$\mathrm{D} \pi / \mathrm{K}$ scattering and charm meson resonances from lattice QCD

Christopher Thomas, University of Cambridge
c.e.thomas@damtp.cam.ac.uk

Bethe Forum on "Multihadron Dynamics in a Box - A.D. 2022"
Bonn, 15-19 August 2022

Lattice QCD spectroscopy

Finite-volume energy eigenstates

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}\langle 0| \mathcal{O}_{i}(0)|n\rangle\langle n| \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

In each symmetry channel: matrix of correlators for large bases of interpolating operators with appropriate variety of structures. Use distillation to compute corrs.

$$
\begin{gathered}
\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x)[\Gamma \overleftrightarrow{D} \overleftrightarrow{D} \ldots] \psi(x) \sum_{\vec{p}_{1}, \vec{p}_{2}} C\left(\vec{P}, \vec{p}_{1}, \vec{p}_{2}\right) H\left(\vec{p}_{1}\right) H\left(\vec{p}_{2}\right) \\
\sum_{\vec{p}_{1}, \overrightarrow{p_{2}}, \vec{p}_{3}, \ldots} C\left(\vec{P}, \vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}, \ldots\right) H\left(\vec{p}_{1}\right) H\left(\vec{p}_{2}\right) H\left(\vec{p}_{3}\right) \ldots
\end{gathered}
$$

Lattice QCD spectroscopy

Finite-volume energy eigenstates

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}\langle 0| \mathcal{O}_{i}(0)|n\rangle\langle n| \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

In each symmetry channel: matrix of correlators for large bases of interpolating operators with appropriate variety of structures. Use distillation to compute corrs.

$$
\begin{gathered}
\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x)[\Gamma \overleftrightarrow{D} \overleftrightarrow{D} \ldots] \psi(x) \sum_{\vec{p}_{1}, \vec{p}_{2}} C\left(\vec{P}, \vec{p}_{1}, \vec{p}_{2}\right) H\left(\vec{p}_{1}\right) H\left(\vec{p}_{2}\right) \\
\sum_{\vec{p}_{1}, \overrightarrow{p_{2}}, \vec{p}_{3}, \ldots} C\left(\vec{P}, \vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}, \ldots\right) H\left(\vec{p}_{1}\right) H\left(\vec{p}_{2}\right) H\left(\vec{p}_{3}\right) \ldots
\end{gathered}
$$

Variational method (generalised eigenvalue problem) $\rightarrow\left\{E_{n}\right\}$

$$
\begin{aligned}
& C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)} \quad \lambda^{(n)}(t) \sim e^{-E_{n}\left(t-t_{0}\right)} \\
& v_{i}^{(n)} \rightarrow Z_{i}^{(n)} \equiv\langle 0| \mathcal{O}_{i}|n\rangle \quad \Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} O_{i}
\end{aligned}
$$

Scattering in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering \boldsymbol{t}-matrix.

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

Scattering in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix.

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

[Complication: reduced sym. of lattice vol. \rightarrow 'mixing' of partial waves]

Scattering in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix.

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

Elastic scattering: one-to-one mapping $E_{\mathrm{cm}} \leftrightarrow t\left(E_{\mathrm{cm}}\right)$
[Complication: reduced sym. of lattice vol. \rightarrow 'mixing' of partial waves]

Scattering in lattice QCD

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\left\{E_{\mathrm{cm}}\right\}$ to infinite-volume scattering t-matrix.

$$
\vec{p}=\frac{2 \pi}{L}\left(n_{x}, n_{y}, n_{z}\right)
$$

$$
\begin{aligned}
& \operatorname{det}\left[1+i \rho\left(E_{\mathrm{cm}}\right) \boldsymbol{t}\left(E_{\mathrm{cm}}\right)\left(1+i \mathcal{M}^{\vec{P}}\left(E_{\mathrm{cm}}, L\right)\right]=0\right. \\
& \begin{array}{ll}
\text { Infinite-volume } \\
\text { scattering } t \text {-matrix }
\end{array} \\
& \begin{array}{l}
\text { Effect of finite volume } \\
\text { (including reduced sym.) }
\end{array}
\end{aligned} \rho_{i}\left(E_{\mathrm{cm}}\right)=\frac{2 k_{i}}{E_{\mathrm{cm}}}
$$

Elastic scattering: one-to-one mapping $E_{\mathrm{cm}} \leftrightarrow t\left(E_{\mathrm{cm}}\right)$
Analytically continue t in complex E_{cm} plane, look for poles.
[Complication: reduced sym. of lattice vol. \rightarrow 'mixing' of partial waves]

Scattering in lattice QCD

$$
\operatorname{det}\left[1+i \rho\left(E_{\mathrm{cm}}\right) t\left(E_{\mathrm{cm}}\right)\left(1+i \mathcal{M}^{\vec{P}}\left(E_{\mathrm{cm}}, L\right)\right)\right]=0
$$

Coupled channels (hadron-hadron and/or partial waves):

$$
\text { E.g. } \quad \mathrm{t}\left(E_{\mathrm{cm}}\right)=\left(\begin{array}{cc}
t_{\pi \pi \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{\pi \pi \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right) \\
t_{K \bar{K} \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{K \bar{K} \rightarrow K \bar{K}}\left(E_{\mathrm{Cm}}\right)
\end{array}\right)
$$

Given $\mathbf{t}\left(E_{\mathrm{cm}}\right)$: solutions \rightarrow finite-volume spectrum $\left\{E_{\mathrm{cm}}\right\}$ But we need: spectrum $\rightarrow \mathbf{t}\left(E_{\mathrm{cm}}\right)$

Scattering in lattice QCD

$$
\operatorname{det}\left[1+i \rho\left(E_{\mathrm{cm}}\right) t\left(E_{\mathrm{cm}}\right)\left(1+i \mathcal{M}^{\vec{P}}\left(E_{\mathrm{cm}}, L\right)\right)\right]=0
$$

Coupled channels (hadron-hadron and/or partial waves):

$$
\text { E.g. } \quad \mathrm{t}\left(E_{\mathrm{cm}}\right)=\left(\begin{array}{cc}
t_{\pi \pi \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{\pi \pi \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right) \\
t_{K \bar{K} \rightarrow \pi \pi}\left(E_{\mathrm{cm}}\right) & t_{K \bar{K} \rightarrow K \bar{K}}\left(E_{\mathrm{cm}}\right)
\end{array}\right)
$$

Given $\mathbf{t}\left(E_{\mathrm{cm}}\right)$: solutions \rightarrow finite-volume spectrum $\left\{E_{\mathrm{cm}}\right\}$ But we need: spectrum $\rightarrow \mathbf{t}\left(E_{\mathrm{cm}}\right)$

Under-constrained (each E_{cm} constrains t-matrix at that E_{cm}) \rightarrow Parameterize $E_{\text {cm }}$ dep. of t-matrix; fit $\left\{E_{\text {lattice }}\right\}$ to $\left\{E_{\text {param }}\right\}$

Try different parameterizations, e.g. various K-matrix forms (unitarity) (also Breit Wigner, effective range expansion for elastic scattering).

$$
t_{i j}^{-1}=\frac{1}{\left(2 k_{i}\right)^{\ell_{i}}} K_{i j}^{-1} \frac{1}{\left(2 k_{j}\right)^{\ell_{j}}}+I_{i j}
$$

Scattering in lattice QCD

$$
\operatorname{det}\left[1+i \rho\left(E_{\mathrm{cm}}\right) t\left(E_{\mathrm{cm}}\right)\left(1+i \mathcal{M}^{\vec{P}}\left(E_{\mathrm{cm}}, L\right)\right)\right]=0
$$

Require:

- Large set of E_{cm} in a range of channels:
- various symmetry channels (irreps), and
- overall non-zero momentum, different volumes, and/or twisted b.c.s
- Large enough spatial volume ($m_{\pi} L \gtrsim 4$)

This is for 2 hadron scattering - see other talks for >2 hadron scattering

Review in e.g. Briceño, Dudek, Young
[Rev. Mod. Phys. 90, 025001 (2018)]

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

Other calculations

Some other lattice QCD work on $D K$ and/or $D \pi$ scattering:

- Mohler et al [PR D87, 034501 (2013), 1208.4059];
- Liu et al [PR D87, 014508 (2013), 1208.4535];
- Mohler et al [PRL 111, 222001 (2013), 1308.3175];
- Lang et al [PR D90, 034510 (2014), 1403.8103];
- Bali et al (RQCD) [PR D96, 074501 (2017), 1706.01247];
- Alexandrou et al (ETM) [PR D101 034502 (2020), 1911.08435];
- Gregory et al [2106.15391]

Also:

- Martínez Torres et al [JHEP 05 (2015) 153, 1412.1706];
- Albaladejo et al [PL B767, 465 (2017), 1610.06727];
- Du et al [PR D98, 094018 (2018), 1712.07957];
- Guo et al [PR D98 014510 (2018), 1801.10122];
- Guo et al [EPJ C79, 13 (2019), 1811.05585]

$D K$ (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

Anisotropic lattices,
$a_{s} / a_{t} \approx 3.5, a_{s} \approx 0.12 \mathrm{fm}$,
various volumes.
$N_{f}=2+1$,
Wilson-clover fermions, $m_{\pi} \approx 239 \mathrm{MeV} \& 391 \mathrm{MeV}$.

Use many different fermion-bilinear

$$
\sim \bar{\psi}\ulcorner D \ldots \psi
$$

and $D K, \ldots$ operators (built from 'optimised' D and K operators)

$$
\Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} O_{i}
$$

$D K$ (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

$D K$ (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

$D K$ (isospin=0) - spectra

$E_{\mathrm{cm}} / a_{t} E_{\mathrm{cm}}[000] A_{1}^{+} \quad[100] A_{1} \quad[110] A_{1} \quad[111] A_{1} \quad[200] A_{1} \quad m_{\pi}=239 \mathrm{MeV}$

$$
m_{\pi} \approx 239 \mathrm{MeV}
$$

$D K$ (isospin=0) - spectra

$$
m_{\pi} \approx 391 \mathrm{MeV}
$$

$D K$ (isospin=0) - amplitudes

$m_{\pi} \approx 239 \mathrm{MeV}$
(22 energy levels)
$\sim|a m p|^{2}$

Elastic $D K$ scattering in S and P-wave Sharp turn-on in S-wave at threshold

$D K$ (isospin=0) - amplitudes

[JHEP 02 (2021) 100]

Elastic $D K$ scattering in S and P-wave Sharp turn-on in S-wave at threshold

$D K$ (isospin=0) - S-wave poles

Bound-state pole strongly coupled to S-wave $D K$ $\Delta \mathrm{E}=25(3) \mathrm{MeV}$ for $m_{\pi} \approx 239 \mathrm{MeV}$ $\Delta \mathrm{E}=57(3) \mathrm{MeV}$ for $m_{\pi} \approx 391 \mathrm{MeV}$

$D K$ (isospin=0) - S-wave poles

$D K$

DK	2317)		$D_{s 0}^{*}$	$D_{s 0}^{*}$			
	a			Hor			$\sqrt{s_{\text {pole }}} / \mathrm{MeV}$
2300	2320	2340	2360	2380	2400	2420	
physical sheet			$\left.D K\right\|_{\text {th }} ^{\text {ex }}$	$\left.D K\right\|_{\text {thr }}$		$\left.D K\right\|_{\text {thr }}$	$m_{\pi}=391 \mathrm{MeV}$

Bound-state pole strongly coupled to S-wave $D K$ $\Delta \mathrm{E}=25(3) \mathrm{MeV}$ for $m_{\pi} \approx 239 \mathrm{MeV}$ $\Delta \mathrm{E}=57(3) \mathrm{MeV}$ for $m_{\pi} \approx 391 \mathrm{MeV}$
c.f. experiment $\Delta \mathrm{E} \approx 45 \mathrm{MeV}$ (decays to $D_{s} \pi^{0}$)

$D K$ (isospin=0) - S-wave poles

$D K$

Bound-state pole strongly coupled to S-wave $D K$
$\Delta \mathrm{E}=25(3) \mathrm{MeV}$ for $m_{\pi} \approx 239 \mathrm{MeV} \quad \mathrm{Z} \leqq 0.11$
$\Delta \mathrm{E}=57(3) \mathrm{MeV}$ for $m_{\pi} \approx 391 \mathrm{MeV} \quad \mathrm{Z} \approx 0.13(6)$
c.f. experiment $\Delta \mathrm{E} \approx 45 \mathrm{MeV}$ (decays to $D_{s} \pi^{0}$)

Weinberg [PR 137, B672 (1965)] compositeness, $0 \leq Z \leq 1$ (assuming binding is sufficiently weak)

$D K$ (isospin=0) - S-wave poles

DK

Bound-state pole strongly coupled to S-wave $D K$

$$
\begin{aligned}
& \Delta \mathrm{E}=25(3) \mathrm{MeV} \text { for } m_{\pi} \approx 239 \mathrm{MeV} \quad \mathrm{Z} \lesssim 0.11 \\
& \Delta \mathrm{E}=57(3) \mathrm{MeV} \text { for } m_{\pi} \approx 391 \mathrm{MeV} \quad \mathrm{Z} \approx 0.13(6) \\
& \text { c.f. experiment } \left.\Delta \mathrm{E} \approx 45 \mathrm{MeV} \text { (decays to } D_{s} \pi^{0}\right)
\end{aligned}
$$

Also deeply bound state in P-wave, D_{s}^{*}, but doesn't strongly influence $D K$ scattering at these energies

Use many operators, $\sim D \bar{K}$

$$
[0,0,0] \mathrm{J}^{\mathrm{P}}=0^{+}, \ldots
$$

Use many operators,

 $\sim D \bar{K}$
$D \bar{K}$ (isospin=0,1) Exotic flavour ($\bar{l} \bar{l} c s$)

[JHEP 02 (2021) 100]

$$
[0,0,0] \mathrm{J}^{\mathrm{P}}=0^{+}, \ldots
$$

$D \bar{K}$ (isospin=0,1)

Exotic flavour ($\bar{l} \bar{l} c s$)
[JHEP 02 (2021) 100]

(18,18 levels
for $\mathrm{I}=0,1$)
$\stackrel{1}{2400}$

$$
\begin{aligned}
& \text { fol } \mathrm{FO} \text { for } \\
& \text { for } \\
& \text { fol } \\
& \text { for }
\end{aligned}
$$

$$
\text { for } \mathrm{I}=0,1 \text {) }
$$

$E_{\text {cm }} / \mathrm{MeV}$

$D \bar{K}$ (isospin=0,1)

Exotic flavour ($\bar{l} \bar{l} c s)$
[JHEP 02 (2021) 100]

$\delta /$
$=0$

(18, 18 levels for $I=0,1$)

101
or

$$
I=1
$$

$$
\begin{aligned}
& \text { lol for } \mathrm{HOH} \\
& \text { 어 } \\
& \text { fol } \mathrm{fol} \\
& \text { for }
\end{aligned}
$$

$D \bar{K}$ (isospin=0,1) Exotic flavour ($\bar{l} \bar{l} c s$)

[JHEP 02 (2021) 100]

$D \bar{K}(\mathrm{I}=0) S$-wave

Suggestion of a virtual bound-state pole (exotic flavour)

D π (isospin=1/2) - S-wave

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]

D π (isospin=1/2) - S-wave

$$
\rho^{2}|t|^{2} \sim|\mathrm{amp}|^{2}
$$

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]

$$
\begin{aligned}
& m_{\pi} \approx 239 \mathrm{MeV} \\
& 29 \text { energy levels } \\
& \text { (1 volume) }
\end{aligned}
$$

$$
m_{\pi} \approx 391 \mathrm{MeV}
$$

$$
47 \text { energy levels }
$$ (3 volumes)

D π (isospin=1/2) - S-wave

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson
$\rho^{2}|t|^{2} \sim|\operatorname{amp}|^{2}$

$m=\operatorname{Re} \sqrt{s_{0}} / \mathrm{MeV}$

D π (isospin=1/2) - S-wave

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson
$\rho^{2}|t|^{2} \sim|\mathrm{amp}|^{2}$

0.2 -

$$
m=\operatorname{Re} \sqrt{s_{0}} / \mathrm{MeV}
$$

Z ≈ 0.09 (8)

Resonance

Also deeply bound state in P-wave, D^{*}, but doesn't strongly influence $D \pi$ scattering at these energies
$\stackrel{\square}{2500}$

D π (isospin=1/2) - S-wave

$\rho^{2}|t|^{2} \sim|\mathrm{amp}|^{2}$ | | |
| :--- | :--- |
| | |
| | |
| $m_{\pi} \approx 239 \mathrm{MeV}$ | |

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]
[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]
c.f. DK (isospin=0)

$$
m_{\pi} \approx 391 \mathrm{MeV}
$$

DK and D π - S-wave poles

[JHEP 07 (2021) 123, JHEP 02 (2021) 100, JHEP 10 (2016), 011]

DK and D π - S-wave poles

[JHEP 07 (2021) 123, JHEP 02 (2021) 100, JHEP 10 (2016), 011]

DK and D π - S-wave poles

[JHEP 07 (2021) 123, JHEP 02 (2021) 100, JHEP 10 (2016), 011]

D_{0}^{*} pole position may be lower than currently reported exp. mass. (See also Du et al, PRL 126, 192001 (2021), 2012.04599)

SU(3) flavour symmetry

[JHEP 02 (2021) 100]

SU(3) multiplets:
$D_{(s)} \overline{\mathbf{3}} \quad$ Light/strange meson $\mathbf{8}$ or $\mathbf{1}$
$\overline{\mathbf{3}} \otimes 8 \rightarrow \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}}, \quad \overline{\mathbf{3}} \otimes 1 \rightarrow \overline{\mathbf{3}}$

SU(3) flavour symmetry

SU(3) multiplets:
$D_{(s)} \overline{3} \quad$ Light/strange meson 8 or 1 $\overline{\mathbf{3}} \otimes 8 \rightarrow \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}}, \quad \overline{\mathbf{3}} \otimes \mathbf{1} \rightarrow \overline{\mathbf{3}}$

$$
\begin{array}{ll}
(I=0) D K-D_{s} \eta: \overline{\mathbf{3}} \oplus \overline{\mathbf{1 5}} & \left(I=\frac{1}{2}\right) D \pi-D \eta-D_{s} \bar{K}: \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}} \\
(I=1) D K-D_{s} \pi: \mathbf{6} \oplus \overline{\mathbf{1 5}} & (I=0) D \bar{K}: \mathbf{6} \\
\left(I=\frac{1}{2}\right) D_{s} K,(I=1) D \bar{K},\left(I=\frac{3}{2}\right) D \pi: \overline{\mathbf{1 5}}
\end{array}
$$

SU(3) flavour symmetry

SU(3) multiplets:
$D_{(s)} \overline{3} \quad$ Light/strange meson 8 or 1
$\overline{\mathbf{3}} \otimes 8 \rightarrow \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}}, \quad \overline{\mathbf{3}} \otimes \mathbf{1} \rightarrow \overline{\mathbf{3}}$

$$
\begin{array}{ll}
(I=0) D K-D_{s} \eta: \overline{\mathbf{3}} \oplus \overline{\mathbf{1 5}} & \left(I=\frac{1}{2}\right) D \pi-D \eta-D_{s} \bar{K}: \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{1 5}} \\
(I=1) D K-D_{s} \pi: \mathbf{6} \oplus \overline{\mathbf{1 5}} & (I=0) D \bar{K}: \mathbf{6} \\
\left(I=\frac{1}{2}\right) D_{s} K,(I=1) D \bar{K},\left(I=\frac{3}{2}\right) D \pi: \overline{\mathbf{1 5}}
\end{array}
$$

S-wave results [broken $\mathrm{SU}(3)$] suggest:
$\overline{3}$ resonance/bound state
6 virtual bound state $\overline{15}$ weak repulsion
[See also PR D87, 014508 (2013)
(1208.4535); PL B767, 465 (2017) (1610.06727); PR D98, 094018 (2018) (1712.07957); PR D98 014510 (2018) (1801.10122);
EPJ C79, 13 (2019) (1811.05585);
arXiv:2106.15391]

Charm (D) and charm-strange $\left(D_{s}\right)$ mesons

D* π (isospin=1/2)

Scattering involving non-zero spin hadrons [see also Woss, CT, Dudek, Edwards, Wilson, arXiv:1802.05580 (JHEP)]
$\mathrm{J}=\ell \otimes \mathrm{S}$ and different partial waves with the same J^{P} can mix dynamically,
e.g. JP $=1^{+}\left({ }^{2 S+1} e_{J}={ }^{3} S_{1},{ }^{3} D_{1}\right) \quad \mathbf{t}=\left[\begin{array}{l}t\left({ }^{3} S_{1} \mid{ }^{3} S_{1}\right) \\ t\left({ }^{3} S_{1} \mid{ }^{3} D_{1}\right) \\ t\left({ }^{3} S_{1} \mid{ }^{3} D_{1}\right) \\ t\left({ }^{3} D_{1} \mid{ }^{3} D_{1}\right)\end{array}\right]$

Finite-volume lattice QCD: reduced sym \rightarrow additional 'mixing'

D* π (isospin=1/2)

D* π (isospin=1/2)

(94 energy levels to

[arXiv:2205.05026]
constrain $\left.\mathrm{J}^{\mathrm{P}}=1^{+}, 2^{+}, 0^{-}, 1^{-}, 2^{-}\right)$

D* π (isospin=1/2)

$D^{*} \pi$ (isospin=1/2)

$m_{\pi} \approx 391 \mathrm{MeV}$

D* π (isospin=1/2) - poles

D* π (isospin=1/2) - poles

D* π (isospin=1/2) - poles

Summary

- Map out energy-dependence of scattering amps using lattice QCD.
- S-wave scattering of psuedoscalars $\left(\mathrm{J}^{\mathrm{P}}=\mathrm{O}^{+}\right)$
- Isospin-0 DK: bound state
- Isospin-1/2 $D \pi$: bound state/resonance
- Exotic-flavour isospin-0 $D \bar{K}$: suggestion of virtual bound state

Summary

- Map out energy-dependence of scattering amps using lattice QCD.
- S-wave scattering of psuedoscalars $\left(\mathrm{J}^{\mathrm{P}}=\mathrm{O}^{+}\right)$
- Isospin-0 DK: bound state
- Isospin-1/2 Dr: bound state/resonance
- Exotic-flavour isospin-0 $D \bar{K}$: suggestion of virtual bound state
- Isospin-1/2 $D^{*} \pi$: D_{1} (mostly $\left.{ }^{3} S_{1}\right), D_{1}^{\prime}\left(\right.$ mostly $\left.{ }^{3} D_{1}\right)$ in $1^{+}, D_{2}$ in 2^{+}

Summary

- Map out energy-dependence of scattering amps using lattice QCD.
- S-wave scattering of psuedoscalars $\left(J^{\mathrm{P}}=0^{+}\right)$
- Isospin-0 DK: bound state
- Isospin-1/2 Dr: bound state/resonance
- Exotic-flavour isospin-0 $D \bar{K}$: suggestion of virtual bound state
- Isospin-1/2 $D^{*} \pi: D_{1}\left(\right.$ mostly $\left.^{3} S_{1}\right), D_{1}{ }^{\prime}\left(\right.$ mostly $\left.{ }^{3} D_{1}\right)$ in $1^{+}, D_{2}$ in 2^{+}
- Lighter (or heavier) light quarks? With SU(3) flavour sym?
- Further up in energy, inelastic scattering (3-hadron scattering)

Acknowledgements

Science and

 Technology Facilities Council DiRAC
had $\sqrt{\text { spec }}$

Hadron Spectrum Collaboration

[www.hadspec.org]
Jefferson Lab and surroundings, USA:
JLab: Robert Edwards, Jie Chen, Frank Winter; ORNL: Bálint Joó
W\&M: Jozef Dudek ${ }^{1}$, Arkaitz Rodas, Felipe Ortega
ODU: Raúl Briceño ${ }^{1}$, Andrew Jackura
(${ }^{1}$ and Jefferson Lab)
Trinity College Dublin, Ireland: Michael Peardon, Sinéad Ryan, Nicolas Lang
UK: University of Cambridge: CT, David Wilson, Daniel Yeo, James Delaney
Edinburgh: Max Hansen; Southampton: Bipasha Chakraborty
Tata Institute, India: Nilmani Mathur
Ljubljana, Slovenia: Luka Leskovec

