D π/K scattering and charm meson resonances from lattice QCD

Christopher Thomas, University of Cambridge

c.e.thomas@damtp.cam.ac.uk

Bethe Forum on "*Multihadron Dynamics in a Box – A.D. 2022*" Bonn, 15 – 19 August 2022

Finite-volume energy eigenstates

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle = \sum_n \frac{e^{-E_n t}}{2 E_n} \left\langle 0 \left| \mathcal{O}_i(0) \right| n \right\rangle \left\langle n \left| \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

In each symmetry channel: matrix of correlators for large bases of interpolating operators with appropriate variety of structures. Use distillation to compute corrs.

$$\sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \left[\Gamma \overleftrightarrow{D} \overleftrightarrow{D} \dots \right] \psi(x) \qquad \sum_{\vec{p_1},\vec{p_2}} C(\vec{P},\vec{p_1},\vec{p_2}) H(\vec{p_1}) H(\vec{p_2}) \\ \sum_{\vec{p_1},\vec{p_2},\vec{p_3},\dots} C(\vec{P},\vec{p_1},\vec{p_2},\vec{p_3},\dots) H(\vec{p_1}) H(\vec{p_2}) H(\vec{p_3}) \dots$$

Finite-volume energy eigenstates

$$C_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle = \sum_n \frac{e^{-E_n t}}{2 E_n} \left\langle 0 \left| \mathcal{O}_i(0) \right| n \right\rangle \left\langle n \left| \mathcal{O}_j^{\dagger}(0) \right| 0 \right\rangle$$

In each symmetry channel: matrix of correlators for large bases of interpolating operators with appropriate variety of structures. Use distillation to compute corrs.

$$\sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \ \bar{\psi}(x) \left[\Gamma \overleftrightarrow{D} \overleftrightarrow{D} \dots \right] \psi(x) \qquad \sum_{\vec{p_1},\vec{p_2}} C(\vec{P},\vec{p_1},\vec{p_2}) H(\vec{p_1}) H(\vec{p_2}) \\ \sum_{\vec{p_1},\vec{p_2},\vec{p_3},\dots} C(\vec{P},\vec{p_1},\vec{p_2},\vec{p_3},\dots) H(\vec{p_1}) H(\vec{p_2}) H(\vec{p_3}) \dots$$

Variational method (generalised eigenvalue problem) $\rightarrow \{E_n\}$

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)} \quad \lambda^{(n)}(t) \sim e^{-E_n(t-t_0)}$$

$$v_i^{(n)} \to Z_i^{(n)} \equiv \langle 0 | \mathcal{O}_i | n \rangle \qquad \Omega^{(n)} \sim \sum_i v_i^{(n)} O_i$$

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of **finite-volume energy levels** $\{E_{cm}\}$ to **infinite-volume scattering t-matrix**.

$$\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

$$\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

$$det \left[1 + i \ \rho(E_{\rm Cm}) t(E_{\rm Cm}) \left(1 + i \mathcal{M}^{\vec{P}}(E_{\rm Cm}, L) \right) \right] = 0$$

Infinite-volume scattering *t*-matrix
Effect of finite volume (including reduced sym.)

[Complication: reduced sym. of lattice vol. \rightarrow 'mixing' of partial waves]

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of **finite-volume energy levels** $\{E_{cm}\}$ to **infinite-volume scattering t-matrix**.

$$\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

$$det \left[1 + i \ \rho(E_{\rm Cm}) t(E_{\rm Cm}) \left(1 + i \mathcal{M}^{\vec{P}}(E_{\rm Cm}, L) \right) \right] = 0$$

Infinite-volume scattering *t*-matrix Effect of finite volume (including reduced sym.)
$$\rho_i(E_{\rm cm}) = \frac{2k_i}{E_{\rm cm}}$$

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

[Complication: reduced sym. of lattice vol. \rightarrow 'mixing' of partial waves]

Lüscher method [NP B354, 531 (1991)] and extensions: relate discrete set of finite-volume energy levels $\{E_{cm}\}$ to infinite-volume scattering *t*-matrix.

$$\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)$$

$$det \left[1 + i \ \rho(E_{Cm}) t(E_{Cm}) \left(1 + i \mathcal{M}^{\vec{P}}(E_{Cm}, L) \right) \right] = 0$$

Infinite-volume scattering *t*-matrix Effect of finite volume (including reduced sym.)
$$\rho_i(E_{Cm}) = \frac{2k_i}{E_{Cm}}$$

Elastic scattering: one-to-one mapping $E_{cm} \leftrightarrow t(E_{cm})$

Analytically continue t in complex E_{cm} plane, look for poles.

[Complication: reduced sym. of lattice vol. \rightarrow 'mixing' of partial waves]

$$\det\left[1+i\,\rho(E_{\rm Cm})\boldsymbol{t}(E_{\rm Cm})\left(1+i\boldsymbol{\mathcal{M}}^{\vec{P}}(E_{\rm Cm},L)\right)\right]=0$$

Coupled channels (hadron-hadron and/or partial waves):

E.g.
$$t(E_{cm}) = \begin{pmatrix} t_{\pi\pi\to\pi\pi}(E_{cm}) & t_{\pi\pi\to K\bar{K}}(E_{cm}) \\ t_{K\bar{K}\to\pi\pi}(E_{cm}) & t_{K\bar{K}\to K\bar{K}}(E_{cm}) \end{pmatrix}$$

Given $\mathbf{t}(E_{cm})$: solutions \rightarrow finite-volume spectrum $\{E_{cm}\}$ But we need: spectrum $\rightarrow \mathbf{t}(E_{cm})$

$$\det\left[1+i\,\rho(E_{\rm Cm})\boldsymbol{t}(E_{\rm Cm})\left(1+i\boldsymbol{\mathcal{M}}^{\vec{P}}(E_{\rm Cm},L)\right)\right]=0$$

Coupled channels (hadron-hadron and/or partial waves):

E.g.
$$t(E_{cm}) = \begin{pmatrix} t_{\pi\pi\to\pi\pi}(E_{cm}) & t_{\pi\pi\to K\bar{K}}(E_{cm}) \\ t_{K\bar{K}\to\pi\pi}(E_{cm}) & t_{K\bar{K}\to K\bar{K}}(E_{cm}) \end{pmatrix}$$

Given $\mathbf{t}(E_{cm})$: solutions \rightarrow finite-volume spectrum $\{E_{cm}\}$ But we need: spectrum $\rightarrow \mathbf{t}(E_{cm})$

Under-constrained (each E_{cm} constrains *t*-matrix at that E_{cm}) \rightarrow Parameterize E_{cm} dep. of *t*-matrix; fit $\{E_{lattice}\}$ to $\{E_{param}\}$

Try different parameterizations, e.g. various *K*-matrix forms (unitarity) (also Breit Wigner, effective range expansion for elastic scattering). $t_{ij}^{-1} = \frac{1}{(2k_i)^{\ell_i}} K_{ij}^{-1} \frac{1}{(2k_i)^{\ell_j}} + I_{ij}$

$$\det\left[1+i\,\rho(E_{\rm Cm})\boldsymbol{t}(E_{\rm Cm})\left(1+i\boldsymbol{\mathcal{M}}^{\vec{P}}(E_{\rm Cm},L)\right)\right]=0$$

Require:

- Large set of $E_{\rm cm}$ in a range of channels:
 - various symmetry channels (irreps), and
 - overall non-zero momentum, different volumes, and/or twisted b.c.s
- Large enough spatial volume ($m_{\pi} L \gtrsim 4$)

This is for 2 hadron scattering – see other talks for >2 hadron scattering

Review in e.g. Briceño, Dudek, Young [Rev. Mod. Phys. 90, 025001 (2018)]

 $2k_i$

 $2k_i$

Other calculations

Some other lattice QCD work on DK and/or $D\pi$ scattering:

- Mohler et al [PR D87, 034501 (2013), 1208.4059];
- Liu *et al* [PR D87, 014508 (2013), 1208.4535];
- Mohler *et al* [PRL 111, 222001 (2013), 1308.3175];
- Lang et al [PR D90, 034510 (2014), 1403.8103];
- Bali et al (RQCD) [PR D96, 074501 (2017), 1706.01247];
- Alexandrou et al (ETM) [PR D101 034502 (2020), 1911.08435];
- Gregory *et al* [2106.15391]

Also:

- Martínez Torres et al [JHEP 05 (2015) 153, 1412.1706];
- Albaladejo *et al* [PL B767, 465 (2017), 1610.06727];
- Du et al [PR D98, 094018 (2018), 1712.07957];
- Guo et al [PR D98 014510 (2018), 1801.10122];
- Guo et al [EPJ C79, 13 (2019), 1811.05585]

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

Anisotropic lattices, $a_s/a_t \approx 3.5$, $a_s \approx 0.12$ fm, various volumes.

 N_f = 2+1, Wilson-clover fermions, $m_{\pi} \approx$ 239 MeV & 391 MeV. Use many different fermion-bilinear

 $\sim \bar{\psi} \Gamma D \dots \psi$

and *DK*, ... operators (built from 'optimised' *D* and *K* operators)

$$\Omega^{(n)} \sim \sum_i v_i^{(n)} O_i$$

DK (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

6

DK (isospin=0)

[Cheung, CT, Wilson, Moir, Peardon, Ryan (HadSpec), JHEP 02 (2021) 100, arXiv:2008.06432]

DK (isospin=0) – spectra

32

40

32

40

32

40

32

40

32

40

32

40

24

$m_\pi=239~{ m MeV}$ $a_t E_{cm}$ [000] A_1^+ $[100]A_1$ $[110]A_1$ $[111]A_1$ $[200]A_1$ $E_{cm}/$ MeV 0 0.42 $D_s \eta|_{\text{thr.}}$ $D^*K|_{\text{thr.}}$ -0-2500 -02 $D_s \pi \pi |_{\text{thr.}}$ 0.40 205 202 202 <u>a</u> $DK|_{\text{thr.}}$ 2400 32 22 202 300 322 0.38 2300 0.36 2200 ••• ••• e. ÷ 2100 0.34 32 32 32 24 32 40 40 40 40 32 40 $a_t E_{\rm cm} \ [000] T_1^ [000]E^+$ $[100]E_2$ $[110]B_1$ $[110]B_2$ $[111]E_2$ $E_{\rm cm}/$ MeV 長豆 <u>32</u> 0.42 $D_s \eta |_{\text{thr.}}$ $D^*K|_{thr.}$ 2500 202 ш $D_s \pi \pi |_{\text{thr}}$ 0.40 $DK|_{\text{thr}}$ 2400 0.38 2300 0.36 2200-~ • o, • 2100 0.34

[JHEP 02 (2021) 100]

*m*_π ≈ 239 MeV

Use 22 energy levels for $\ell = 0, 1$

DK (isospin=0) – spectra

[JHEP 02 (2021) 100]

$m_{\pi} \approx 391 \text{ MeV}$

Use 34 energy levels for $\ell = 0, 1$

DK (isospin=0) – amplitudes

*m*_π ≈ 239 MeV (22 energy levels) $\sim |amp|^2$ $|\rho\,t|^2$ 1.0 $t_{DK \to DK}^{(\ell=0)}$ S-wave 0.8 0.6 0.4 0.2 *P*-wave $t_{DK \to DK}^{(\ell=1)}$ $a_t E_{cm}$ 0.4 0.41 ю Ю ю Ю Ю Ю Ю Ю Ю Ю ю ю Ю $DK_{\rm thr}$ $D_s \eta_{\rm othr}$ $D_s\pi\pi|_{\rm thr.}$ $^{2500} E_{\rm cm}/{\rm MeV}$ 2450 2400 $D_s\eta$. DK

Elastic *DK* scattering in *S* and *P*-wave Sharp turn-on in *S*-wave at threshold

DK (isospin=0) – amplitudes

*m*_π ≈ 239 MeV *m*_π ≈ 391 MeV (22 energy levels) (34 energy levels) $\sim |amp|^2$ $|\rho\,t|^2$ $|\rho t|^2$ 1.0 $t_{DK \to DK}^{(\ell=0)}$ 1.0 S-wave 0.8 0.8 0.6 0.6 $t_{DK \to DK}^{(\ell=0)}$ 0.4 0.4 0.2 **P**-wave 0.2 $t_{DK \to DK}^{(\ell=1)}$ $t_{DK \to DK}^{(\ell=1)}$ 0.42 0.41 $a_t E_{cm}$ $a_t E_{cm}$ 0.44 변화 0.4 0.41 ю Ю ю ю юн ю Ю ю Ю ю Ю 법 Ю ю Ю ю Ю $DK_{\rm thr}$ $D_s \eta_{\rm othr}$ $D_s \eta_{\rm (thr.}$ $D_s\pi\pi|_{\rm thr.}$ $DK_{|\text{thr}}$ $^{2500} E_{\rm cm}/{\rm MeV}$ 2400 2450 2450 2500 $E_{\rm cm}/{\rm MeV}$ DK $D_{s}\eta$

Elastic *DK* scattering in *S* and *P*-wave Sharp turn-on in *S*-wave at threshold

DK (isospin=0) – *S*-wave poles

Bound-state pole strongly coupled to *S*-wave *DK*

 $\Delta E = 25(3)$ MeV for $m_{\pi} \approx 239$ MeV $\Delta E = 57(3)$ MeV for $m_{\pi} \approx 391$ MeV

DK (isospin=0) – *S*-wave poles

Bound-state pole strongly coupled to *S*-wave *DK*

 $\Delta E = 25(3)$ MeV for $m_{\pi} \approx 239$ MeV $\Delta E = 57(3)$ MeV for $m_{\pi} \approx 391$ MeV c.f. experiment $\Delta E \approx 45$ MeV (decays to $D_s \pi^0$)

DK (isospin=0) – S-wave poles

Bound-state pole strongly coupled to *S*-wave *DK*

 $\Delta E = 25(3) \text{ MeV for } m_{\pi} \approx 239 \text{ MeV} \qquad Z \leq 0.11$ $\Delta E = 57(3) \text{ MeV for } m_{\pi} \approx 391 \text{ MeV} \qquad Z \approx 0.13(6)$ c.f. experiment $\Delta E \approx 45 \text{ MeV}$ (decays to $D_s \pi^0$)

Weinberg [PR 137, B672 (1965)] compositeness, $0 \le Z \le 1$ (assuming binding is sufficiently weak)

DK (isospin=0) – *S*-wave poles

Bound-state pole strongly coupled to *S*-wave *DK*

 $\Delta E = 25(3) \text{ MeV for } m_{\pi} \approx 239 \text{ MeV} \qquad Z \leq 0.11$ $\Delta E = 57(3) \text{ MeV for } m_{\pi} \approx 391 \text{ MeV} \qquad Z \approx 0.13(6)$ c.f. experiment $\Delta E \approx 45 \text{ MeV}$ (decays to $D_s \pi^0$)

Also deeply bound state in *P*-wave, D_s^* , but doesn't strongly influence *DK* scattering at these energies

Use many operators, $\sim D\bar{K}$

11

Use many operators, $\sim D\bar{K}$

 $D\bar{K}$ (isospin=0,1)

Exotic flavour $(\overline{l} \, \overline{l} \, c \, s)$

 $[0,0,0] J^{P} = 0^{+}, ...$

[JHEP 02 (2021) 100]

$D\bar{K}$ (isospin=0,1)

Exotic flavour $(\overline{l} \, \overline{l} \, c \, s)$

[JHEP 02 (2021) 100]

$D\bar{K}$ (isospin=0,1)

Exotic flavour $(\overline{l} \, \overline{l} \, c \, s)$

[JHEP 02 (2021) 100]

$D\pi$ (isospin=1/2) – S-wave

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]

[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]

[Gayer, Lang, Ryan, Tims, CT, Wilson (HadSpec), JHEP 07 (2021) 123]

[Moir, Peardon, Ryan, CT, Wilson (HadSpec) JHEP 10 (2016) 011]

*m*_π ≈ 239 MeV
29 energy levels
(1 volume)

 $m_{\pi} \approx 391 \text{ MeV}$ 47 energy levels (3 volumes)

 D_0^* pole position may be lower than currently reported exp. mass. (See also Du *et al*, PRL 126, 192001 (2021), 2012.04599)

SU(3) multiplets:

SU(3) multiplets:

SU(3) multiplets:

S-wave results [broken SU(3)] suggest:

- $\overline{\mathbf{3}}$ resonance/bound state
- 6 virtual bound state
- $\overline{15}$ weak repulsion

[See also PR D87, 014508 (2013) (1208.4535); PL B767, 465 (2017) (1610.06727); PR D98, 094018 (2018) (1712.07957); PR D98 014510 (2018) (1801.10122); EPJ C79, 13 (2019) (1811.05585); arXiv:2106.15391]

Scattering involving non-zero spin hadrons [see also Woss, CT, Dudek, Edwards, Wilson, arXiv:1802.05580 (JHEP)]

 $J = \ell \otimes S$ and different partial waves with the same J^P can mix dynamically,

e.g.
$$J^{P} = 1^{+} (^{2S+1}\ell_{J} = {}^{3}S_{1}, {}^{3}D_{1})$$
 $t = \begin{bmatrix} t(^{3}S_{1}| {}^{3}S_{1}) & t(^{3}S_{1}| {}^{3}D_{1}) \\ t(^{3}S_{1}| {}^{3}D_{1}) & t(^{3}D_{1}| {}^{3}D_{1}) \end{bmatrix}$

Finite-volume lattice QCD: reduced sym \rightarrow additional 'mixing'

*m*_π ≈ 391 MeV

Use many different fermion-bilinear $\sim \overline{\psi} \Gamma D \dots \psi$ and $D^*\pi$, ... operators

$D^* \pi$ (isospin=1/2)

 $m_{\pi} \approx 391 \, \mathrm{MeV}$

$D^* \pi$ (isospin=1/2)

[arXiv:2205.05026]

$D^* \pi$ (isospin=1/2)

$D^* \pi$ (isospin=1/2) – poles

$D^* \pi$ (isospin=1/2) – poles

$D^* \pi$ (isospin=1/2) – poles

- Map out energy-dependence of scattering amps using lattice QCD.
- S-wave scattering of psuedoscalars (J^P=0⁺)
 - Isospin-0 DK: bound state
 - Isospin-1/2 $D\pi$: bound state/resonance
 - Exotic-flavour isospin-0 $D\bar{K}$: suggestion of virtual bound state

26

- Map out energy-dependence of scattering amps using lattice QCD.
- S-wave scattering of psuedoscalars (J^P=0⁺)
 - Isospin-0 DK: bound state
 - Isospin-1/2 $D\pi$: bound state/resonance
 - Exotic-flavour isospin-0 $D\bar{K}$: suggestion of virtual bound state
- Isospin-1/2 $D^*\pi$: D_1 (mostly 3S_1), D_1' (mostly 3D_1) in 1^+ , D_2 in 2^+

- Map out energy-dependence of scattering amps using lattice QCD.
- S-wave scattering of psuedoscalars (J^P=0⁺)
 - Isospin-0 DK: bound state
 - Isospin-1/2 $D\pi$: bound state/resonance
 - Exotic-flavour isospin-0 $D\bar{K}$: suggestion of virtual bound state
- Isospin-1/2 $D^*\pi$: D_1 (mostly 3S_1), D_1' (mostly 3D_1) in 1^+ , D_2 in 2^+
- Lighter (or heavier) light quarks? With SU(3) flavour sym?
- Further up in energy, inelastic scattering (3-hadron scattering)

Acknowledgements

Science and Technology **Facilities Council**

Dirac

Hadron Spectrum Collaboration

[www.hadspec.org]

Jefferson Lab and surroundings, USA:

JLab: Robert Edwards, Jie Chen, Frank Winter; ORNL: Bálint Joó W&M: Jozef Dudek¹, Arkaitz Rodas, Felipe Ortega ODU: Raúl Briceño¹, Andrew Jackura (¹ and Jefferson Lab)

Trinity College Dublin, Ireland: Michael Peardon, Sinéad Ryan, Nicolas Lang

University of Cambridge: CT, David Wilson, *Daniel Yeo, James Delaney* UK: Edinburgh: Max Hansen; Southampton: Bipasha Chakraborty

Tata Institute, India: Nilmani Mathur

Ljubljana, Slovenia: Luka Leskovec