}^{2}}-M^{2}\right)

\]
 \[

\tilde{\phi} \equiv \frac{\langle\phi\rangle}{M_{f l}} \sim\left(M / M_{f l}\right)^{1 / 2} \quad small
\]}

$$
W_{e}=\alpha_{e} e_{1}^{c} \tilde{\phi}^{4}\left(L Y_{\mathbf{3}}^{(2)}\right)_{\mathbf{1}} H_{d}+\beta_{e} e_{2}^{c} \tilde{\phi}^{2}\left(L Y_{\mathbf{3}}^{(2)}\right)_{\mathbf{1}^{\prime}} H_{d}+\gamma_{e} e_{3}^{c} \tilde{\phi}\left(L Y_{\mathbf{3}}^{(2)}\right)_{\mathbf{1}^{\prime \prime}} H_{d}
$$

$\left(\begin{array}{lll}\alpha_{e} \tilde{\varphi}^{4} Y_{1} & \alpha_{e} \tilde{\phi}^{4} Y_{3} & \alpha_{e} \tilde{\varphi}^{4} Y_{2} \\ \beta_{e} Y_{2}\end{array}\right) \quad$ Natural explanation of charged lepton hierarchy c.f. FN

Unlike the FN flavon, the weighton phi does not break the flavour symmetry

Stabilizers and Fixed points

$$
\begin{aligned}
& \gamma_{0} \tau_{0}=\tau_{0} \quad \text { e.g. } \quad S \tau_{S}=\tau_{S} \quad \longrightarrow \quad \tau_{S}=i \\
& \text { Invariant under } \quad S: \tau \mapsto-\frac{1}{\tau}
\end{aligned}
$$

Alignments from fixed points

Modular transformation
$Y_{I_{Y}}(\gamma \tau)=(c \tau+d)^{2 k_{Y}} \rho_{I_{Y}}(\gamma) Y_{I_{Y}}(\tau)$
Fixed point relations

$$
\gamma \tau_{\gamma}=\tau_{\gamma} \quad Y_{I}\left(\gamma \tau_{\gamma}\right)=Y_{I}\left(\tau_{\gamma}\right)
$$

Eigenvalue equation gives alignments directly

$$
\rho_{I}(\gamma) Y_{I}\left(\tau_{\gamma}\right)=\left(c \tau_{\gamma}+d\right)^{-2 k} Y_{I}\left(\tau_{\gamma}\right)
$$

Example

Eigenvalue equation

$$
\begin{gathered}
\rho(S) Y\left(\tau_{S}\right)=Y\left(\tau_{S}\right) \\
\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right)
\end{gathered}
$$

Eigenvector

Level 3 fixed points and alignments
 G.J.Ding, S.F.K., X.G.Liu and J.N.Lu, 1910.03460

The alignments of triplet modular forms $Y_{\mathbf{3 , 3}}\left(\gamma \tau_{S}\right)$ of level 3 up to weight 6					
$\mathbf{A}_{\mathbf{4}} \gamma$	$\gamma \tau_{S}$	$Y_{\mathbf{3}}^{(2)}\left(\gamma \tau_{S}\right), Y_{3, I}^{(6)}\left(\gamma \tau_{S}\right)$	$Y_{\mathbf{3}}^{(4)}\left(\gamma \tau_{S}\right)$	$Y_{\mathbf{3}, I I}^{(6)}\left(\gamma \tau_{S}\right)$	
$\{1, S\}$	i	$(1,1-\sqrt{3}, \sqrt{3}-2)$	$(1,1,1)$	$(1,-2-\sqrt{3}, 1+\sqrt{3})$	
$\{T, T S\}$	$1+i$	$\left(1,(1-\sqrt{3}) \omega,(\sqrt{3}-2) \omega^{2}\right)$	$\left(1, \omega, \omega^{2}\right)$	$\left(1,(-2-\sqrt{3}) \omega,(1+\sqrt{3}) \omega^{2}\right)$	
$\{S T, S T S\}$	$\frac{-1+i}{2}$	$\left(1,(1+\sqrt{3}) \omega,(-2-\sqrt{3}) \omega^{2}\right)$	$\left(1, \omega, \omega^{2}\right)$	$\left(1,(\sqrt{3}-2) \omega,(1-\sqrt{3}) \omega^{2}\right)$	
$\left\{T^{2}, T^{2} S\right\}$	$2+i$	$\left(1,(1-\sqrt{3}) \omega^{2},(-2+\sqrt{3}) \omega\right)$	$\left(1, \omega^{2}, \omega\right)$	$\left(1,(-2-\sqrt{3}) \omega^{2},(1+\sqrt{3}) \omega\right)$	
$\left\{S T^{2}, S T^{2} S\right\}$	$\frac{-2+i}{5}$	$\left(1,(1+\sqrt{3}) \omega^{2},(-2-\sqrt{3}) \omega\right)$	$\left(1, \omega^{2}, \omega\right)$	$\left(1,(\sqrt{3}-2) \omega^{2},(1-\sqrt{3}) \omega\right)$	
$\left\{T^{2} S T, T S T^{2}\right\}$	$\frac{3+i}{2}$	$(1,1+\sqrt{3},-2-\sqrt{3})$	$(1,1,1)$	$(1, \sqrt{3}-2,1-\sqrt{3})$	

The alignments of triplet modular forms $Y_{\mathbf{3 , 3 ^ { \prime }}}\left(\gamma \tau_{S T}\right)$ of level 3 up to weight 6

The alignments of triplet modular forms $Y_{\mathbf{3}, \mathbf{3}^{\prime}}\left(\gamma \tau_{S T}\right)$ of level 3 up to weight 6				
γ	$\gamma \tau_{S T}$	$Y_{\mathbf{3}}^{(2)}\left(\gamma \tau_{S T}\right), Y_{\mathbf{3}, I}^{(6)}\left(\gamma \tau_{S T}\right)$	$Y_{\mathbf{3}}^{(4)}\left(\gamma \tau_{S T}\right)$	$Y_{\mathbf{3}, I I}^{(6)}\left(\gamma \tau_{S T}\right)$
$\left\{1, S T, T^{2} S\right\}$	$\frac{-1+i \sqrt{3}}{2}$	$\left(1, \omega, \frac{-1}{2} \omega^{2}\right)$	$\left(1, \frac{-1}{2} \omega, \omega^{2}\right)$	$\left(1,-2 \omega,-2 \omega^{2}\right)$
$\left\{T, S T^{2} S, S\right\}$	$\frac{1+i \sqrt{3}}{2}$	$\left(1, \omega^{2},-\frac{1}{2} \omega\right)$	$\left(1,-\frac{1}{2} \omega^{2}, \omega\right)$	$\left(1,-2 \omega^{2},-2 \omega\right)$
$\left\{T S, T^{2}, T^{2} S T\right\}$	$2+\omega$	$\left(1,1,-\frac{1}{2}\right)$	$\left(1,-\frac{1}{2}, 1\right)$	$(1,-2,-2)$
$\left\{S T S, S T^{2}, T S T^{2}\right\}$	$\frac{-3+i \sqrt{3}}{6}$	$(0,0,1)$	$(0,1,0)$	$(1,0,0)$

The alignments of triplet modular forms $Y_{3,3^{\prime}}\left(\gamma \tau_{T S}\right)$ of level 3 up to weight 6

γ	$\gamma \tau_{T S}$	$Y_{\mathbf{3}}^{(2)}\left(\gamma \tau_{T S}\right), Y_{3, I}^{(6)}\left(\gamma \tau_{T S}\right)$	$Y_{\mathbf{3}}^{(4)}\left(\gamma \tau_{T S}\right)$	$Y_{3, I I}\left(\gamma \tau_{T S}\right)$
$\left\{1, T S, S T^{2}\right\}$	$\frac{1+i \sqrt{3}}{2}$	$\left(1, \omega^{2},-\frac{1}{2} \omega\right)$	$\left(1,-\frac{1}{2} \omega^{2}, \omega\right)$	$\left(1,-2 \omega^{2},-2 \omega\right)$
$\left\{T, T^{2} S, T S T^{2}\right\}$	$\frac{3+i \sqrt{3}}{2}$	$\left(1,1,-\frac{1}{2}\right)$	$\left(1,-\frac{1}{2}, 1\right)$	$(1,-2,-2)$
$\left\{S T, S T^{2} S, T^{2} S T\right\}$	$\frac{(-1)^{5 / 6}}{\sqrt{3}}$	$(0,0,1)$	$(0,1,0)$	$(1,0,0)$
$\left\{S T S, T^{2}, S\right\}$	$2+\omega$	$\left(1, \omega, \frac{-1}{2} \omega^{2}\right)$	$\left(1, \frac{-1}{2} \omega, \omega^{2}\right)$	$\left(1,-2 \omega,-2 \omega^{2}\right)$

The alignments of triplet modular forms $Y_{\mathbf{3}, \mathbf{3}^{\prime}}\left(\gamma \tau_{T}\right)$ of level 3 up to weight 6

γ	$\gamma \tau_{T}$	$Y_{\mathbf{3}}^{(2)}\left(\gamma \tau_{T}\right), Y_{\mathbf{3}, I}^{(6)}\left(\gamma \tau_{T}\right), Y_{\mathbf{3}}^{(4)}\left(\gamma \tau_{T}\right)$	$Y_{\mathbf{3}, I I}^{(6)}\left(\gamma \tau_{T}\right)$
$\left\{1, T, T^{2}\right\}$	$i \infty$	$(1,0,0)$	$(0,1,0)$
$\left\{S T, S T^{2}, S\right\}$	0	$(1,-2,-2)$	$\left(1,-\frac{1}{2}, 1\right)$
$\left\{T S, S T^{2} S, T S T^{2}\right\}$	1	$\left(1,-2 \omega,-2 \omega^{2}\right)$	$\left(1,-\frac{1}{2} \omega, \omega^{2}\right)$
$\left\{S T S, T^{2} S, T^{2} S T\right\}$	-1	$\left(1,-2 \omega^{2},-2 \omega\right)$	$\left(1,-\frac{1}{2} \omega^{2}, \omega\right)$

Level 4 fixed points and alignments

G.J.Ding, S.F.K., X.G.Liu and J.N.Lu, 1910.03460

The alignments of triplet modular forms $Y_{3,3^{\prime}}\left(\gamma \tau_{T}\right)$ of level 4 up to weight 6			
γ	$\gamma \tau_{T}$	$Y_{\mathbf{3}}^{(2)}\left(\gamma \tau_{T}\right), Y_{\mathbf{3}}^{(4)}\left(\gamma \tau_{T}\right), Y_{\mathbf{3} \mathbf{I}}^{(6)}\left(\gamma \tau_{T}\right), Y_{\mathbf{3}, \mathbf{I}}^{(6)}\left(\gamma \tau_{T}\right)$	$Y_{3^{\prime}}^{(4)}\left(\gamma \tau_{T}\right), Y_{3^{\prime}}^{(6)}\left(\gamma \tau_{T}\right)$
$\left\{1, T, T^{2}, T^{3}\right\}$	$i \infty$	$\left(1, \omega^{2}, \omega\right)$	$(0,0,0)$
$\left\{S T^{2} S, S T^{2} S T,\left(S T^{2}\right)^{2}, T S T^{2} S\right\}$	$-\frac{1}{2}$		
$\frac{\left\{S T,(T S)^{2}, S, S T^{2}\right\}}{\left\{T^{2} S T, T^{2} S T^{3} T^{2} S T^{2} T^{2} S\right\}}$	0	$\left(1, \omega, \omega^{2}\right)$	
$\left\{T^{2} S T, T^{2} S T^{3}, T^{2} S T^{2}, T^{2} S\right\}$	2		
$\left\{T S, T S T^{2}, T S T^{3}, T S T\right\}$	-1	$(1,1,1)$	

Example with $\operatorname{SU}(5)$ GUT: Level $N=4 \sim S_{4}$

weighton

Field	T_{3}	$T=\left(T_{2}, T_{1}\right)^{T}$	F	N_{a}	N_{s}	H_{5}	$H_{\overline{5}}$	$H_{\overline{45}}$	ϕ	χ^{0}
$S U(5)$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\overline{\mathbf{5}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{5}$	$\overline{\mathbf{5}}$	$\overline{\mathbf{4 5}}$	$\mathbf{1}$	$\mathbf{1}$
S_{4}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	$\mathbf{1}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
k_{I}	4	1	3	4	-1	-2	1	1	1	0

$\alpha_{u} \tilde{\phi}^{4} Y_{2}^{(4)}(T T)_{2} H_{5}+\beta_{u} \tilde{\phi}^{2} Y_{2}^{(2)}(T T)_{2} H_{5}+\gamma_{u} Y_{1^{\prime}}^{(6)} T_{3} T_{3} H_{5}+\epsilon_{u} \tilde{\phi} T_{3}\left(T Y_{2}^{(4)}\right)_{1^{\prime}} H_{5}$

$$
\mathcal{Y}_{\mathrm{GUT}}^{u} \approx\left(\begin{array}{ccc}
\alpha_{u} \tilde{\phi}^{4} & 0 & 0 \\
0 & \beta_{u} \tilde{\phi}^{2} & \epsilon_{u} \tilde{\phi} \\
0 & \epsilon_{u} \tilde{\phi} & \gamma_{u}
\end{array}\right) \quad \begin{aligned}
& \mathcal{Y}_{\mathrm{GUT}}^{d}=\left(\mathcal{Y}_{\overline{5}}+\mathcal{Y}_{\overline{45}}\right)^{T} \\
& \mathcal{Y}_{\mathrm{GUT}}^{e}=\mathcal{Y}_{\overline{5}}-3 \mathcal{Y}_{\overline{45}}
\end{aligned}
$$

Littlest Modular Seesaw from fixed point alignments

$$
\begin{gathered}
Y_{\mathbf{3}^{\prime}}^{(6)} \propto\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \quad Y_{\mathbf{3}}^{(2)} \propto\left(\begin{array}{c}
1 \\
1+\sqrt{6} \\
1-\sqrt{6}
\end{array}\right) \\
m_{\nu}=m_{a}\left(\begin{array}{ccc}
0 & 0 & m_{s} \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)+m_{a_{s}} e^{i \eta}\left(\begin{array}{ccc}
1 & 1-\sqrt{6} & 1+\sqrt{6} \\
1-\sqrt{6} & 7-2 \sqrt{6} & -5 \\
1+\sqrt{6} & -5 & 7+2 \sqrt{6}
\end{array}\right)^{0.05}= \\
Y_{\mathbf{3}^{\prime}}^{(6)} Y_{\mathbf{3}^{\prime}}^{(6)} \\
Y_{\mathbf{3}}^{(2)} Y_{\mathbf{3}}^{(2)^{T}}
\end{gathered}
$$

(a)
S.F.K. and Y.L. Zhou,1908.02770

Example with two groups: Level $\mathrm{N}=4 \sim \mathrm{~S}_{4}$

S_{4}^{l}, τ_{l}
$\frac{\langle\Phi\rangle}{\square}$ C.f.

Family

Use S4 basis: $\quad T=S_{\tau} T_{\tau}, \quad S=T_{\tau}^{2}, \quad U=T_{\tau} S_{\tau} T_{\tau}^{2} S_{\tau}$

Fixed points:
$\left\langle\tau_{\nu}\right\rangle=\tau_{S U}=-\frac{1}{2}+\frac{i}{2}$
$\left\langle\tau_{l}\right\rangle=\tau_{T}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$
$Y\left(\tau_{S U}\right) \propto\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$
$U_{\mathrm{TM}_{1}}=\left(\begin{array}{ccc}\frac{2}{\sqrt{6}} & - & - \\ -\frac{1}{\sqrt{6}} & - & - \\ -\frac{1}{\sqrt{6}} & - & -\end{array}\right)$

Summary

- Flavour problem motivates family/flavour symmetry
- U(1) with FN for hierarchies and small mixing
- Neutrino mass and mixing motivates non-Abelian
- TBM, TM1/TM2, Littlest Seesaw...enforced by S_{4} and flavon alignments...gauged or modular origin

- Large literature on bottom-up modular models

- Weightons for charged fermion hierarchies
- Stabilizers/fixed points for Yukawa alignments
- SU(5) GUT with S_{4} and Littlest Modular Seesaw
- Twin modular S_{4} symmetries for TM1

