Path from Lattice QCD to Neutrinoless Double-Beta Decay Amplitude p

1/34

Saurabh Kadam

with

Zohreh Davoudi

PRD 102, 114521 (2020) PRL 126, 152003 (2021) PRD 105, 094502 (2022)

n

Outline

Motivation

Why is it needed?

Formalism What are the tools?

Results How to use them?

Double β Decays

Two neutrino double beta decay (2 uetaeta)

Eugene Wigner, Goeppert-Mayer (1935)

- Standard model (SM) process
- Extremely rare and has been observed

 $T_{1/2}(2\nu\beta\beta)\sim 10^{20}y$

Neutrinoless double beta decay $(0\nu\beta\beta)$

Racah (1937) Furry (1939)

- Total lepton number is violated
- Beyond the standard model (BSM) process
- Searches for it are ongoing
- Neutrinos are their own anti-particles

Avignone, Elliott and Engel Reviews of Modern Physics, 80 (2008)

Double β Decays

Two neutrino double beta decay (2 uetaeta)

Eugene Wigner, Goeppert-Mayer (1935)

- Standard model (SM) process
- Extremely rare and has been observed

 $T_{1/2}(2\nu\beta\beta)\sim 10^{20}y$

- Dominant background for $0\nu\beta\beta$ search experiments
- $2\nu\beta\beta$ can also probe potential BSM scenarios

Deppisch, Graf, and Šimkovic PhysRevLett.125.171801

Neutrinoless double beta decay $(0 u\beta\beta)$

Racah (1937) Furry (1939)

- Total lepton number is violated
- Beyond the standard model (BSM) process
- Searches for it are ongoing
- Neutrinos are their own anti-particles

Avignone, Elliott and Engel Reviews of Modern Physics, 80 (2008)

What can possibly be responsible for a $0\nu\beta\beta$ decay?

• Minimal deviation from the SM:

Light neutrino exchange scenario

- SM neutrinos are promoted to Majorana neutrinos
- Effective Majorana mass

 $m_{\beta\beta} = \sum_{k} m_k U_{ek}^2$

Needs accurate constraints

Obtaining Effective Majorana Mass from Experiments

Nuclear Matrix Element (NME) $(\mathbf{T}_{1/2}^{0\nu})^{-1} = \frac{G_{0\nu}(Q_{\beta\beta}, Z)}{|M_{0\nu}|^2} \langle m_{\beta\beta} \rangle^2$ in Light Neutrino Exchange Phase space factor Scenario Half-lives from different methods for NME calculations $\langle m_{\beta\beta} \rangle = 0.05 \text{ eV}$ 10^{29} Vergados, Ejiri and Simkovic, (R)QRPA Rep. Prog. Phys. 75 106301 (2012) LSSM EDF PHFB 10^{28} IBM-2(I) $\int_{1/2}^{0} [v]_{1/2}$ 10²⁶ 10^{25} ⁸²Se ⁴⁸Ca ⁷⁶Ge 96 Zr 100 Mo 116 Cd 124 Sn 128 Te 130 Te 136 Xe 150 Nd 6/34

What is the source of these uncertainties in NME?

Nuclear Matrix Elements

Low Energy Constants (LECs)

Nuclear Matrix Elements

Cirigliano, Dekens, de Vries, Hoferichter, Mereghetti Phys. Rev. Lett. 126, 172002 (2021)

enhancement of ~ 40% in NME for Ca nucleus

Cirigliano, Dekens, de Vries, Hoferichter, Mereghetti Phys. Rev. Lett. 126, 172002

Wirth, Yao, Hergert PhysRevLett.127.242502 (2021) Jokiniemi, Soriano, Menendez j.physletb.2021.136720 (2021)

Nuclear Matrix Elements

Nuclear Matrix Elements

Constraining LECs from Lattice QCD

Davoudi and Kadam Phys. Rev. Lett. 126, 152003 (2021) Davoudi and Kadam Phys. Rev. D 102, 114521 (2020)

Lattice QCD

QCD Formulated on

- ✤ Discrete Euclidean Spacetime Grid
- Lattice spacing a
- Finite Volume L^3
- Monte-Carlo Sampling

Finite vs. Infinite Volume Physics

- ✤ Branch cuts are replaced with poles
- Corresponding energies give the FV spectrum
- Position of poles is related to the scattering amplitude

Assumptions

- Lattice spacing $a \to 0$
- Ignore discretization effects

- Infinite temporal extent
- Energy is a continuous variable

- In COM frame $P = (E, \mathbf{0})$
- Energy below three particle threshold

FV method

Kim, Sachrajda, and Sharpe (2005), Nucl. Phys. B727

 $C_L(E) = \int_L d^3x \int dx_0 \, e^{iEx_0} \left[\langle 0 | \, T[B(x)B^{\dagger}(0)] \, | 0 \rangle \right]_L$

Evaluate the correlation function non-perturbatively

Which diagrams give singular sums in \vec{k} ? If particles in summed loops can go on-shell

Same as Infinite Volume

One particle irreducible diagrams

 $2 \rightarrow 2$ Bethe-Salpeter Kernel

Power Law Difference

FV method

Lellouch, and Luscher (LL) (2001), Commun. Math. Phys. 219,

Two Nucleon Scattering Amplitude

FV Formalism

Extended towards electro-weak current (\mathcal{J}) interactions:

- Formalism for generalized $0 + \mathcal{J} \rightarrow 2$ and $1 + \mathcal{J} \rightarrow 2$ processes. From LQCD: $\gamma^* \rightarrow \pi\pi$ and $\pi\gamma^* \rightarrow \pi\pi$ amplitudes.
- Formalism for $2 + \mathcal{J} \rightarrow 2$ processes.

Value of $L_{1,A}$ from LQCD via studying pp fusion $pp \rightarrow de^+\nu$ process.

- Formalism for $1 + 2 \mathcal{J} \rightarrow 1$ processes. $2\nu\beta\beta$ matrix elements (MEs) at $m_{\pi} \sim 800$ MeV
- $K_L K_S$ mass difference
- Formalism for $1 + 2 \mathcal{J} \rightarrow 1$ processes with massless leptonic propagators
- Formalism for $2 + 2 \mathcal{J} \rightarrow 2$ processes for $2\nu\beta\beta$ and $0\nu\beta\beta$.
- Light sterile neutrino contribution to $\pi^- \rightarrow \pi^+ e^- e^-$ from LQCD at the physical pion mass
- $\pi^- \rightarrow \pi^+ e^- e^-$ from LQCD at m_π in 300-430 MeV

Review: Davoudi, Detmold, Shanahan, Orginos, Parreno, Savage, Wagman physrep.2020.10.004

Briceno, Hansen, and Walker-Loud (2015) Phys. Rev. D 91, 034501 Briceno and Hansen (2015), Phys. Rev. D92 (7), 074509 Feng et al. (2015) Phys. Rev. D91 (5), 054504 Briceno et al. (2015a) Phys. Rev. Lett. 115, 242001 Briceño and Davoudi (2013) Phys. Rev. D 88, 094507 Briceno and Hansen (2016) Phys. Rev. D94 (1), 013008 NPLQCD Collaboration Phys. Rev. Lett. 119 (6) (2017) 62002. Briceño, Davoudi, Hansen, Schindler and Baroni Phys. Rev. D 101, 014509 NPLQCD Collaboration Phys. Rev. D 96, 054505. Christ, Izubuchi, Sachrajda, Soni, and Yu (RBC and UKQCD Collaborations) Phys. Rev. D 88, 014508 (2013) Christ, Feng, Jin, and Sachrajda Phys. Rev. D 103, 014507 (2021) Feng, Jin, Wang, and Zhang Phys. Rev. D 103, 034508 (2021) Davoudi and Kadam Phys. Rev. D 102, 114521 (2020) Davoudi and Kadam Phys. Rev. Lett. 126, 152003 (2021) Tuo, Feng, and Jin arXiv:2206.00879

Detmold and Murphy arXiv:2004.07404 Detmold, Jay, Murphy, Oare, and Shanahan arXiv:2208.05322

 $0\nu\beta\beta$ Decay

Finite Volume

For details see: Davoudi and Kadam Phys. Rev. Lett. 126, 152003 (2021)

$$\mathcal{T}_{L}^{(M)} = \int_{L} d^{3}z \int dz_{0} e^{iE_{1}z_{0}} \left[\langle E_{n_{f}} | T^{(M)}[\mathcal{J}(z) S_{\nu}(z) \mathcal{J}(0)] | E_{n_{i}} \rangle \right]_{L}$$

 $0\nu\beta\beta$ Decay

Finite Volume

For details see: Davoudi and Kadam Phys. Rev. Lett. 126, 152003 (2021)

$$\mathcal{T}_{L}^{(M)} = \int_{L} d^{3}z \int dz_{0} e^{iE_{1}z_{0}} \left[\langle E_{n_{f}} | T^{(M)}[\mathcal{J}(z) S_{\nu}(z) \mathcal{J}(0)] | E_{n_{i}} \rangle \right]_{L}$$

Constraining g_{ν}^{NN} from Lattice QCD

For details see: Davoudi and Kadam Phys. Rev. Lett. 126, 152003 (2021)

$$L^{6} \left| \mathcal{T}_{L}^{(\mathrm{M})} \right|^{2} = \left| \mathcal{R}^{*}(E_{n_{f}}) \right| \left| i \mathbb{M}^{0\nu} \right|^{2} \left| \mathcal{R}^{*}(E_{n_{i}}) \right|$$

Lellouch Luscher residue matrix

$$\mathcal{R}(E_n) = \lim_{E \to E_n} \frac{(E - E_n)}{F_0^{-1} + \mathcal{M}}$$

$$\mathcal{T}_{L}^{(M)}$$
Minkowski Signature
Correlation Function
$$\mathcal{T}_{L}^{(M)} = \int_{L} d^{3}z \int dz_{0} e^{iEz_{0}} \left[\langle E_{n_{f}} | T^{(M)}[\mathcal{J}(z) S_{\nu}(z) \mathcal{J}(0)] | E_{n_{i}} \rangle \right]_{L}$$
?
$$G_{L}(\tau)$$
Euclidean Time
Four-point Correlation
Function from LQCD
$$\mathcal{T}_{L}^{(M)} = \int_{L} d^{3}z \left[\langle E_{f}, L | T^{(E)}[\mathcal{J}^{(E)}(\tau, z) S_{\nu}^{E}(\tau, z) \mathcal{J}^{(E)}(0)] | E_{i}, L \rangle \right]_{L},$$

Plugging back the missing time integral

$$\mathcal{T}_{L}^{(\mathrm{E})} \stackrel{?}{=} \int d\tau e^{E\tau} G_{L}(\tau) \sim \int_{0}^{\infty} d\tau \, e^{-(|\mathbf{P}_{*m}| + E_{*m} - E_{*})\tau} \qquad E_{*} = E_{i} - E$$

Plugging back the missing time integral

$$\mathcal{T}_L^{(\mathrm{E})} \stackrel{?}{=} \int d\tau e^{E\tau} G_L(\tau) \quad \sim \int_0^\infty d\tau \, e^{-(|\mathbf{P}_{*m}| + E_{*m} - E_*)\tau}$$

Diverges for intermediate states that can go on-shell

Need to remove these divergences for analytic continuation!!

Diverges for $|\mathbf{P}_{*m}| + E_{*m} < E_*$ $E_* = E_i - E$ \mathbf{P}_{*m} \mathbf{P}_{*m} \mathbf{P}_{*m} \mathbf{P}_{*m} \mathbf{P}_{*m} \mathbf{P}_{*m}

Removing Divergences from $G_L(\tau)$

Davoudi and Kadam Phys. Rev. Lett. 126, 152003 (2021)

What do we want?

What do we want?

Davoudi and Kadam Phys. Rev. D 105, 094502 (2022)

 $\Delta_{\beta\beta}$: Uncertainty in four-point function Δ_E : Uncertainty in NN energy eigenvalues

33/34

Backup

FIG. 7. $|\mathcal{M}_{nn\to pp}^{0\nu,V(\text{Int.})}|$ (left) and $|\mathcal{T}_{L}^{(M)}|$ (right) functions defined in Eqs. (30)-(28), with L = 8 fm (red), L = 12 fm (blue), and L = 16 fm (green) are plotted against the CM energy of the NN state, considering the kinematics $E_i = E_f \equiv E$. The effective neutrino mass $m_{\beta\beta}$ is set to 1 MeV. The dashed lines in both panels denote the ground-state energy eigenvalues in the corresponding volumes obtained from the quantization condition in Eq. (9) (as plotted in Fig. 2). Selected numerical values for the functions shown are provided in Appendix A.

FIG. 3. The absolute values of the LL residue function in the ${}^{1}S_{0}$ (left) and ${}^{3}S_{1}$ (right) channels is plotted against the CM energy for three different volumes with L = 8 fm (red), L = 12 fm (blue), and L = 16 fm (green). Dashed lines indicate energy eigenvalues in the respective volumes. The numerical values of $|\mathcal{R}|$ and $|\widetilde{\mathcal{R}}|$ evaluated at the FV ground- and first excited-state energies in the corresponding volumes are provided in Appendix A.

FIG. 2. The effective-range function (solid lines) and Lüscher's function (dotted lines) in Eq. (9) are plotted independently against the CM energy of NN systems. Equation (4) is used for the effective-range function with the effective-range expansion parameters given in Eq. (14) for the two channels, ${}^{1}S_{0}$ (cyan) and ${}^{3}S_{1}$ (magenta). The function $4\pi c_{00}(p^{2}, L)$ is plotted for three different volumes with L = 8 fm (red), L = 12 fm (blue) and L = 16 fm (green). The diamonds, circles, triangles, and stars denote, respectively, the location of energy eigenvalues of the ground, first, second, and third excited states in each volume, and satisfy the quantization condition in Eq. (9) (and its counterpart for the ${}^{3}S_{1}$ channel). The numerical values associated with this figure are provided in Appendix A.

At LO in Pionless EFT

Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, Piarulli, Van Kolck and Wiringa Phys. Rev. C 100, 055504 (2019) Cirigliano, Dekens, de Vries, Graesses, Mereghetti, Pastore and van Klock Phys. Rev. Lett. 120, 202001

Infinite Volume

At LO in Pionless EFT

Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, Piarulli, Van Kolck and Wiringa Phys. Rev. C 100, 055504 (2019) Cirigliano, Dekens, de Vries, Graesses, Mereghetti, Pastore and van Klock Phys. Rev. Lett. 120, 202001

TABLE I. Lower bounds achievable for $m_{\beta\beta}$ by some $0\nu\beta\beta$ experiments, depending on their reached sensitivities (upper group) or sensitivity goals (lower group). The different results correspond to the different quenching of g_A , according to the definitions in Eq. (9). The 1σ uncertainties on $m_{\beta\beta}$ are calculated by assuming uncertainties both on the matrix elements and phase space factors, according to [1] and [8], respectively.

			Lower bound for $m_{\beta\beta}(eV)$		
Experiment	Isotope	$t^{1/2}$ (90% C.L.)(10 ²⁵ yr)	$g_{nucleon}$	g_{quark}	$g_{\text{phen}}.$
IGEX [9]	⁷⁶ Ge	1.57	0.31 ± 0.03	0.49 ± 0.05	1.44 ± 0.16
HEIDELBERG-MOSCOW [10]	⁷⁶ Ge	1.9	0.28 ± 0.03	0.44 ± 0.05	1.31 ± 0.14
GERDA-I [11]	⁷⁶ Ge	2.1	0.26 ± 0.03	0.42 ± 0.05	1.25 ± 0.14
KamLAND-Zen-I [12]	¹³⁶ Xe	1.9	0.18 ± 0.02	0.29 ± 0.03	1.06 ± 0.12
KamLAND-Zen-II [13]	¹³⁶ Xe	1.3	0.22 ± 0.02	0.35 ± 0.04	1.28 ± 0.14
EXO-200 [14]	¹³⁶ Xe	1.1	0.24 ± 0.03	0.38 ± 0.04	1.39 ± 0.15
Combined Ge [11]	⁷⁶ Ge	3.0	0.22 ± 0.02	0.35 ± 0.04	1.05 ± 0.11
Combined Xe	¹³⁶ Xe	2.6	0.15 ± 0.02	0.25 ± 0.03	0.91 ± 0.10
Combined Ge + Xe	⁷⁶ Ge/ ¹³⁶ Xe		0.15 ± 0.01	0.24 ± 0.02	0.81 ± 0.07
CUORE [15]	¹³⁰ Te	9.5	0.07 ± 0.01	0.11 ± 0.01	0.39 ± 0.04
GERDA-II [16]	⁷⁶ Ge	15	0.10 ± 0.01	0.16 ± 0.02	0.47 ± 0.05
SuperNEMO [17]	⁸² Se	10	0.07 ± 0.01	0.12 ± 0.01	0.36 ± 0.04

TABLE II. Sensitivity and exposure necessary to discriminate between \mathcal{NH} and \mathcal{IH} : the goal is $m_{\beta\beta} = 8$ meV. The two cases refer to the unquenched value of $g_A = g_{\text{nucleon}}$ (mega) and $g_A = g_{\text{phen}}$. (ultimate). The calculations are performed assuming *zero background* experiments with 100% detection efficiency and no fiducial volume cuts. The last column shows the maximum value of the product $B \cdot \Delta$ in order to actually comply with the zero background condition.

			Ext	Exposure (estimate)		
Experiment	Isotope	$t^{1/2}(yr)$	$M \cdot T $ (ton \cdot yr)	$B \cdot \Delta_{(\text{zero bkg})}(\text{counts/kg/yr})$		
Mega Te	¹³⁰ Te	6.8×10^{27}	2.1	4.7×10^{-4}		
Mega Ge	⁷⁶ Ge	2.3×10^{28}	4.1	2.4×10^{-4}		
Mega Xe	¹³⁶ Xe	9.7×10^{27}	3.2	3.2×10^{-4}		
Ultimate Te	¹³⁰ Te	2.3×10^{29}	71	1.4×10^{-5}		
Ultimate Ge	⁷⁶ Ge	5.1×10^{29}	93	1.1×10^{-5}		
Ultimate Xe	¹³⁶ Xe	3.3×10^{29}	109	9.2×10^{-6}		

Table 1. Limits on neutrinoless DBDs $T_{1/2}^{0\nu-\exp}$ (claim for evidence is denoted in [42]). $Q_{\beta\beta}$: Q-value for the $0^+ \rightarrow 0^+$ ground-state transition. $G^{0\nu}$: kinematical (phase space volume) factor ($g_A = 1.25$ and $R = 1.2 \text{ fm } A^{1/3}$). $\langle m_\nu \rangle$: the upper limit on the effective Majorana neutrino mass, deduced from $T_{1/2}^{0\nu-\exp}$ by assuming the ISM [236] ($g_A^{\text{eff}} = 1.25$, UCOM src), the EDF [131] ($g_A^{\text{eff}} = 1.25$, UCOM src), the (R)QRPA ($1.00 \leq g_A^{\text{eff}} \leq 1.25$, the modern self-consistent treatment of src), and the IBM-2 [130] ($1.00 \leq g_A^{\text{eff}} \leq 1.25$, Miller–Spencer src), NMEs (see section 10). src means short-range correlations.

Isotope	A (%)	$Q_{\beta\beta}$ (MeV)	$G^{0 u} \ (10^{-14} \mathrm{y})$	$T_{1/2}^{0\nu-\exp}$ (10 ²⁴ y)	NME	$ \langle m_{\nu} \rangle \text{ eV}$ (eV)	Future experiments
⁴⁸ Ca	0.19	4.276	7.15	0.014 [237]	ISM EDF	19.1 7.0	CANDLES
⁷⁶ Ge	7.8	2.039	0.71	19 [36, 227, 228]	ISM, EDF (R)QRPA EDF	0.51, 0.31 (0.20, 0.32) (0.26, 0.35)	GERDA
	7.8	2.039	0.71	22 [42]	ISM, EDF (R)QRPA EDF	(0.47, 0.29) (0.18, 0.30) (0.24, 0.32)	—
	7.8	2.039	0.71	16 [229, 230]	ISM, EDF (R)QRPA EDF	(0.21, 0.32) 0.55, 0.34 (0.22, 0.35) (0.28, 0.38)	MAJORANA
⁸² Se	9.2	2.992	3.11	0.36 [38, 234, 235]	ISM, EDF (R)QRPA EDF	(0.23, 0.50) 1.88, 1.17 (0.76, 1.28) (1.12, 1.49)	SuperNEMO MOON
¹⁰⁰ Mo	9.6	3.034	5.03	1.0 [38, 234]	EDF (R)QRPA EDF	(1.12, 1.49) 0.46 (0.38, 0.73) (0.62, 1.06)	MOON AMoRE
¹¹⁶ Cd	7.5	2.804	5.44	0.17 [238]	EDF (R)ORPA	(0.02, 1.00) 1.15 (1.20, 2.16)	COBRA CdWO4
¹³⁰ Te	34.5	2.529	4.89	3.0 [231, 232, 239]	ISM, EDF (R)QRPA EDF	(0.52, 0.27) (0.25, 0.43) (0.33, 0.46)	CUORE
¹³⁶ Xe	8.9	2.467	5.13	5.7 [40]	ISM, EDF (R)QRPA	0.44, 0.23 (0.17, 0.30)	EXO, NEXT KamLAND-Zen
¹⁵⁰ Nd	5.6	3.368	23.2	0.018 [38, 240]	EDF (R)QRPA	4.68 (2.13, 2.88)	SuperNEMO SNO+ DCBA

Including Uncertainties in NMEs for $\langle m_{\beta\beta} \rangle = 0.05 \text{ eV}$

 ν_2 - ν_1 -MassAvignone, Elliott and Engel Reviews of Modern Physics, 80 (2008) ν_3 -Dell'Oro, Marcocci, Viel and Vissani 0.1 Advances in High Energy Physics (2016) $\langle m_{etaeta}
angle \, [\mathrm{eV}]$ IH Vergados, Ejiri and Simkovic, Rep. Prog. Phys. 75 106301 (2012) 0.01 Disfavored by cosmology NH 0.001 ν_3 Mass \mathcal{V}_1 10 10-4 0.001 0.01 0.1 $m_{\text{lightest}} [\text{eV}]$

Need to reduce uncertainties in $0\nu\beta\beta$ decay NMEs !!!