A light hybrid resonance from lattice QCD

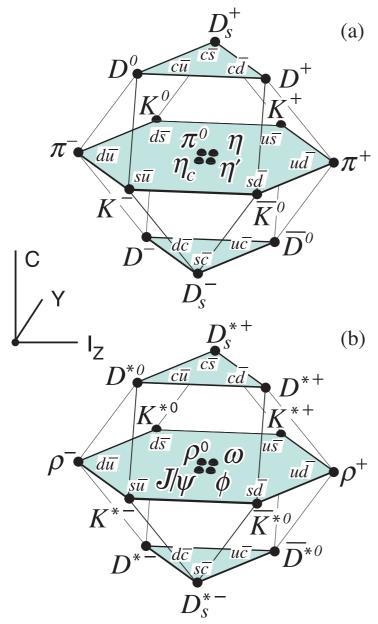
David Wilson

Multihadron dynamics in a box Bethe Forum Bonn August 2022

quark model

- "conventional" quark model states built from qq and qqq

mesons

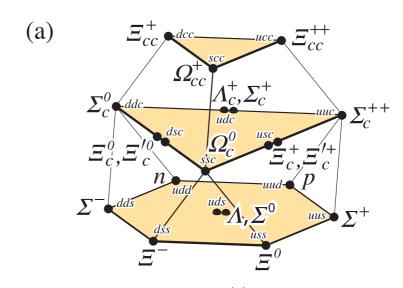


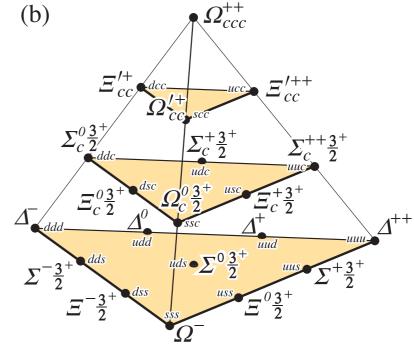
impossible to construct:

$$J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}$$

[PDG quark model review]

baryons

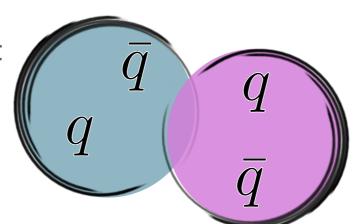




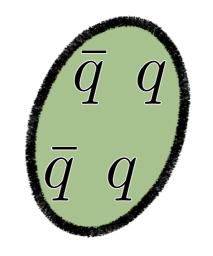
beyond the quark model:

many ways to make a colour singlet

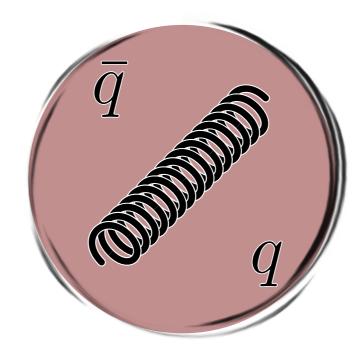
- molecules



- tetraquarks



- hybrids



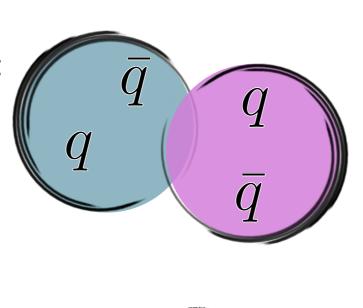
beyond the quark model:

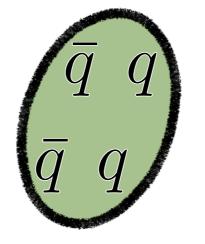
many ways to make a colour singlet

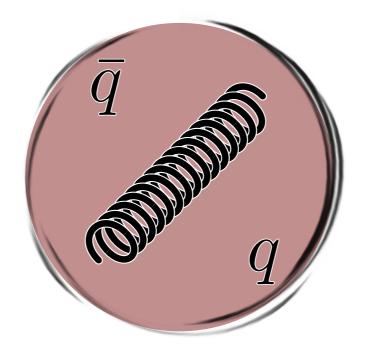
- molecules

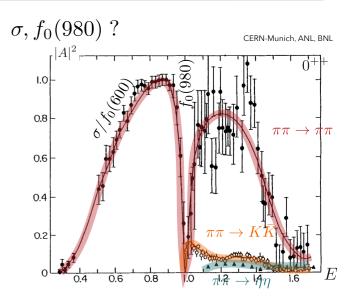
- tetraquarks

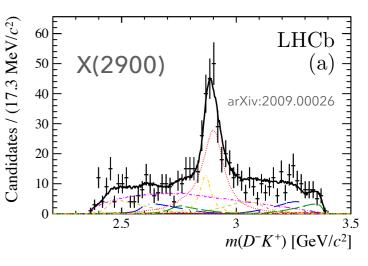
- hybrids

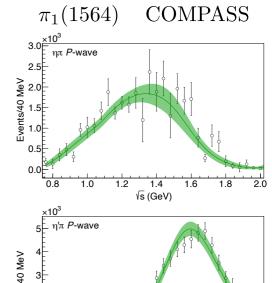


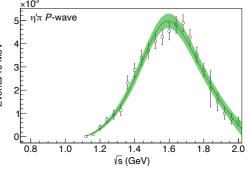




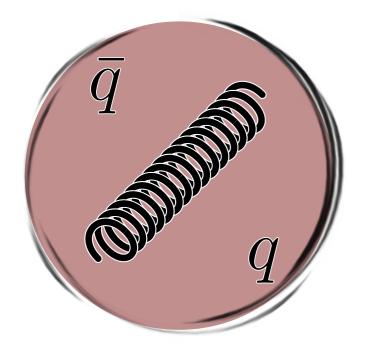








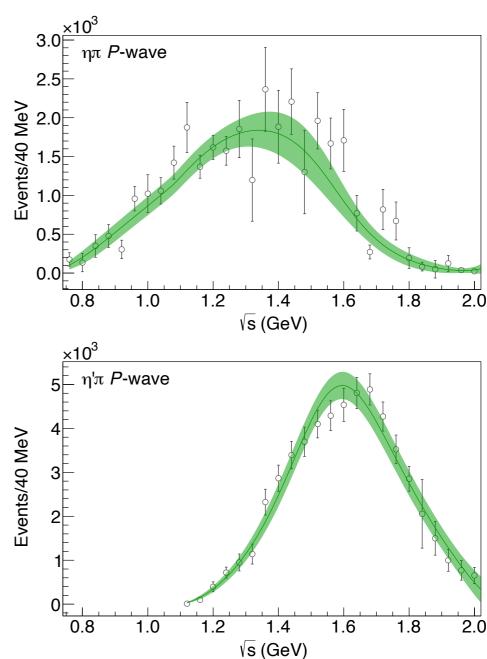
$$\pi_1 \quad J^{PC} = 1^{-+}$$



COMPASS PWA sees peaks at different masses:

are there two resonances or one?

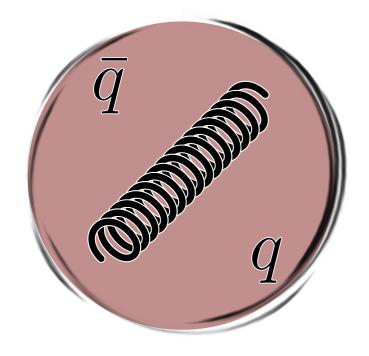
COMPASS arXiv: 1408.4286, PLB 740 (2015) 303-311



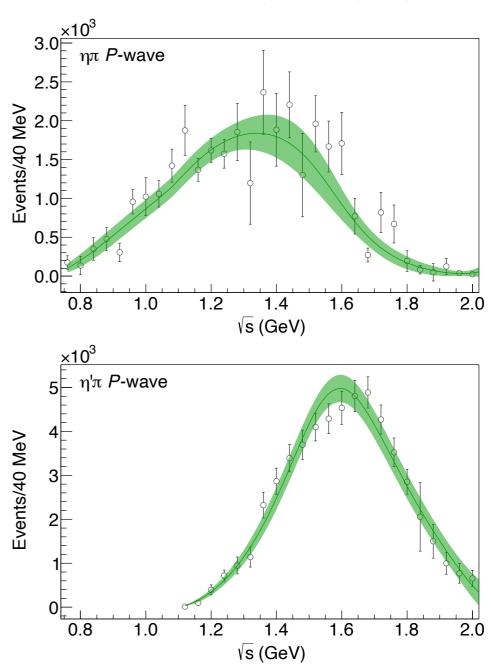
JPAC: COMPASS data can be described by a single resonance pole m~1564 MeV, Γ~500 MeV arXiv:1810.04171 PRL122, 042002 (2019)

similar result: COMPASS+Crystal Barrel data, B. Kopf et al - arXiv: 2008.11566, Γ~400 MeV

$$\pi_1 \quad J^{PC} = 1^{-+}$$



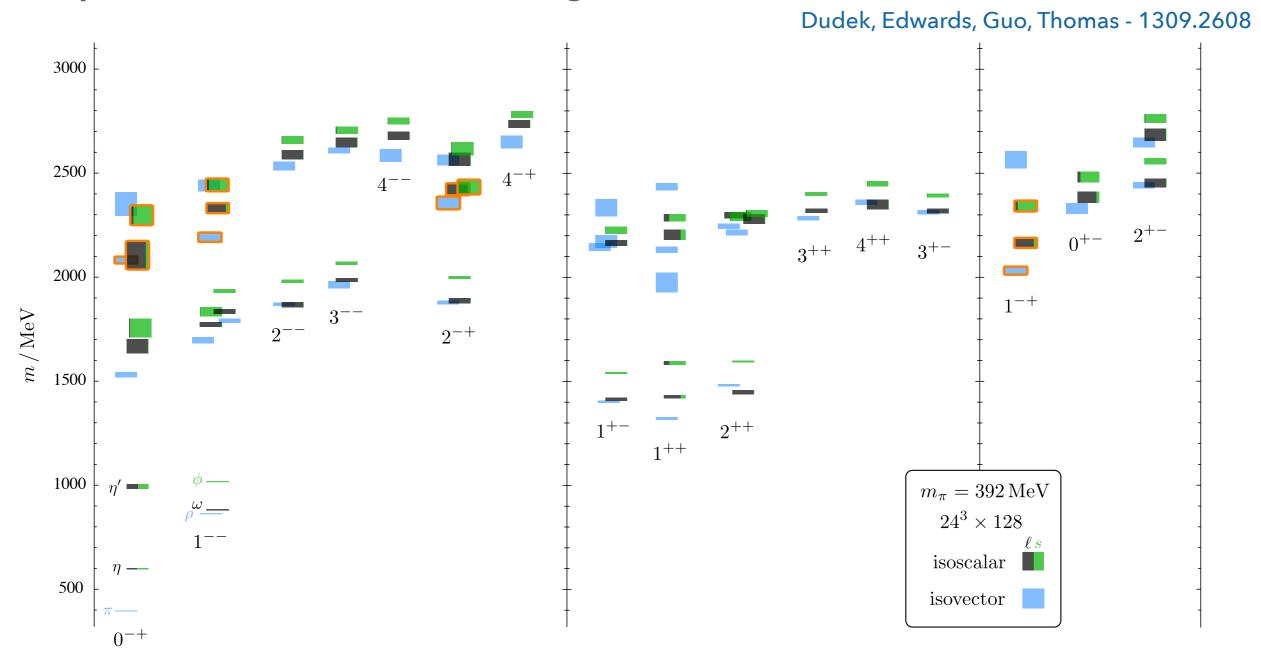
COMPASS arXiv: 1408.4286, PLB 740 (2015) 303-311



GlueX at Jefferson Lab is collecting data

Hadron Spectrum Collaboration: spectra from local q\(\bar{q}\) constructions

- hybrids found at **all** masses from **light** to bottom



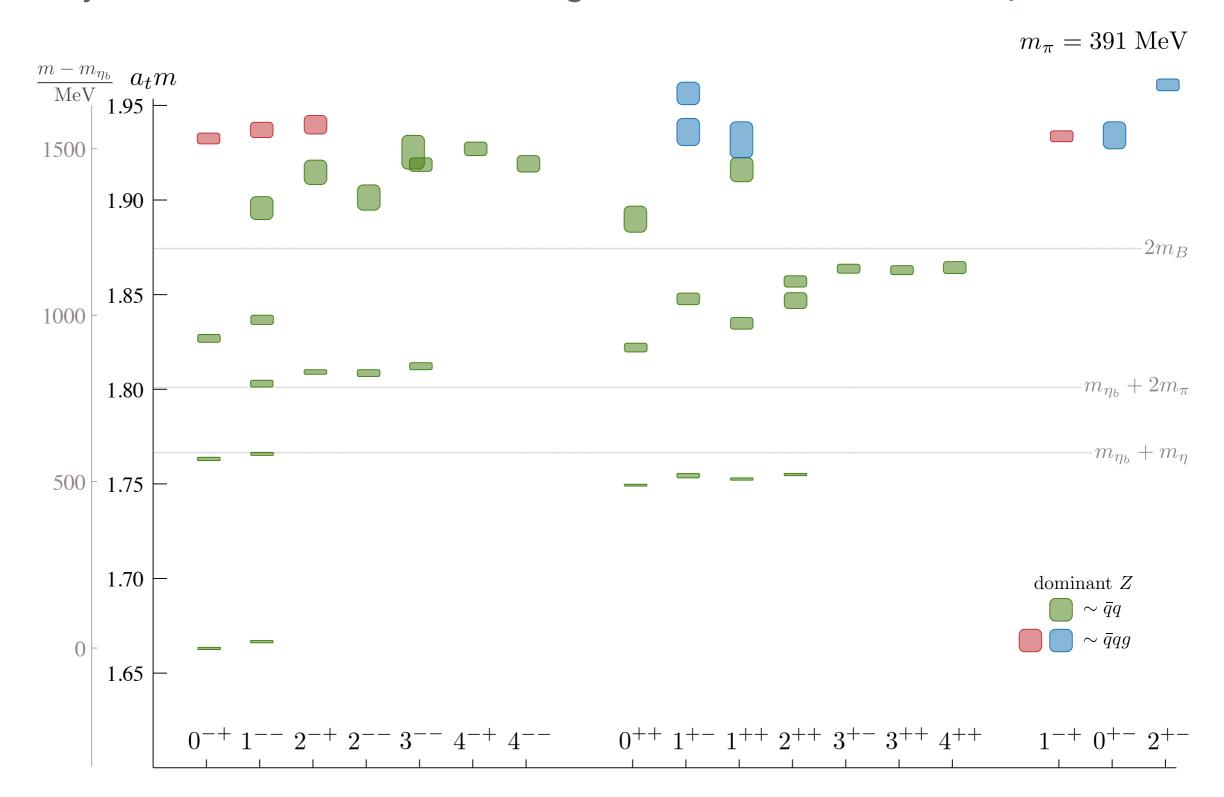
similar states can be identified for half-integer spin

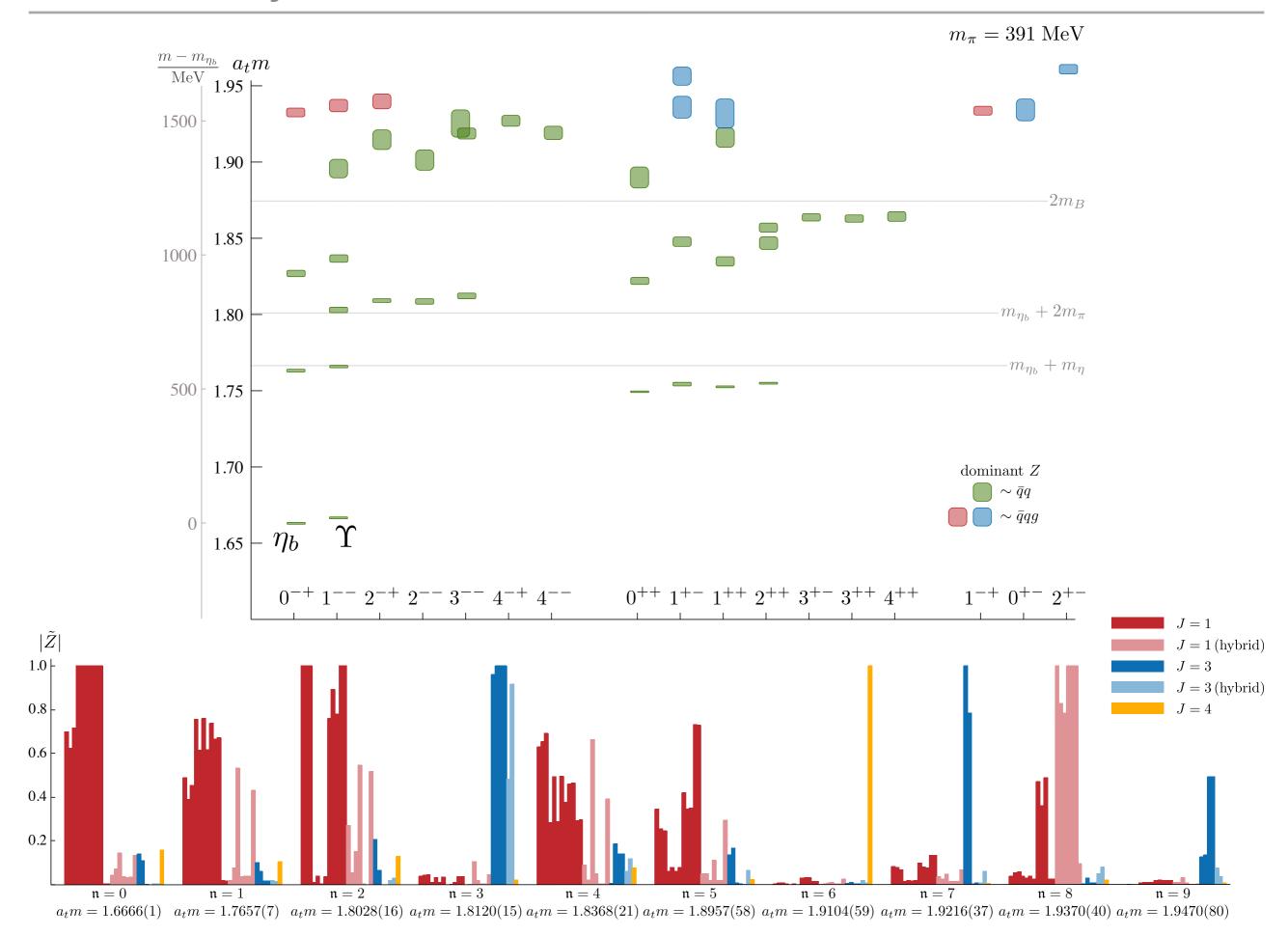
- see https://arxiv.org/abs/1201.2349

Hadron Spectrum Collaboration: spectra from local q\(\bar{q}\) constructions

- hybrids found at **all** masses from light to **bottom**

Sinéad Ryan & DW - 2008.02656



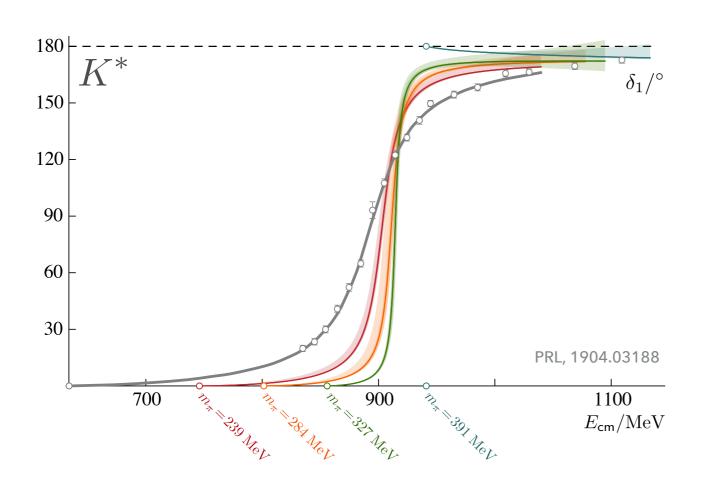


it's very challenging to study the $\pi_1(1564)$ using anything like a physical pion mass

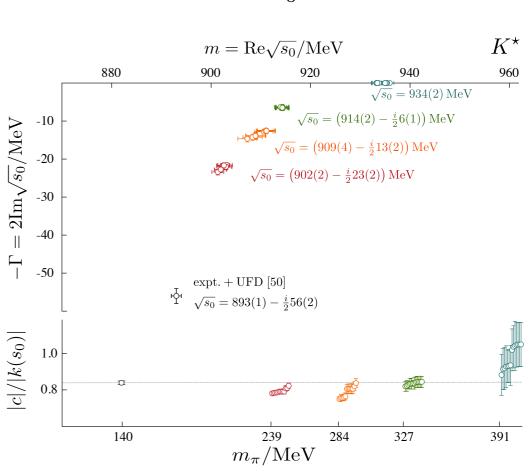
- use heavier-than-physical pions

what does this tell us?

- eg K*(892)



$$t \sim \frac{c^2}{s_0 - s}$$



- pole coupling hardly changes
- similar for rho, b_1 , f_2

$$m_{\pi} = 391 \text{ MeV}$$

$$\pi_1 \to \pi b_1 \to \pi \pi \omega$$

$$\to \pi \pi \phi$$

$$\to \pi \pi \pi \eta$$

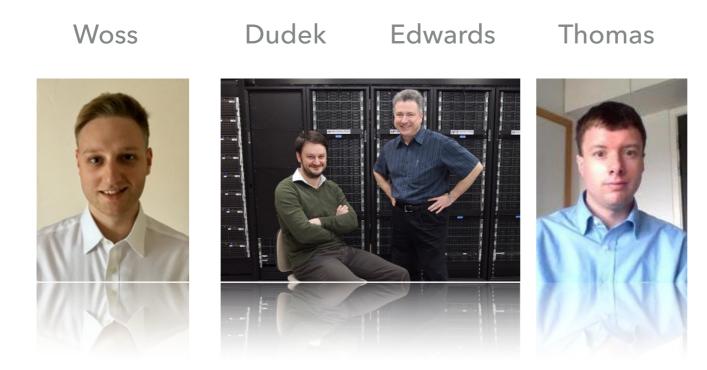
$$\to \pi K \bar{K}$$

a problem for another day

$$m_{\pi} = 688 \text{ MeV}$$
 $m_{u} = m_{d} = m_{s}$ $m_{\pi} = m_{K} = m_{\eta} s$

much simpler fewer channels for a first attempt

simple counting 3*700 MeV = 2100 MeV - 3 body is pushed off to higher energies



JSA thesis prize PANDA thesis prize

arXiv:2009.10034

Decays of an exotic 1⁻⁺ hybrid meson resonance in QCD

Antoni J. Woss, ^{1,*} Jozef J. Dudek, ^{2,3,†} Robert G. Edwards, ^{2,‡} Christopher E. Thomas, ^{1,§} and David J. Wilson ^{1,¶} (for the Hadron Spectrum Collaboration)

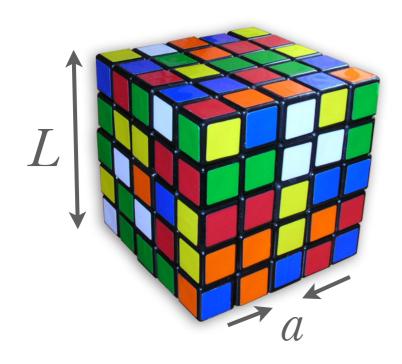
¹DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK

²Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA

³Department of Physics, College of William and Mary, Williamsburg, VA 23187, USA

(Dated: 21 September 2020)

We present the first determination of the hadronic decays of the lightest exotic $J^{PC}=1^{-+}$ resonance in lattice QCD. Working with SU(3) flavor symmetry, where the up, down and strange quark masses approximately match the physical strange-quark mass giving $m_{\pi} \sim 700$ MeV, we compute finite-volume spectra on six lattice volumes which constrain a scattering system featuring eight coupled channels. Analytically continuing the scattering amplitudes into the complex energy plane, we find a pole singularity corresponding to a narrow resonance which shows relatively weak coupling to the open pseudoscalar–pseudoscalar, vector–pseudoscalar and vector–vector decay channels, but large couplings to at least one kinematically-closed axial-vector–pseudoscalar channel. Attempting a simple extrapolation of the couplings to physical light-quark mass suggests a broad π_1 resonance decaying dominantly through the $b_1\pi$ mode with much smaller decays into $f_1\pi$, $\rho\pi$, $\eta'\pi$ and $\eta\pi$. A large total width is potentially in agreement with the experimental $\pi_1(1564)$ candidate state, observed in $\eta\pi$, $\eta'\pi$, which we suggest may be heavily suppressed decay channels.



anisotropic (3.5 finer spacing in time) Wilson-Clover

 L/a_s =12, 14, 16, 18, 20, 24 m_π = 688 MeV

this study - total momentum zero irreps only sufficient energy levels from 6 volumes moving frames have a rich, dense spectrum operators used:

 $\bar{\psi}\Gamma \overleftrightarrow{D}... \overleftrightarrow{D} \; \psi \; \, \text{local qq-like constructions}$

$$(\bar{\psi} \mathbf{\Gamma} \psi)_i = \underbrace{\epsilon_{ijk} (\bar{\psi} \gamma_j \psi) \, B_k}_{1^{--} \otimes 1^{+-} \to 1^{-+}}, \qquad \text{includes hybrid-like constructions}$$

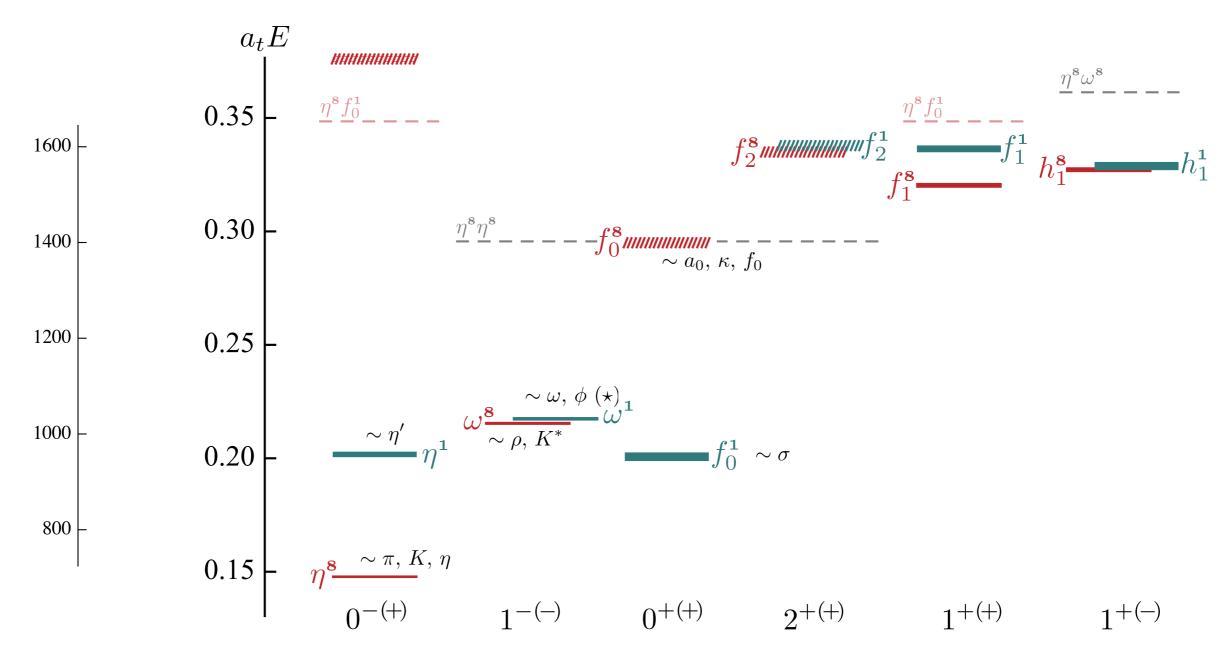
$$B_k \propto \epsilon_{kpq} [\overleftrightarrow{D_p}, \overleftrightarrow{D_q}]$$

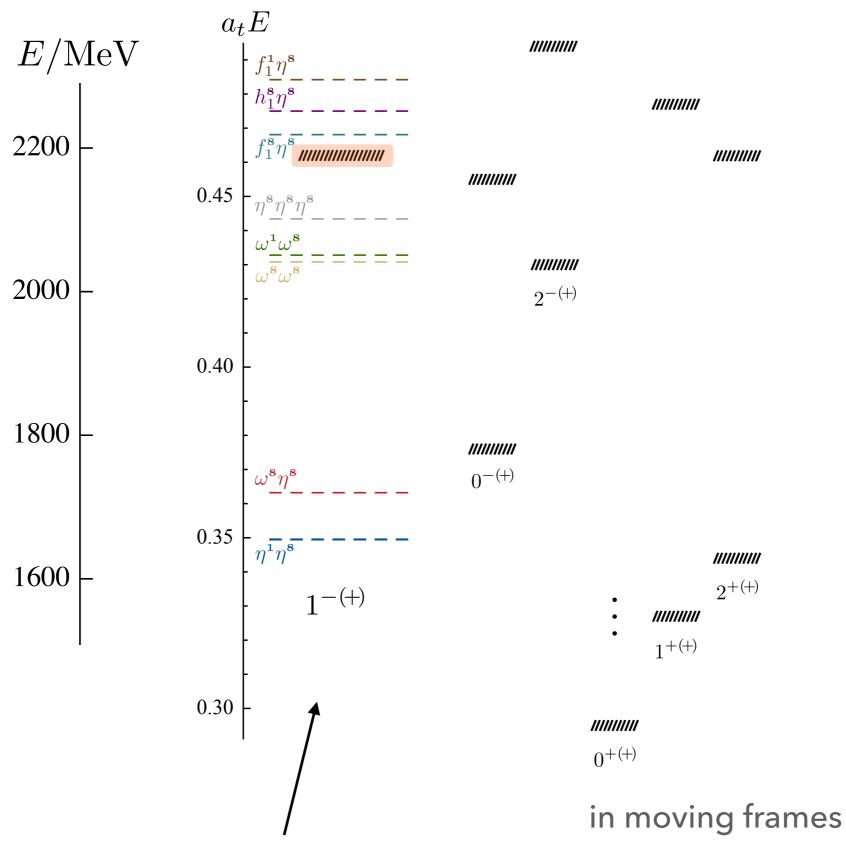
$$\sum_{\vec{p_1}+\vec{p_2}\in\vec{p}} C(\vec{p_1},\vec{p_2};\vec{p}) \Omega_{\pi}(\vec{p_1}) \ \Omega_{\pi}(\vec{p_2}) \qquad \text{two-hadron} \\ \text{constructions}$$

$$\Omega_{\pi}^{\dagger} = \sum_{i} v_{i} \mathcal{O}_{i}^{\dagger} \qquad \begin{array}{c} \text{uses the eigenvector from the} \\ \text{variational method performed in} \\ \text{e.g. pion quantum numbers} \end{array}$$

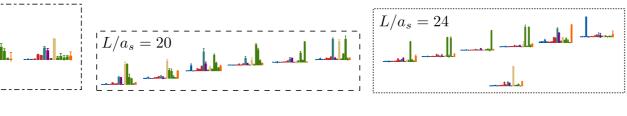
using distillation (Peardon et al 2009) many wick contractions

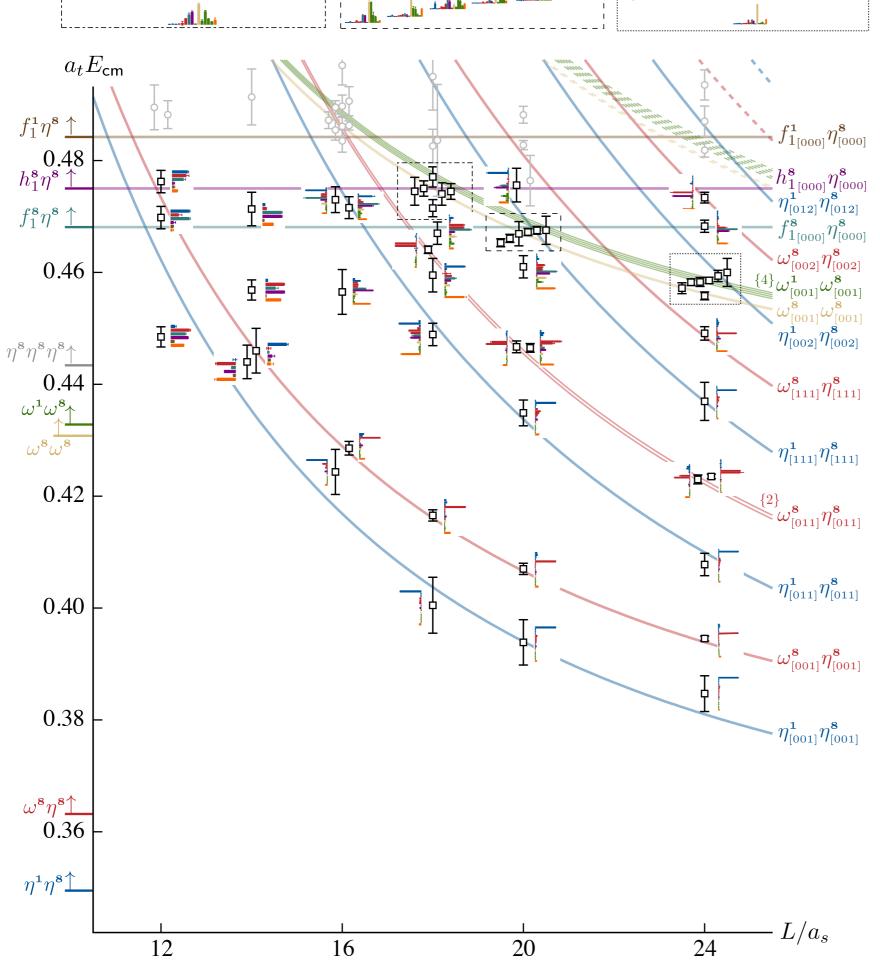
- we compute a large correlation matrix
- then use GEVP to extract energies



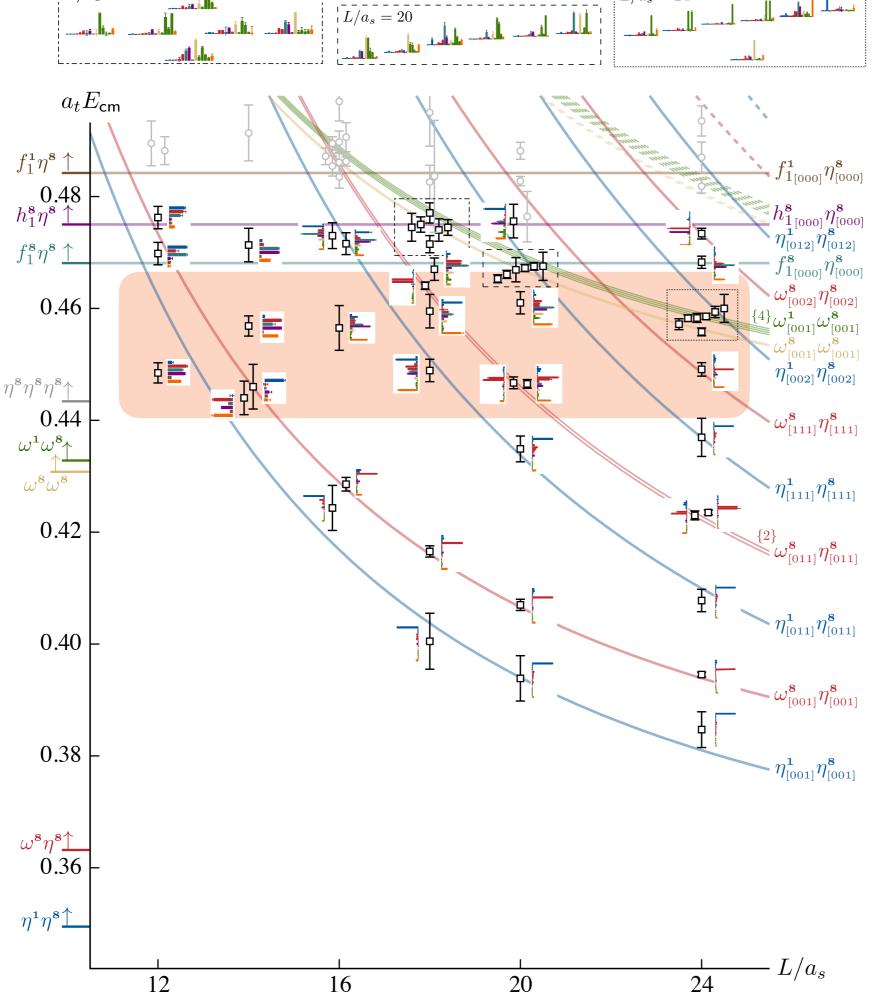


no $\eta^8\eta^8$ because of bose symmetry - many other resonances to consider

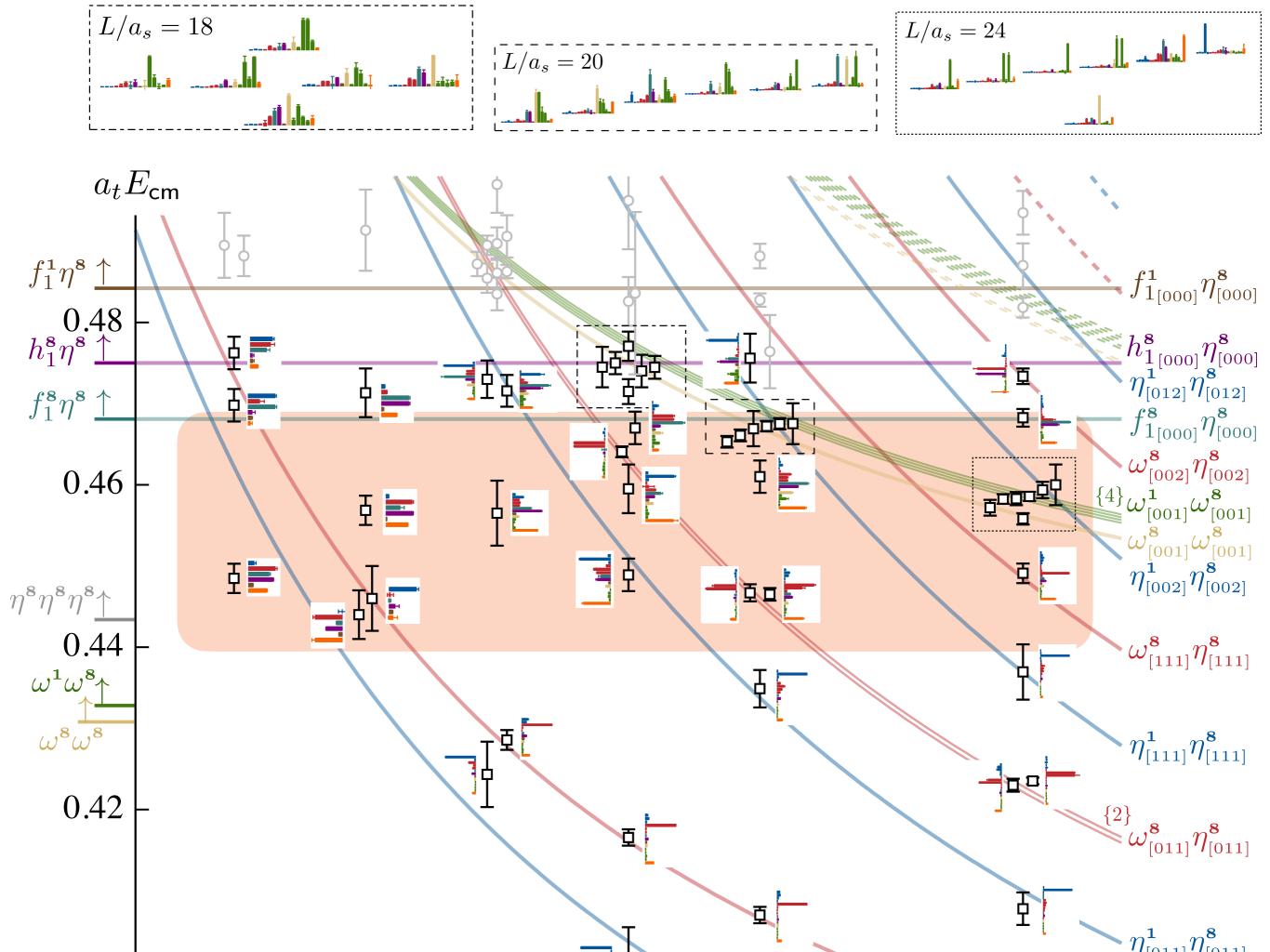


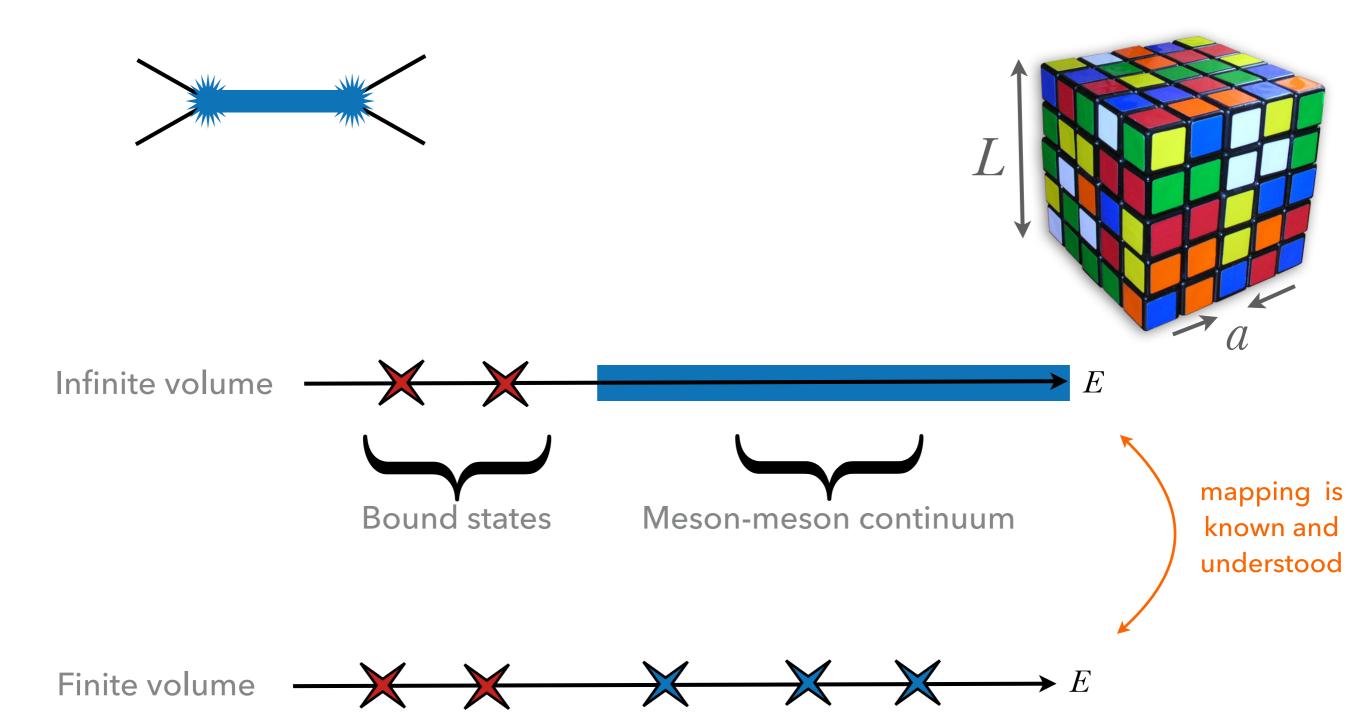


 $L/a_s = 18$



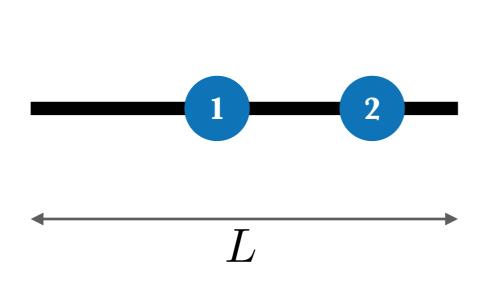
 $L/a_s = 18$

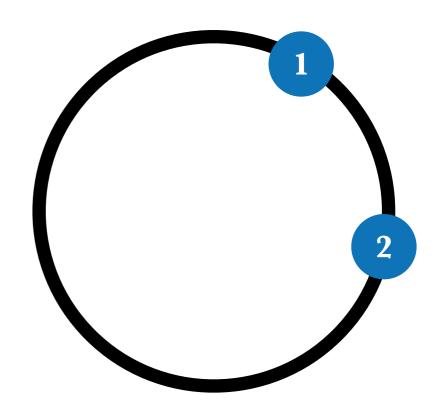




Momentum is quantised - no continuum $\vec{p} = \frac{2\pi}{L} \vec{n}$

1-dimensional QM, periodic BC, two particles, no interactions





momentum is quantised:
$$p_i = \frac{2\pi n_i}{L}$$

two particle energies are discrete:

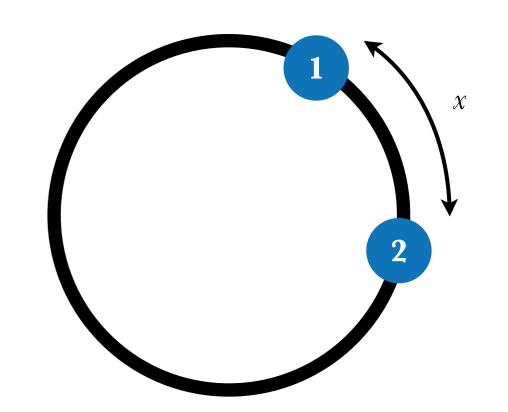
$$E = (p_1^2 + m_1^2)^{\frac{1}{2}} + (p_2^2 + m_2^2)^{\frac{1}{2}}$$

1-dimensional QM, periodic BC, two interacting particles: $V(x_1 - x_2) \neq 0$

$$\psi(0) = \psi(L), \quad \frac{\partial \psi}{\partial x}\Big|_{x=0} = \frac{\partial \psi}{\partial x}\Big|_{x=L}$$

$$\sin\left(\frac{pL}{2} + \delta(p)\right) = 0$$

$$p = \frac{2\pi n}{L} - \frac{2}{L}\delta(p)$$



Phase shifts via Lüscher's method:

$$\tan \delta_1 = \frac{\pi^{3/2} q}{\mathcal{Z}_{00}(1; q^2)}$$

$$\mathcal{Z}_{00}(1;q^2) = \sum_{n \in \mathbb{Z}^3} \frac{1}{|\vec{n}|^2 - q^2}$$

Lüscher 1986, 1991

generalisation to a 3-dimensional strongly-coupled QFT

→ powerful non-trivial mapping from finite vol spectrum to infinite volume phase

Direct extension of the elastic quantisation condition

$$\det \left[\mathbf{1} + i\boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot (\mathbf{1} + i\boldsymbol{\mathcal{M}}(E,L))\right] = 0$$
phase space
infinite volume scattering functions

Many extensions of the original Lüscher formalism to moving frames, unequal masses, etc

Quantisation condition for an arbitrary t-matrix of coupled (pseudo)scalars - all in agreement Hansen & Sharpe 2012, Briceño & Davoudi 2012, Guo et al 2012

Quantisation condition generalised to scattering of particles with non-zero spin for arbitrary scattering amplitudes (the one used here):

Briceño, arXiv:1401.3312, PRD 89 (2014) 7, 074507

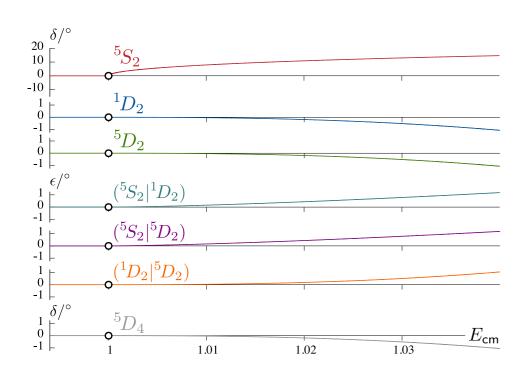
$$\det \left[\mathbf{D}(E_{\mathsf{cm}}) \right] = 0$$

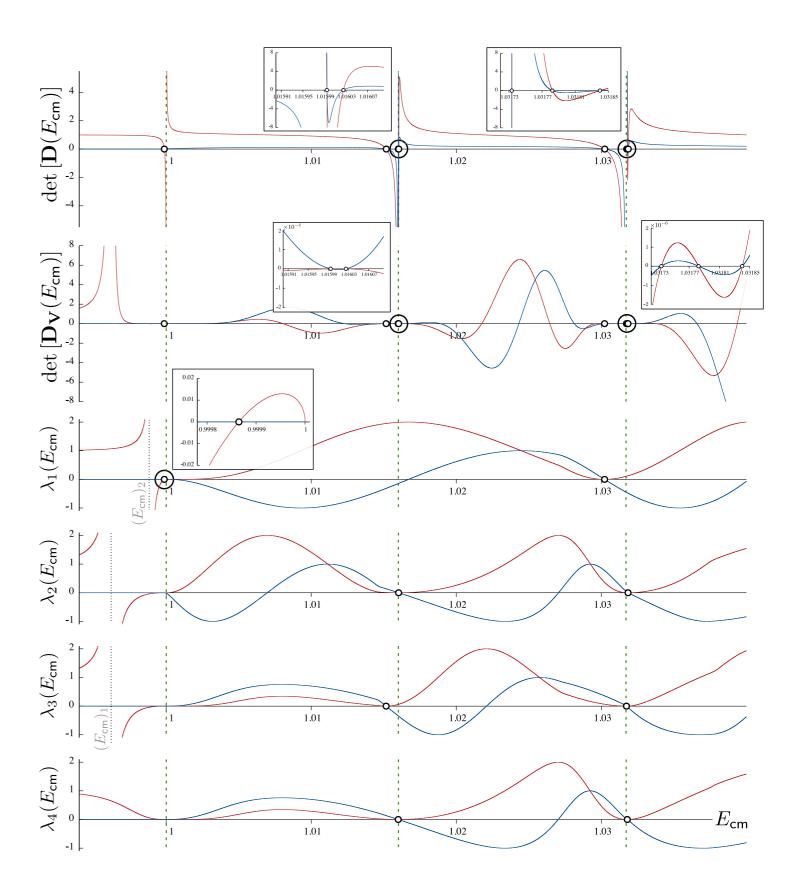
$$\mathbf{D}(E_{\mathsf{cm}}) = \mathbf{1} + i \boldsymbol{\rho}(E_{\mathsf{cm}}) \cdot \boldsymbol{t}(E_{\mathsf{cm}}) \cdot \left(\mathbf{1} + i \boldsymbol{\mathcal{M}}(E_{\mathsf{cm}}, L) \right)$$

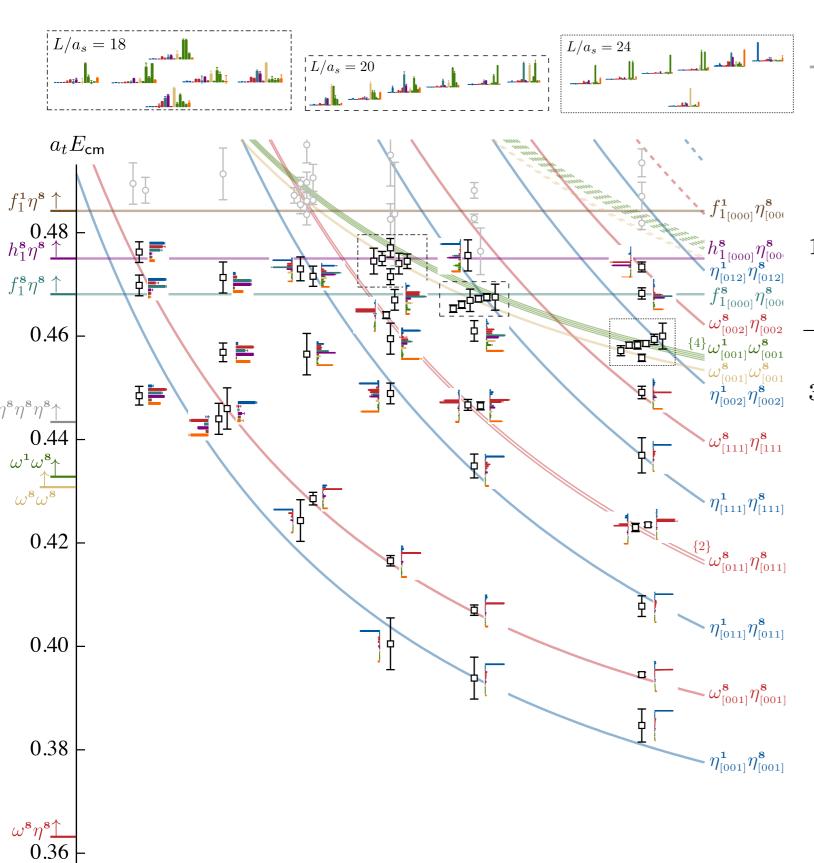
$$egin{aligned} oldsymbol{S}(E_{\mathsf{cm}}) &= \mathbf{1} + 2i\sqrt{oldsymbol{
ho}(E_{\mathsf{cm}})} \cdot oldsymbol{t}(E_{\mathsf{cm}}) \cdot \sqrt{oldsymbol{
ho}(E_{\mathsf{cm}})} \ oldsymbol{D}_{oldsymbol{V}}(E_{\mathsf{cm}}) &= \mathbf{1} + oldsymbol{S} \cdot oldsymbol{V} \ oldsymbol{V} &= (1 + ioldsymbol{\mathcal{M}})(1 - ioldsymbol{\mathcal{M}})^{-1} \ & \mathfrak{n} \end{aligned}$$

$$\det\left[\boldsymbol{D}_{\boldsymbol{V}}(E_{\mathsf{cm}})\right] = \prod_{p=1}^{\mathfrak{n}} \lambda_p(E_{\mathsf{cm}})$$

$$oldsymbol{D_V}(E_{\mathsf{cm}})\,oldsymbol{v}^{(p)}(E_{\mathsf{cm}}) = \lambda_p(E_{\mathsf{cm}})\,oldsymbol{v}^{(p)}(E_{\mathsf{cm}})$$







20

 $\eta^{1}\eta^{8}$

12

16

partial waves

 L/a_s

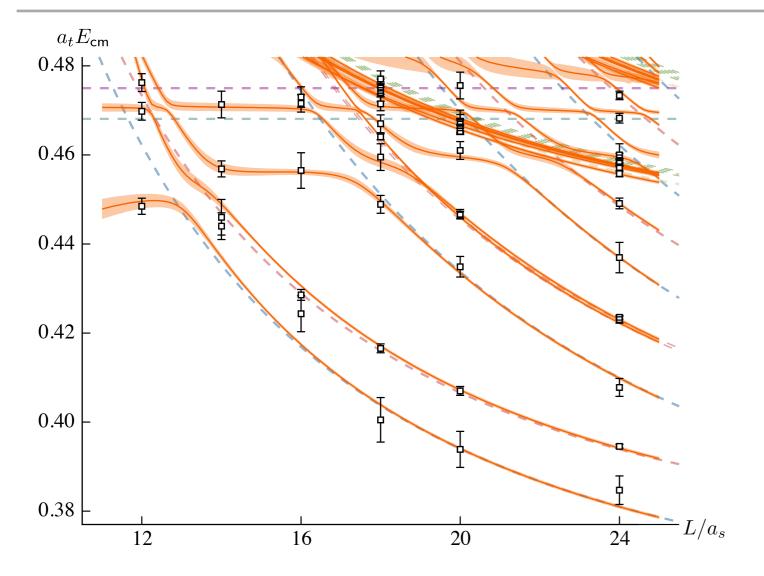
24

$$1^{-(+)} \begin{vmatrix} \eta^{1}\eta^{8} \{^{1}P_{1}\} \\ \omega^{8}\eta^{8} \{^{3}P_{1}\} \\ \omega^{8}\omega^{8} \{^{3}P_{1}\}, \ \omega^{1}\omega^{8} \{^{1}P_{1}, {}^{3}P_{1}, {}^{5}P_{1}\} \\ f_{1}^{8}\eta^{8} \{^{3}S_{1}\}, \ h_{1}^{8}\eta^{8} \{^{3}S_{1}\} \\ \eta^{1}\eta^{8} \{^{1}F_{3}\} \\ 3^{-(+)} \begin{vmatrix} \omega^{8}\eta^{8} \{^{3}F_{3}\} \\ \omega^{1}\omega^{8} \{^{5}P_{3}\} \end{vmatrix}$$
 K-matrix parameters

K-matrix parametrisation

$$t^{-1} = K^{-1} + I$$

- pole coupled in 1⁻⁺
- various constants



$$1^{-(+)} \begin{vmatrix} \eta^{1}\eta^{8}\{^{1}P_{1}\} \\ \omega^{8}\eta^{8}\{^{3}P_{1}\} \\ \omega^{8}\omega^{8}\{^{3}P_{1}\}, \ \omega^{1}\omega^{8}\{^{1}P_{1}, {}^{3}P_{1}, {}^{5}P_{1}\} \\ f_{1}^{8}\eta^{8}\{^{3}S_{1}\}, \ h_{1}^{8}\eta^{8}\{^{3}S_{1}\} \\ \eta^{1}\eta^{8}\{^{1}F_{3}\} \\ 3^{-(+)} \end{vmatrix} \omega^{8}\eta^{8}\{^{3}F_{3}\}$$

$$\omega^{1}\omega^{8}\{^{5}P_{3}\} \qquad \text{K-matrix parametrisation}$$

$$t^{-1} = K^{-1} + I$$

- pole coupled in 1⁻⁺

- various constants

$$\boldsymbol{K}_{VV}(s) = \begin{bmatrix} \gamma_{\omega} \mathbf{s}_{\omega} \mathbf{s}_{\{^{3}P_{1}\}} & 0 & 0 & 0 \\ 0 & \gamma_{\omega^{1} \omega} \mathbf{s}_{\{^{1}P_{1}\}} & 0 & 0 \\ 0 & 0 & \gamma_{\omega^{1} \omega} \mathbf{s}_{\{^{3}P_{1}\}} & 0 \\ 0 & 0 & 0 & \gamma_{\omega^{1} \omega} \mathbf{s}_{\{^{5}P_{1}\}} \end{bmatrix}$$

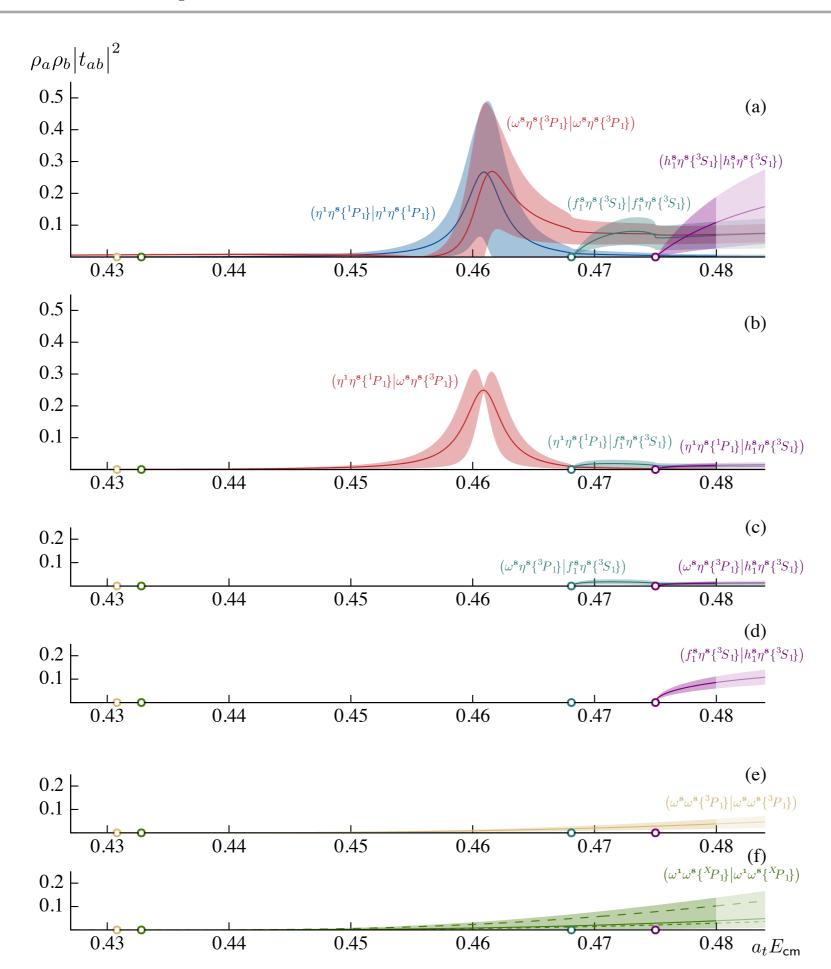
vector-vector appears decoupled

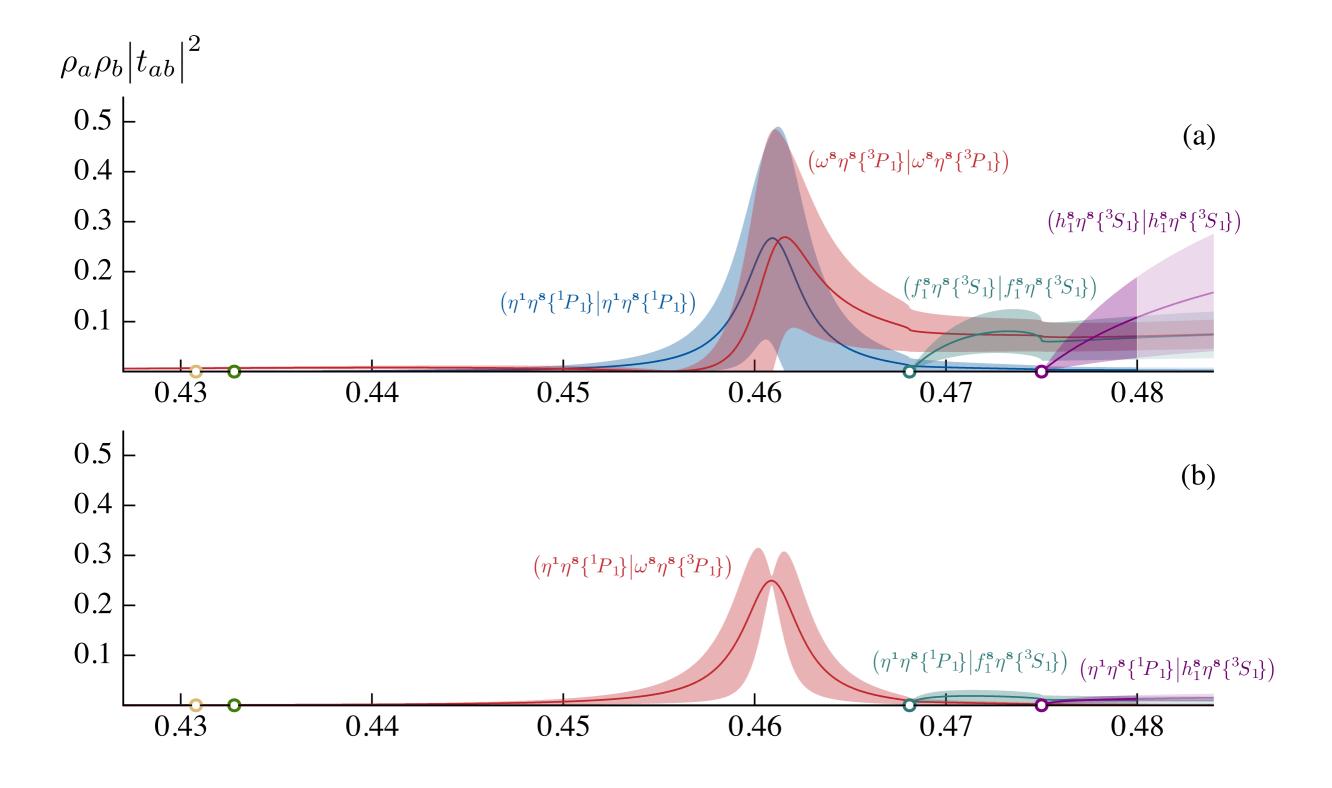
these channels have larger mixing

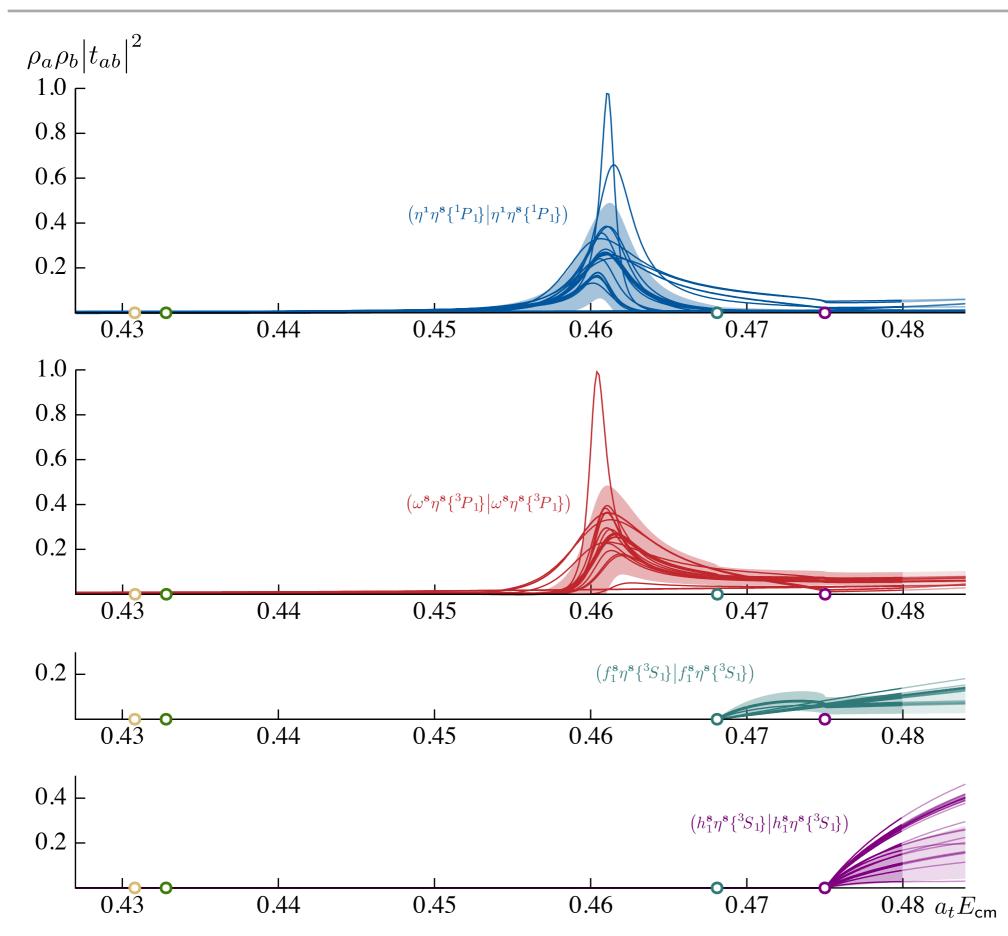
+ simple constants in 3⁻⁺

$$\boldsymbol{g} = \left(g_{\eta^{1}\eta^{8}\{^{1}P_{1}\}}, g_{\omega^{8}\eta^{8}\{^{3}P_{1}\}}, g_{f_{1}^{8}\eta^{8}\{^{3}S_{1}\}}, g_{h_{1}^{8}\eta^{8}\{^{3}S_{1}\}}\right)$$

26/43





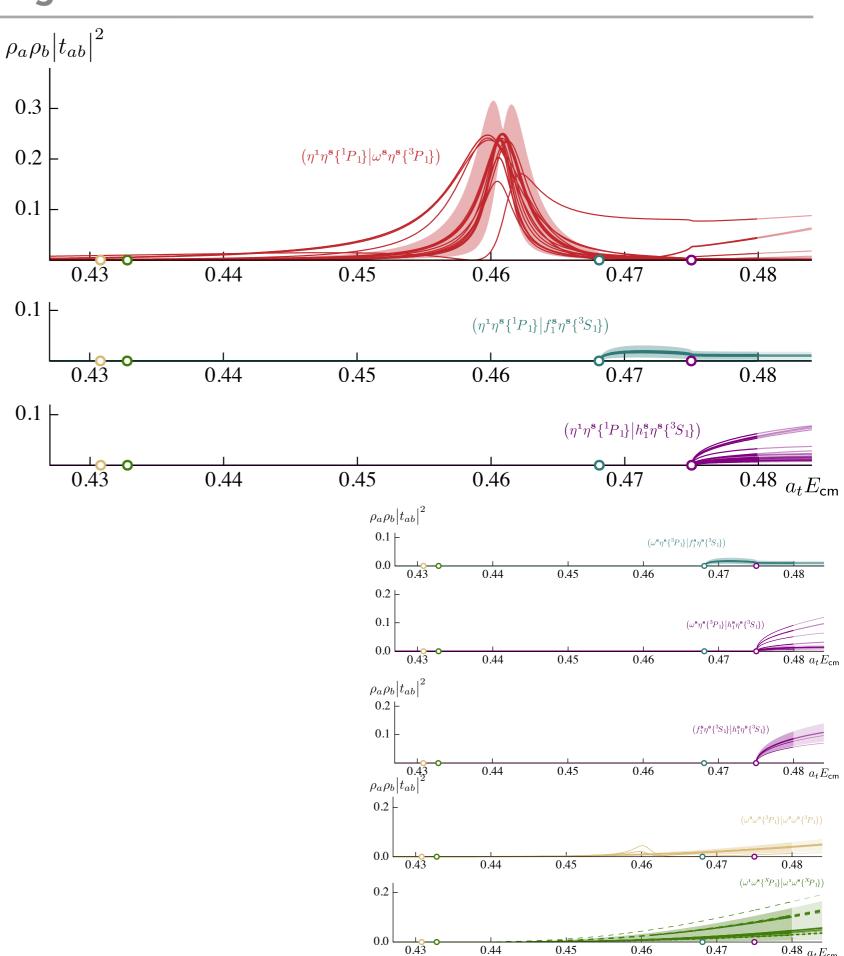


$$\eta^{1}\eta^{8}\{^{1}P_{1}\} \to \omega^{8}\eta^{8}\{^{3}P_{1}\}$$

perhaps more familiar:

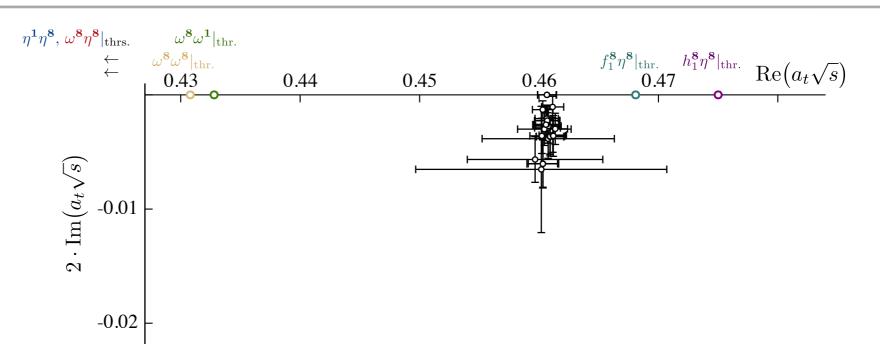
$$\eta'\pi \to \rho\pi$$

$$\to K^*\bar{K}$$



in the region of a pole

$$t \sim \frac{c^2}{s_0 - s}$$



narrow resonance

$$a_t \sqrt{s} = 0.4606(26) \pm \frac{i}{2}0.0039(39)$$

 $\sqrt{s} = \left(2144(12) \pm \frac{i}{2}18(18)\right) \text{ MeV}$

small imaginary part, consistent with zero in some parameterisations

many sheets (2ⁿ)

pole is located on "proximal" sheet

open channels: $\text{Im}k_i < 0$ closed channels: $\text{Im}k_i > 0$

in the region of a pole

$$t \sim \frac{c^2}{s_0 - s}$$

narrow resonance

$$a_t \sqrt{s} = 0.4606(26) \pm \frac{i}{2}0.0039(39)$$

 $\sqrt{s} = \left(2144(12) \pm \frac{i}{2}18(18)\right) \text{ MeV}$

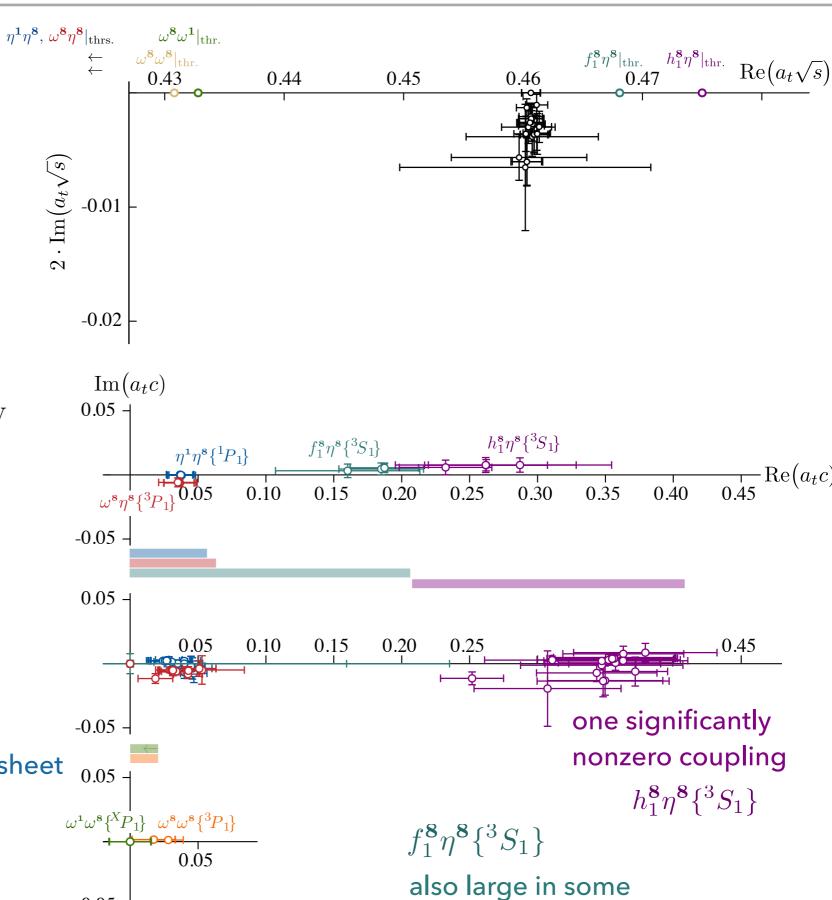
small imaginary part, consistent with zero in some parameterisations

many sheets (2ⁿ)

pole is located on "proximal" sheet open channels: $Im k_i < 0$

-0.05

closed channels: $Im k_i > 0$



parameterisations

Flavour decomposition

- break apart SU(3) multiplets
- use CGs e.g. from de Swart (Rev. Mod. Phys. 35, 916 (1963))
- mixing angles needed for singlets taken from PDG

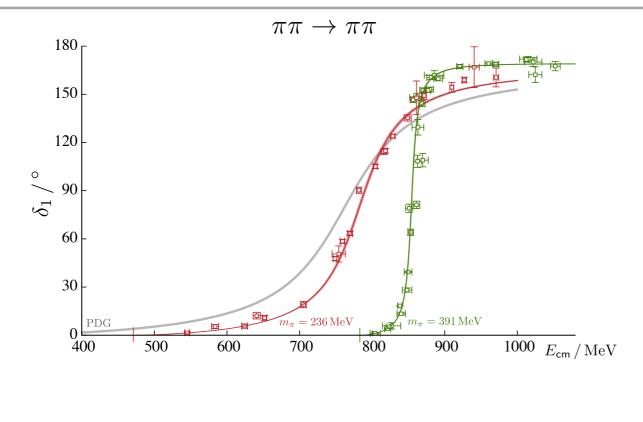
very heavy quarks

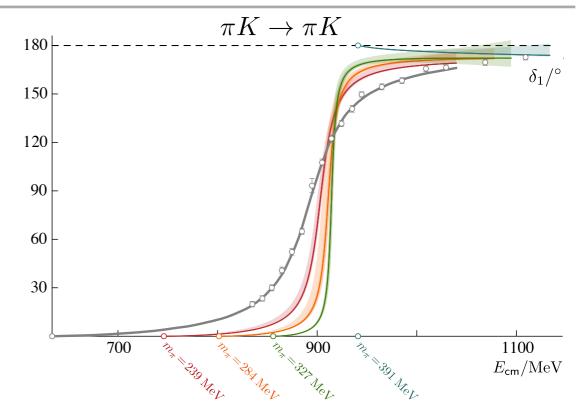
- crudely extrapolate to physical pions

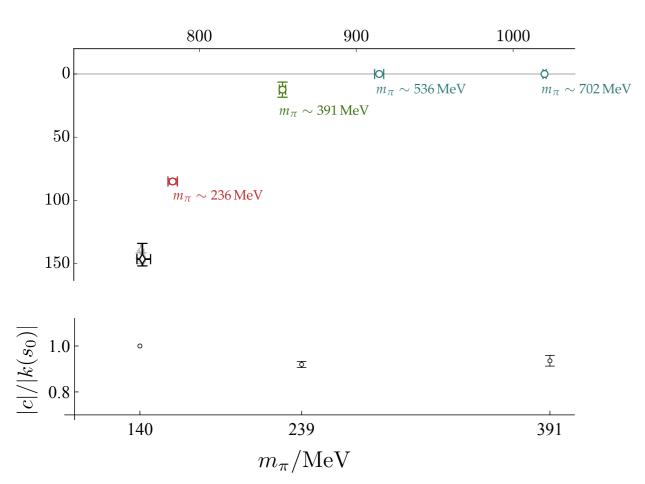
scale couplings:

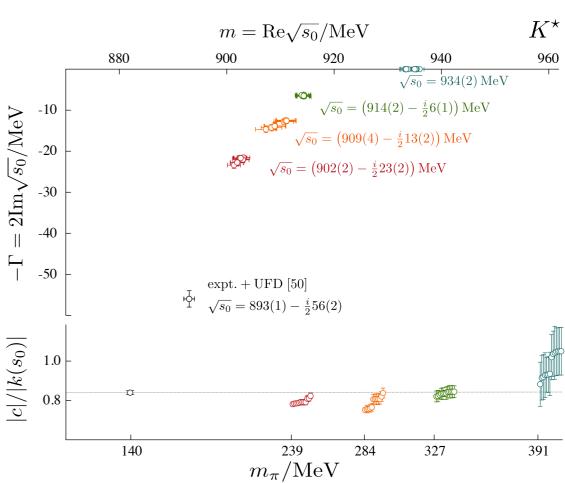
$$\left|c
ight|^{
m phys} = \left|rac{k^{
m phys}(m_R^{
m phys})}{k(m_R)}
ight|^\ell \left|c
ight|$$

choose m_R =1563 MeV



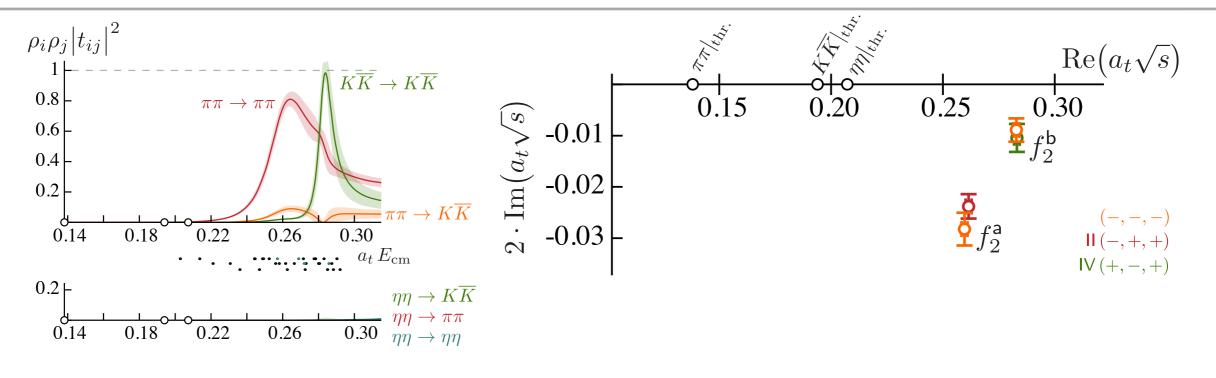


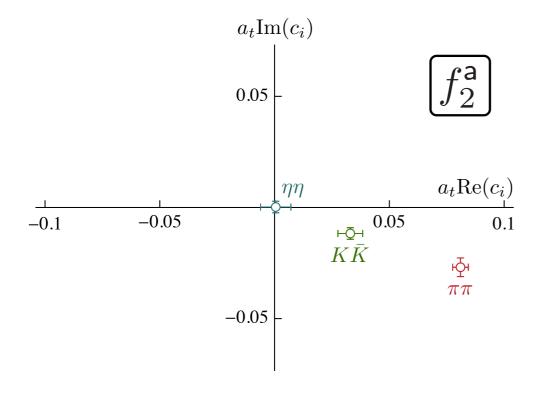


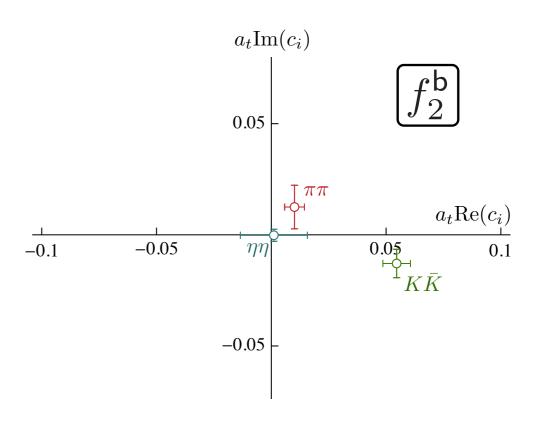


see also Arkaitz Rodas slides @ Lattice 2022

weak dependence on m_π even when $K^{\boldsymbol *}$ appears as a bound state





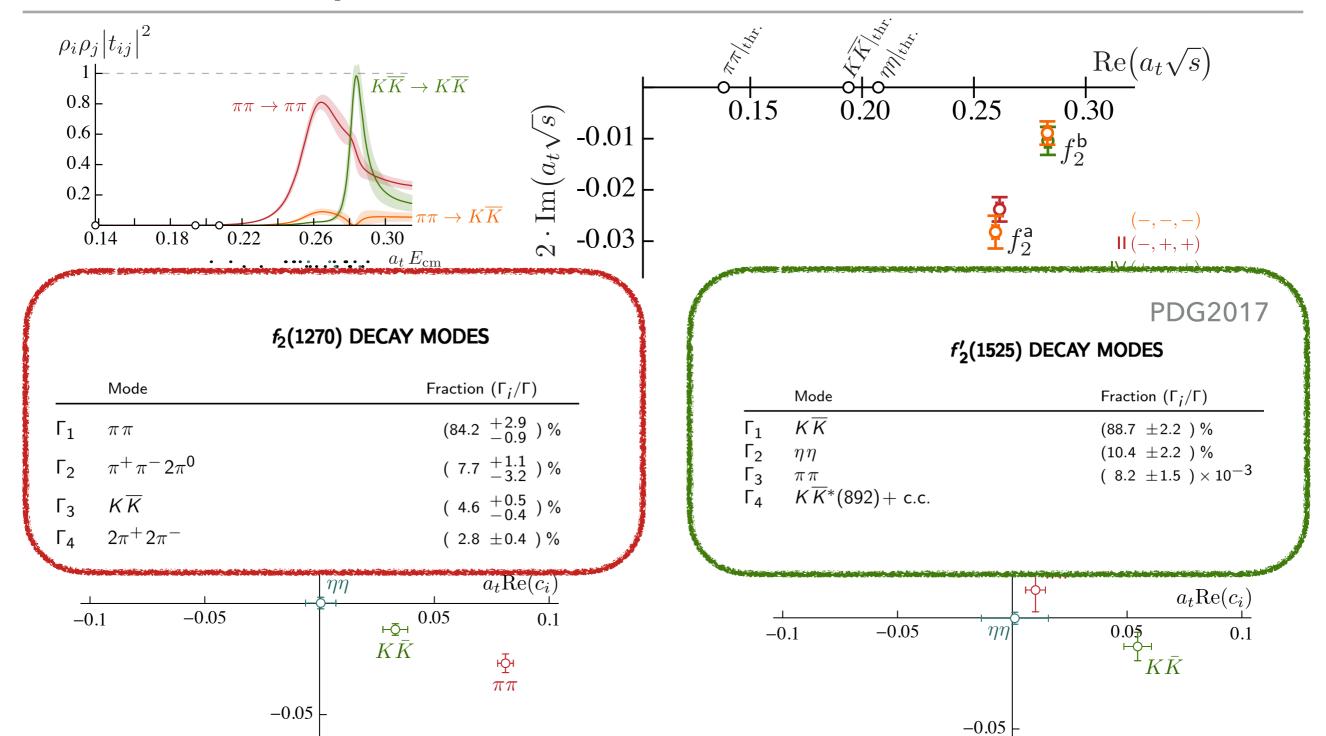


$$f_2^{\mathsf{a}}: \sqrt{s_0} = 1470(15) - \frac{i}{2} 160(18) \text{ MeV}$$

 $\text{Br}(f_2^{\mathsf{a}} \to \pi \pi) \sim 85\%, \quad \text{Br}(f_2^{\mathsf{a}} \to K\overline{K}) \sim 12\%$

$$f_2^{\mathsf{b}}: \sqrt{s_0} = 1602(10) - \frac{i}{2} 54(14) \text{ MeV}$$

 $\text{Br}(f_2^{\mathsf{b}} \to \pi \pi) \sim 8\%, \quad \text{Br}(f_2^{\mathsf{b}} \to K\overline{K}) \sim 92\%$



$$f_2^{\mathsf{a}}: \sqrt{s_0} = 1470(15) - \frac{i}{2} 160(18) \text{ MeV}$$

 $\text{Br}(f_2^{\mathsf{a}} \to \pi \pi) \sim 85\%, \quad \text{Br}(f_2^{\mathsf{a}} \to K\overline{K}) \sim 12\%$

$$f_2^{\mathsf{b}}: \sqrt{s_0} = 1602(10) - \frac{i}{2} 54(14) \text{ MeV}$$

 $\text{Br}(f_2^{\mathsf{b}} \to \pi \pi) \sim 8\%, \quad \text{Br}(f_2^{\mathsf{b}} \to K\overline{K}) \sim 92\%$

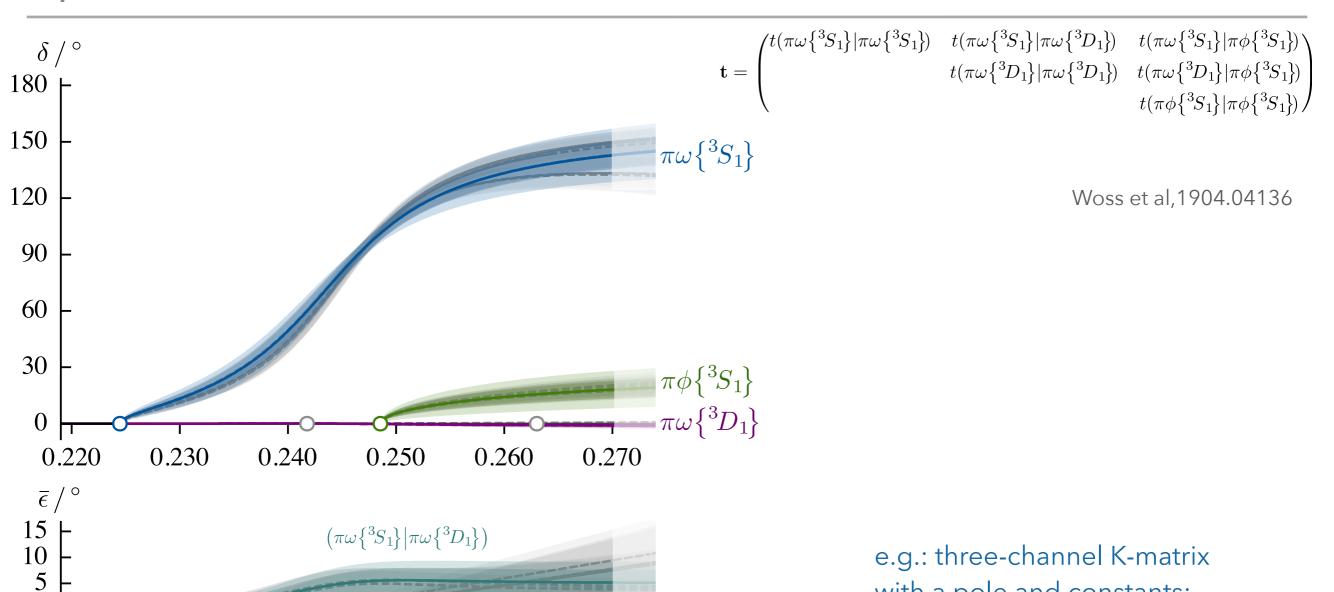
0.230

0.240

0.220

0.250

0.260



with a pole and constants:

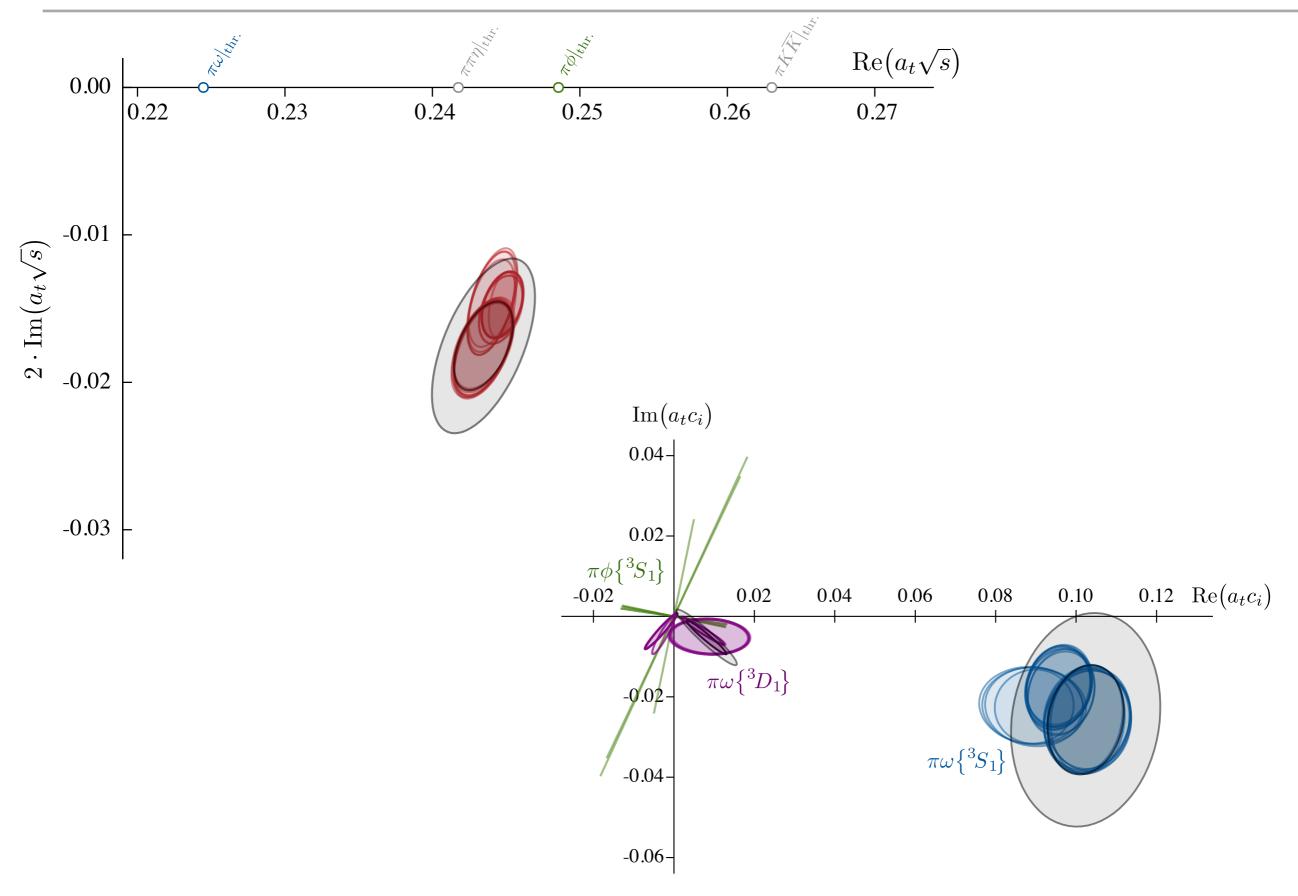
$$[t^{-1}]_{\ell Ja,\,\ell' Jb} = (2k^{(a)})^{-\ell} [K^{-1}]_{\ell Ja,\,\ell' Jb} (2k^{(a)})^{-\ell} + \delta_{\ell'\ell} I_{ab}$$

$$24^{3} \qquad K_{\ell Ja,\,\ell' Jb} = \frac{g_{\ell Ja} \ g_{\ell' Jb}}{m^{2} - s} + \gamma_{\ell Ja,\,\ell' Jb}$$

$$20^{3} \qquad m = (0.2465 \pm 0.0007 \pm 0.0001) \cdot a_{t}^{-1} \qquad \begin{bmatrix} 1 & -0.05 & 0.05 & -0.01 & -0.23 \\ 0.05 & g_{\pi\omega} \{^{s}_{21}\}_{1} = (0.106 \pm 0.007 \pm 0.007) \cdot a_{t}^{-1} \\ g_{\pi\omega} \{^{s}_{21}\}_{1} = (1.08 \pm 0.47 \pm 0.28) \cdot a_{t} \\ \gamma_{\pi\omega} \{^{s}_{21}\}_{1}, \pi\omega \{^{s}_{21}\}_{1} = 0.90 \pm 0.24 \pm 0.27 \\ \gamma_{\pi\phi} \{^{s}_{21}\}_{1}, \pi\phi \{^{s}_{21}\}_{1} = 0.90 \pm 0.24 \pm 0.27 \\ \chi^{2}/N_{\text{dof}} = \frac{36.8}{36.-5} = 1.19.$$

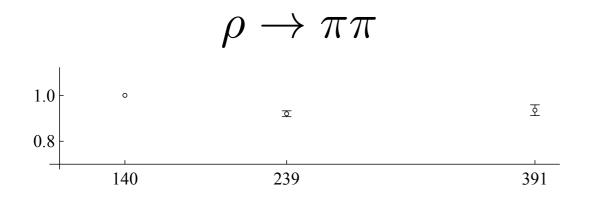
 $-a_t E_{\mathsf{cm}}$

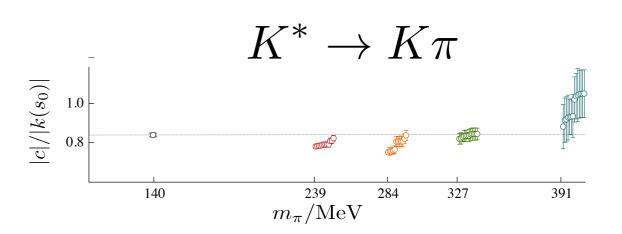
0.270



	scaled	PDG
$ c(f_2 \to \pi\pi) $	488(28)	453^{+9}_{-4}
$ c(f_2 \to K\overline{K}) $	139(27)	132(7)
$ c(f_2' \to \pi\pi) $	103(32)	33(4)
$ c(f_2' \to K\overline{K}) $	321(50)	389(12)
(1		FF 0 (1 F)
$ c(b_1 \to \pi\omega) $	564(114)	556(17)

$$\left|c
ight|^{
m phys} = \left|rac{k^{
m phys}(m_R^{
m phys})}{k(m_R)}
ight|^{\ell} \left|c
ight|$$





evidence for weakly varying couplings as a function of m_{π} in several cases

- seems reasonable to scale couplings to estimate properties of the π_{1}

consider I=1, I_z =+1 component π_1^+

begin with experimentally observed decay modes: $\eta \pi$, $\eta' \pi$

just one component:

$$\eta^1 \eta^8$$
 $1 \times 8 \rightarrow 8$

$$\pi_1 \to \pi \eta_1$$

rotate η_1 to physical states:

$$\begin{pmatrix} \eta_8 \\ \eta_1 \end{pmatrix} = \begin{pmatrix} \cos \theta_P & \sin \theta_P \\ -\sin \theta_P & \cos \theta_P \end{pmatrix} \begin{pmatrix} \eta \\ \eta' \end{pmatrix} \qquad \theta_P \sim -10^{\circ}$$

couplings are then:

$$|c(\pi_1 \to \eta \pi)| = |c_{\eta^1 \eta^8} \sin \theta_P|$$
$$|c(\pi_1 \to \eta' \pi)| = |c_{\eta^1 \eta^8} \cos \theta_P|$$

decay of $\eta' \pi > \eta \pi$

coupling at $m_{\pi} = 688 \text{ MeV}$ scale to lighter masses

Flavour decomposition

- break apart SU(3) multiplets
- use CGs from de Swart (Rev. Mod. Phys. 35, 916 (1963))
- mixing angles needed for singlets taken from PDG

$$\begin{aligned}
\pi_1^{\mathbf{8}} &\to \omega^{\mathbf{8}} \eta^{\mathbf{8}} \\
&\text{eg}: \pi_1^+ \to \frac{1}{\sqrt{3}} \left(\pi^+ \rho^0 - \pi^0 \rho^+ \right) + \frac{1}{\sqrt{6}} \left(K^+ \bar{K}^{*0} - \bar{K}^0 K^{*+} \right) \\
& \left| c(\pi_1 \to \rho \pi) \right| = \sqrt{\frac{2}{3}} \left| c_{\omega^{\mathbf{8}} \eta^{\mathbf{8}}} \right| \\
& \left| c(\pi_1 \to K^* \overline{K}) \right| = \sqrt{\frac{1}{3}} \left| c_{\omega^{\mathbf{8}} \eta^{\mathbf{8}}} \right|
\end{aligned}$$

largest decay modes:

$$f_1^8 \eta^8 \{^3 S_1\}$$
$$h_1^8 \eta^8 \{^3 S_1\}$$

$$f_1^{f 8}\eta^{f 8}\{^3S_1\}$$
 ${f 8}\otimes{f 8}\to{f 1}\oplus{f 8_1}\oplus{f 8_2}\oplus{f 10}\oplus{f \overline{10}}\oplus{f 27}$
 $h_1^{f 8}\eta^{f 8}\{^3S_1\}$

$$-\sqrt{\frac{3}{10}} \left(K_{1A}^{+} \overline{K}^{0} + \overline{K}_{1A}^{0} K^{+} \right) + \frac{1}{\sqrt{5}} \left(a_{1}^{+} \eta_{8} + (f_{1})_{8} \pi^{+} \right)$$

$$\left| c(\pi_{1} \to a_{1} \eta) \right| = \frac{1}{\sqrt{5}} \left| c_{f_{1}^{8} \eta^{8}} \cos \theta_{P} \right|$$

$$\left| c(\pi_{1} \to a_{1} \eta') \right| = \frac{1}{\sqrt{5}} \left| c_{f_{1}^{8} \eta^{8}} \sin \theta_{P} \right|$$

$$\left| c(\pi_{1} \to f_{1}(1285)\pi) \right| = \frac{1}{\sqrt{5}} \left| c_{f_{1}^{8} \eta^{8}} \cos \theta_{A} \right|$$

$$\left| c(\pi_{1} \to f_{1}(1420)\pi) \right| = \frac{1}{\sqrt{5}} \left| c_{f_{1}^{8} \eta^{8}} \sin \theta_{A} \right|.$$

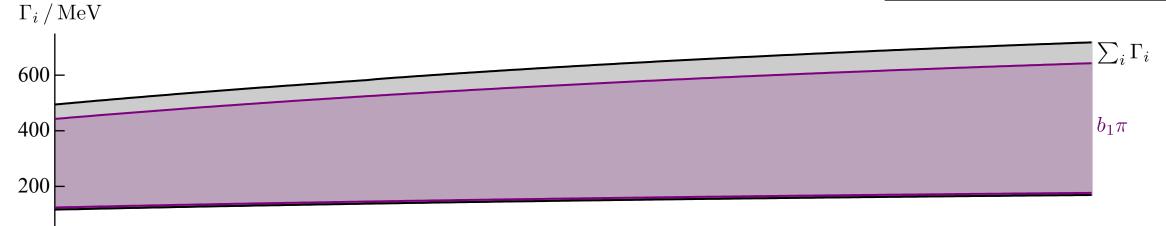
$$\frac{1}{\sqrt{6}} \left(K_{1B}^{+} \overline{K}^{0} - \overline{K}_{1B}^{0} K^{+} \right) + \frac{1}{\sqrt{3}} \left(b_{1}^{+} \pi^{0} - b_{1}^{0} \pi^{+} \right)$$
$$\left| c(\pi_{1} \to b_{1} \pi) \right| = \sqrt{\frac{2}{3}} \left| c_{h_{1}^{8} \eta^{8}} \right|$$

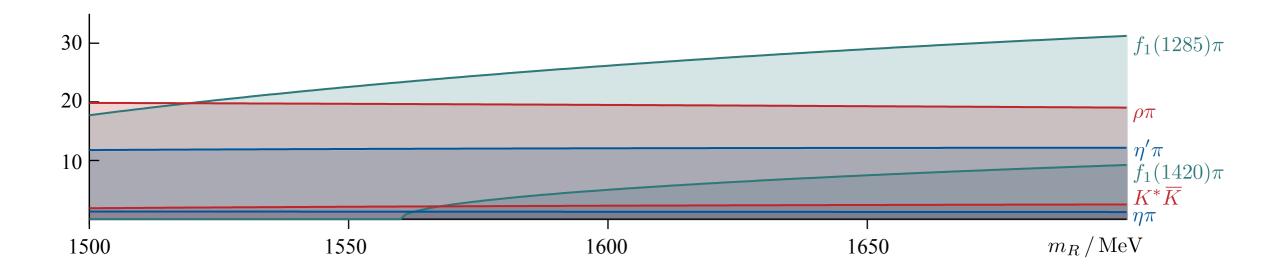
 $kaon-K_1$ channels kinematically closed for $m \ge 1500 \; MeV$

$$\left|c\right|^{
m phys} = \left|rac{k^{
m phys}(m_R^{
m phys})}{k(m_R)}
ight|^{\ell} \left|c\right|$$

$$\Gamma(R o i) = rac{\left|c_i^{
m phys}
ight|^2}{m_R^{
m phys}} \cdot
ho_i(m_R^{
m phys})$$
 [PDG]

	thr./MeV	$\left \left c_i^{ m phys} \right / { m MeV} ight $	$\Gamma_i/{ m MeV}$
$\eta\pi$	688	$0 \rightarrow 43$	$0 \rightarrow 1$
$ ho\pi$	910	$0 \rightarrow 203$	$0 \rightarrow 20$
$\eta'\pi$	1098	$0 \rightarrow 173$	$0 \rightarrow 12$
$b_1\pi$	1375	$799 \rightarrow 1559$	$139 \rightarrow 529$
$K^*\overline{K}$	1386	$0 \rightarrow 87$	$0 \rightarrow 2$
$f_1(1285)\pi$	1425	$0 \rightarrow 363$	0 o 24
$\rho\omega\{^1\!P_1\}$	1552	$\lesssim 19$	$\lesssim 0.03$
$ ho\omega\{^3\!P_1\}$	1552	$\lesssim 32$	$\lesssim 0.09$
$ ho\omega\{^5\!P_1\}$	1552	$\lesssim 19$	$\lesssim 0.03$
$f_1(1420)\pi$	1560	$0 \rightarrow 245$	$0 \rightarrow 2$
$\Gamma = \sum_i \Gamma_i = 139 ightarrow 590$			





For the first time, we have a QCD computation of a π_1 resonance

- a heavier than physical pion mass was used with m_u=m_d=m_s
- multibody decay modes are suppressed, only 2-body becomes relevant
- we find large coupling to a kinematically-closed axial-vector-pseudoscalar channel
- narrow resonance at m_{π} =688 MeV

Extrapolating to the experimentally-observed mass, we find

- the dominant decay mode appears to be $b_1\pi$
- in experiment this is a 5π final state
- current analyses of $\eta\pi$ and $\eta'\pi$ channels may be quite suppressed w.r.t. $b_1\pi$
- broad resonance

This SU(3) calculation has components that apply to the other elements of the octet

- but other components are expected to also contribute (eg singlet in η_1)
- nevertheless there's likely to be a family of hybrids

Charmonium, bottomonium is another interesting place to look

- heavier quarks may make extrapolating to the experimental masses more straightforward