# The nucleon-pion scattering lengths from lattice QCD at $m_{\pi}$ = 200 MeV

John Bulava

**DESY-Zeuthen** 



"Multihadron Dynamics in a Box - A.D. 2022" Bethe Center for Theoretical Physics - U. of Bonn Aug. 19<sup>th</sup>, 2022

#### **Motivation**

→  $N\pi \to N\pi$  is a step toward:

$$N(1440) \rightarrow N\pi\pi$$

$$N + A_{\mu} \rightarrow N\pi$$

Scattering lengths confronted with ChPT: 'convergence' near the physical point?

→ Direct lattice QCD determinations of scattering lengths constrain  $\sigma_{\pi N}$ 

# Difficulties with nucleon-pion scattering

(compared to meson-meson)

- Additional quark propagator in correlation functions
  - → efficient algorithm for all-to-all: Stochastic LapH

C. Morningstar, et al. PRD 83 (2011); M. Peardon, et al. PRD 80 (2009)

- → efficient contraction of hadron tensors
- Two partial waves for each non-zero J
  - → exhaustive determination of B-matrix elements

C. Morningstar, et al. NPB 910 (2016); M. Gockeler, et al. PRD 86 (2012)

- Worse signal-to-noise problem in baryon correlation functions
  - → high-statistics on CLS ensemble D200 (open temporal bc's)

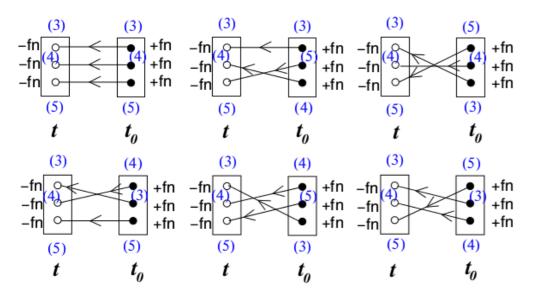
$$64^3 \times 128, \ a = 0.064 \text{fm}, \ m_{\pi} = 200 \text{MeV},$$

$$N_{\text{meas}} = 2000, t_{\text{max}} = 25a, m_{\pi}t_{\text{bnd}} = 2.5$$

M. Bruno, et al. JHEP 02 (2015); JB and S. Schaefer NPB 874 (2013)

# Correlation functions constructed by tensor contraction

Single Baryon – Single Baryon:



Single Baryon – Meson+Baryon:

(2)

+fn

+fn

-fn

-fn

(3)

(4)

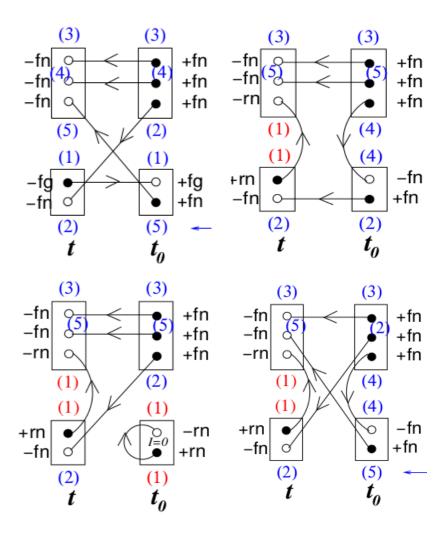
(5)

-fn

+fn

(5)

Meson+Baryon – Meson+Baryon:



# Correlation functions constructed by tensor contraction

- Optimizations familiar to DFT simulations:
  - 'Path' optimization: find best contraction order
  - Common sub-expression elimination

B. Hörz, et al. PRC 103 (2021)

- Tensor construction/contractions now require leadership class computing:
  - → large Frontera (TACC) allocation

 Part of a broad program to compute meson-baryon and baryon-baryon scattering amplitudes: Baryon Scattering Collaboration (BaSC)

C. Morningstar, S. Skinner (CMU); A. Nicholson (UNC); A. Walker-Loud, P. Vranas (LBL); A. Hanlon (BNL), B. Hörz (Intel), JB (DESY), F. Romero-Lopez (MIT), ... additional members in Mainz, TCD, GSI/Darmstadt

Npi paper draft online: https://arxiv.org/pdf/2208.03867.pdf

# Correlation functions constructed by tensor contraction

| Isospin channel                                                                                           | D200 Number of Correlators |
|-----------------------------------------------------------------------------------------------------------|----------------------------|
| I=0, S=0, NN                                                                                              | 8357                       |
| $I=0,\ S=-1,\ \Lambda,N\overline{K},\Sigma\pi$                                                            | 8143                       |
| $I = \frac{1}{2}, \ S = 0, \ N\pi$                                                                        | 696                        |
| $I = \frac{1}{2}, S = -1, N\Lambda, N\Sigma$                                                              | 17816                      |
| $I = \bar{1}, \ S = 0, \ NN$                                                                              | 7945                       |
| $egin{aligned} I = rac{3}{2}, \ S = 0,  \Delta, N\pi \ I = rac{3}{2}, \ S = -1,  N\Sigma \end{aligned}$ | 3218                       |
| $I = \frac{3}{2}, \ S = -1, \ N\Sigma$                                                                    | 23748                      |
| $I=ar{0},\ S=-2,\ \Lambda\Lambda, N\Xi, \Sigma\Sigma$                                                     | 16086                      |
| $I=2,\ S=-2,\ \Sigma\Sigma$                                                                               | 4589                       |
| Single hadrons (SH)                                                                                       | 33                         |

#### **Quantization Condition**

Below  $N\pi\pi$  threshold (and away from left cut):

$$\det[K^{-1}(E_{cm}^{L}) - B(L\mathbf{q}_{cm})] + O(e^{-ML}) = 0$$

M. Lüscher, Nucl. Phys. B354 (1991) 531, ...

- Block-diagonal in finite-volume irreps ightarrow additional 'occurrence' index  $n_{
  m occ}$
- Total spin = ½ fixed  $\rightarrow$  K-matrix is diagonal in  $J^P$  and  $n_{\rm occ}$ , but B dense.
- Truncate at  $\,\ell_{
  m max}=2\,{
  m for}$  isospin I = 3/2 and  $\,\ell_{
  m max}=0\,$  for I = ½

# Finite volume → Reduced symmetry

- Irreps where  $(2J,\ell)=(3,1)$  contributes for  $\ \Delta(1232)$
- Irreps where (1,0) contributes for scattering lengths.

| d         | $\Lambda$         | dim. | contributing $(2J, \ell)^{n_{\text{occ}}}$ for $\ell_{\text{max}} = 2$ |
|-----------|-------------------|------|------------------------------------------------------------------------|
| (0,0,0)   | $G_{1\mathrm{u}}$ | 2    | (1,0)                                                                  |
|           | $G_{1 m g}$       | 2    | (1,1)                                                                  |
|           | $H_{ m g}$        | 4    | (3,1), (5,2)                                                           |
|           | $H_{ m u}$        | 4    | (3,2),5,2)                                                             |
|           | $G_{ m 2g}$       | 2    | (5,2)                                                                  |
| (0, 0, n) | $G_1$             | 2    | (1,0), (1,1), (3,1), (3,2), (5,2)                                      |
|           | $G_2$             | 2    | $(3,1), (3,2), (5,2)^2$                                                |
| (0, n, n) | G                 | 2    | $(1,0), (1,1), (3,1)^2, (3,2)^2, (5,2)^3$                              |
| (n, n, n) | G                 | 2    | $(1,0), (1,1), (3,1), (3,2), (5,2)^2$                                  |
|           | $F_1$             | 1    | (3,1), (3,2), (5,2)                                                    |
|           | $F_2$             | 1    | (3,1), (3,2), (5,2)                                                    |

C. Michael, I. Teasdale NPB 215 (1983)

• Solve  $N_{
m op} imes N_{
m op}$  GEVP for a single  $(t_0,t_{
m d})$ 

$$C(t_{\rm d}) v_n(t_0, t_{\rm d}) = \lambda_n(t_0, t_{\rm d}) C(t_0) v_n(t_0, t_{\rm d})$$

$$\Rightarrow D_n(t) = \tilde{C}_{nn}(t) = (v_n(t_0, t_d), C(t)v_n(t_0, t_d))$$

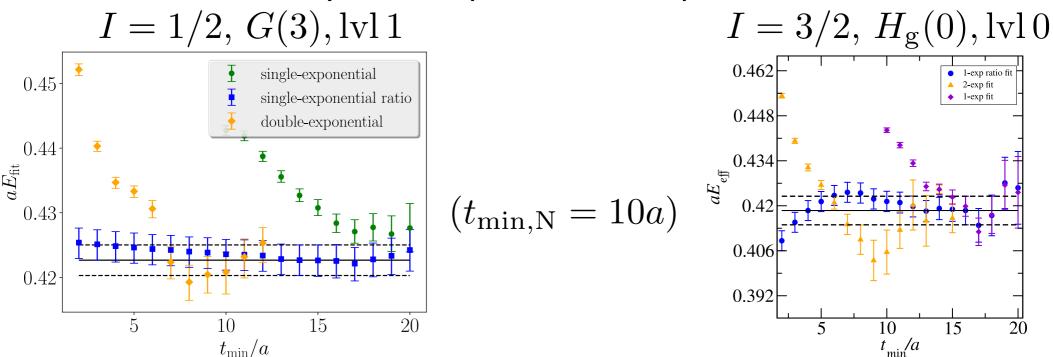
- Pro: no 'eigenvector pinning'
- Con: no formal control over large-time asymptotics
- Need to ensure:
  - Results independent of  $N_{
    m op}$  and  $(t_0,t_{
    m d})$
  - $\sum_{m < n} \tilde{C}_{nm}(t)$  is small

#### Fitting strategies:

- Single- (1-exp) and double-exponential (2-exp) fits to  $\,D_n(t)\,$
- Single-exponential fits to the ratio (1-exp ratio):

$$R_n(t) = \frac{D_n(t)}{C_{\pi}(\boldsymbol{d}_{\pi}^2, t) C_{N}(\boldsymbol{d}_{N}^2, t)}$$

Demand consistency btw. 1-exp ratio and 2-exp, also across GEVP's

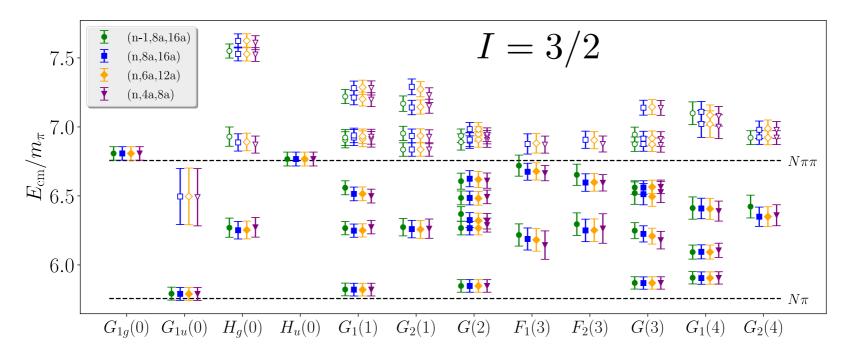


#### Fitting strategies:

- Single- (1-exp) and double-exponential (2-exp) fits to  $\,D_n(t)\,$
- Single-exponential fits to the ratio (1-exp ratio):

$$R_n(t) = \frac{D_n(t)}{C_{\pi}(\boldsymbol{d}_{\pi}^2, t) C_{N}(\boldsymbol{d}_{N}^2, t)}$$

Demand consistency btw. 1-exp ratio and 2-exp, also across GEVP's

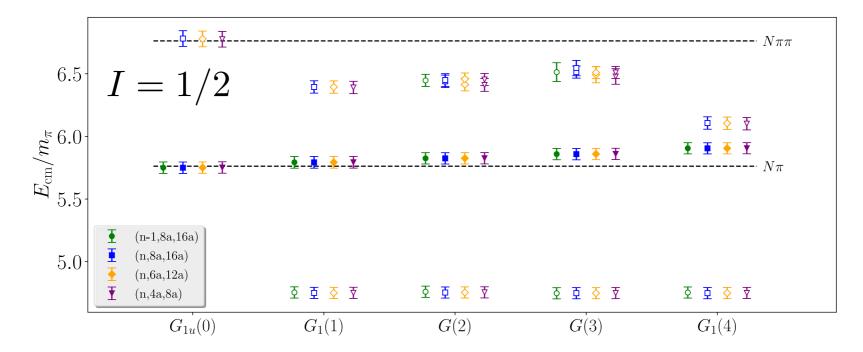


Fitting strategies:

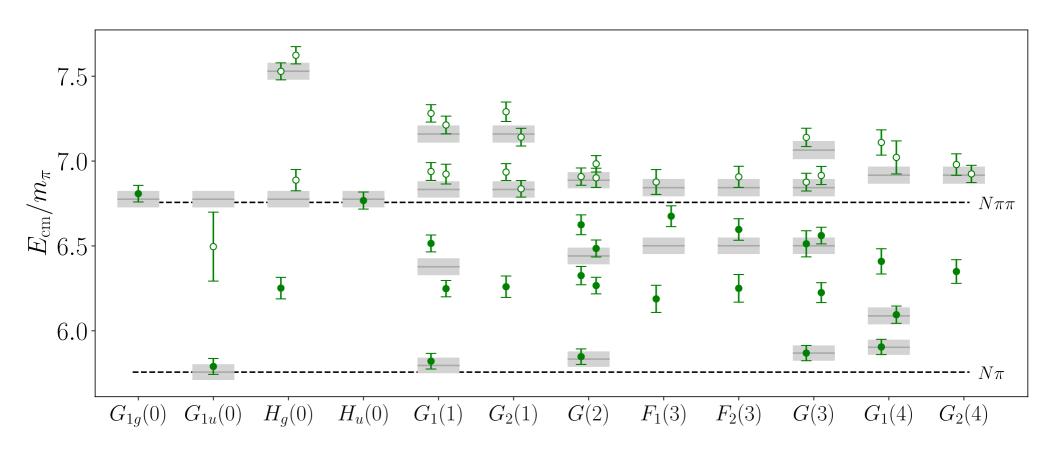
- Single- (1-exp) and double-exponential (2-exp) fits to  $\,D_n(t)\,$
- Single-exponential fits to the ratio (1-exp ratio):

$$R_n(t) = \frac{D_n(t)}{C_{\pi}(\boldsymbol{d}_{\pi}^2, t) C_{N}(\boldsymbol{d}_{N}^2, t)}$$

Demand consistency btw. 1-exp ratio and 2-exp, also across GEVP's

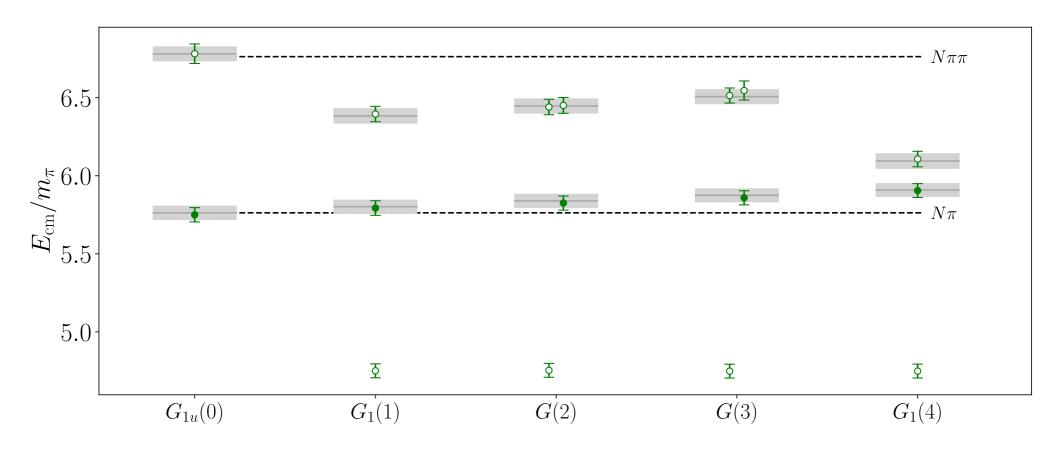


# I=3/2 finite-volume spectrum



Solid points included in the fit: within 1-sigma of inelastic threshold.

# I=1/2 finite-volume spectrum



Solid points included in the fit: lowest energies in all irreps with leading *s*-wave

#### Amplitude parametrizations:

• resonant *p*-wave:

$$\frac{q_{\rm cm}^3}{m_{\pi}^3} \cot \delta_{3/2^+}^{3/2} = \frac{6\pi\sqrt{s}}{m_{\pi}^3 g_{\rm BW}^2} (m_{\Delta}^2 - s)$$

all other waves:

$$\frac{q_{\rm cm}^{2\ell+1}}{m_{\pi}^{2\ell+1}} \cot \delta_{J^P}^I = \frac{\sqrt{s}}{m_{\pi} A_{J^P}^I}$$

 S-waves and resonant p-wave are important, only mild sensitivity to other waves.

Two fitting strategies to determine parameters  $\{p_n\}$ 

• Determinant residual (DR): C. Morningstar et al., Nucl. Phys. B924 (2017)

$$\chi^{2}(\{p_{n}\}) = \sum_{ij} \det_{i} \left(\{p_{n}\}, \frac{E_{\text{cm}}}{m_{\pi}}, m_{\pi}L, \frac{m_{\text{N}}}{m_{\pi}}\right) C_{ij}^{-1} \times \det_{j} \left(\{p_{n}\}, \frac{E_{\text{cm}}}{m_{\pi}}, m_{\pi}L, \frac{m_{\text{N}}}{m_{\pi}}\right)$$

• Spectrum method (SP): P. Guo et al., Phys. Rev. D 88 (2013)

$$\chi^{2}(\{p_{n}\}) = \sum_{ij} \left( \frac{q_{\text{cm},i}^{2}}{m_{\pi}^{2}} - \frac{q_{\text{cm},i}^{2,\text{QC}}}{m_{\pi}^{2}} (\{p_{n}\}) \right) C_{ij}^{-1} \left( \frac{q_{\text{cm},j}^{2}}{m_{\pi}^{2}} - \frac{q_{\text{cm},j}^{2,\text{QC}}}{m_{\pi}^{2}} (\{p_{n}\}) \right)$$

Two fitting strategies: to determine parameters  $\{p_n\}$ 

- Determinant residual (DR):
  - No root finding or identification of roots with levels
  - Covariance recalculated always
  - Residuals/covariance not precisely determined

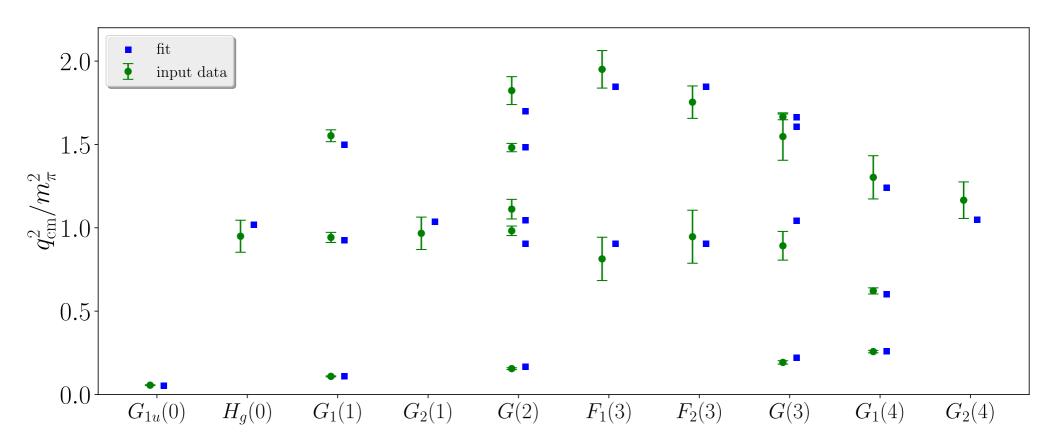
- Spectrum method (SP):
  - Root finding is tricky
  - Covariance independent of  $\{p_n\}$ , more precise
  - Terms for  $m_{\pi}L, \, \frac{m_{\mathrm{N}}}{m_{\pi}}$  have little effect

| Fit             | $N_{ m pw}$ | $A_{1/2^{-}}$ |         | $M_{\Delta}/M_{\pi}$ | $A_{1/2^+}$ | $A_{3/2}$ | $A_{5/2}$ | $\chi^2$ | dofs   |
|-----------------|-------------|---------------|---------|----------------------|-------------|-----------|-----------|----------|--------|
| $\overline{SP}$ | 2           | -1.56(4)      | 13.8(6) | 6.281(16)            |             |           |           | 44.38    | 23 - 3 |
| DR              | 2           | -1.57(5)      | 14.4(5) | 6.257(36)            |             |           |           | 14.91    | 23 - 3 |
| SP              | 5           | -1.53(4)      | 14.7(7) | 6.290(18)            | -0.19(6)    | -0.46(12) | 0.37(10)  | 30.17    | 25 - 6 |

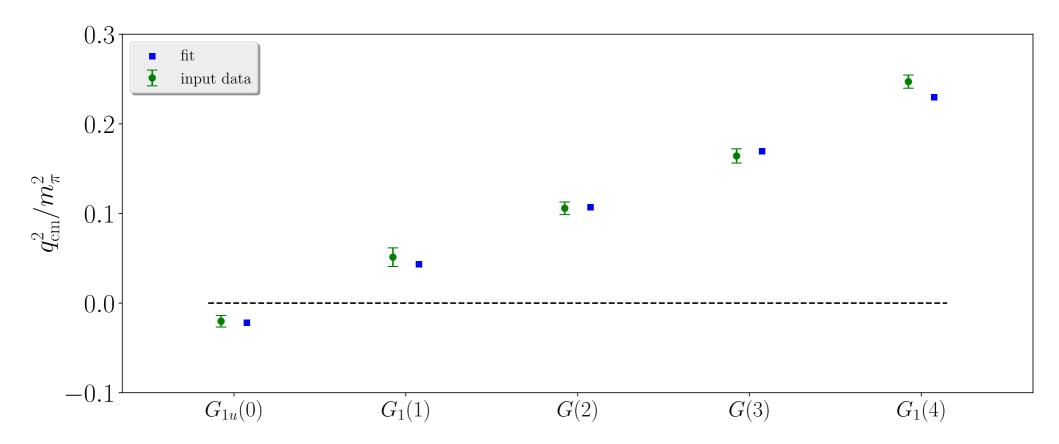
• 
$$| = \frac{1}{2}$$

| Fit                 | $N_{ m pw}$ | $A_{1/2}$ | $\chi^2$ | dofs  |
|---------------------|-------------|-----------|----------|-------|
| $\overline{SP}$     | 1           | 0.82(12)  | 1.68     | 5 - 1 |
| DR                  | 1           | 0.92(22)  | 1.72     | 5 - 1 |
| $\operatorname{SP}$ | 1           | 0.82(13)  | 0.79     | 4 - 1 |

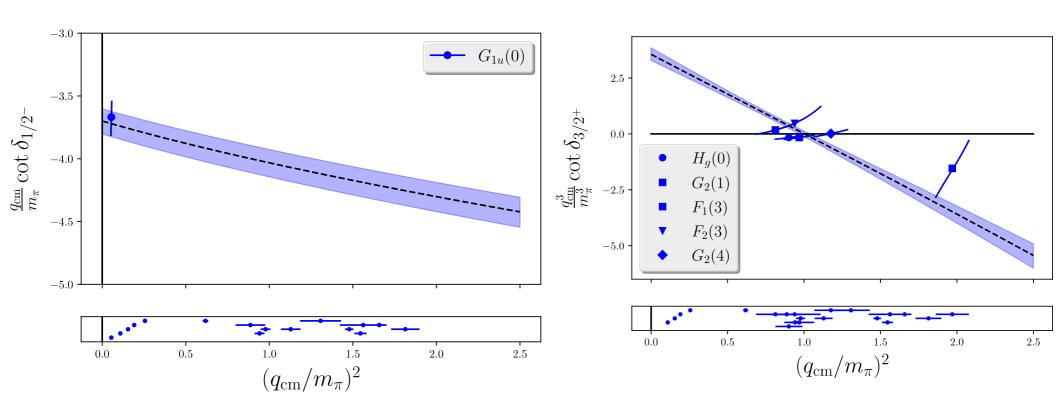
I = 3/2: all 5 partial waves, SP



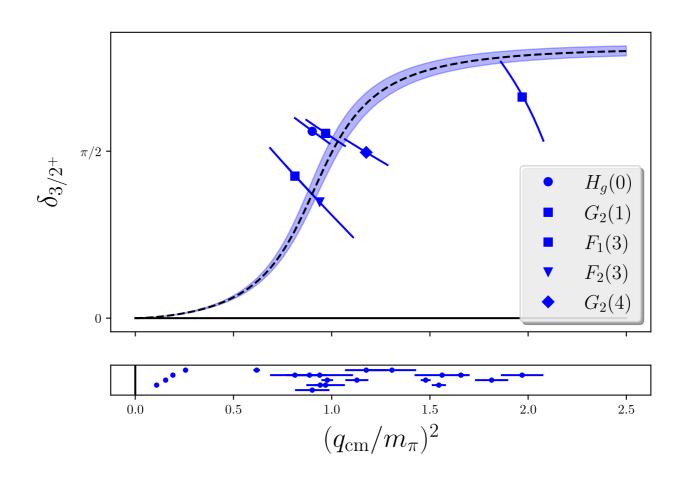
I = 1/2: 1 partial wave (SP)



I = 3/2:



I = 3/2:



I = 1/2:



# Comparison with Existing Results

Delta(1232) parameters:

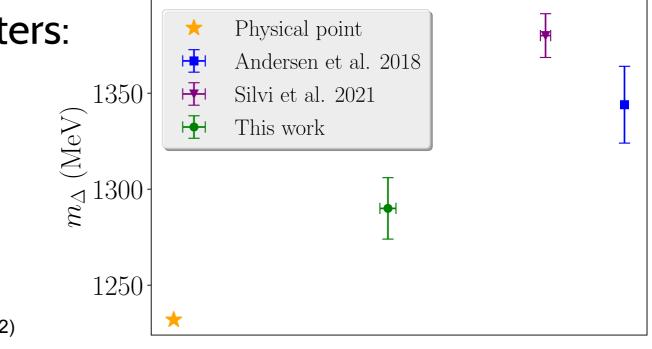
→ Additional (unpublished):

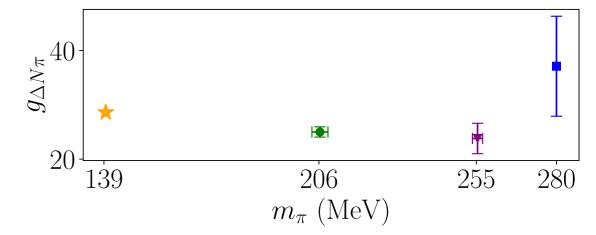
D. Mohler, PoS LATTICE2012 (2012)

V. Verducci, PhD Thesis (2014)

F. Pittler et al., PoS LATTICE2021 (2022)

→ Physical point from PDG '20



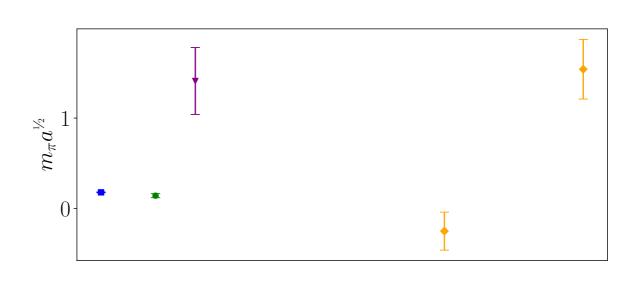


# Comparison with Existing Results

#### Scattering lengths:

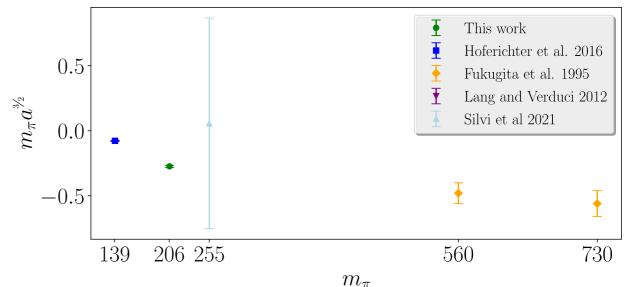
→ This work:

$$m_{\pi} a_0^{3/2} = -0.2735(81)$$
  
 $m_{\pi} a_0^{1/2} = 0.142(22)$ 



→ Pheno (isospin limit):

$$m_{\pi}a_0^{3/2} = -0.0775(35)$$
  
 $m_{\pi}a_0^{1/2} = 0.1788(38)$ 



M. Hoferichter et al. PLB 760 (2016)

### Conclusions

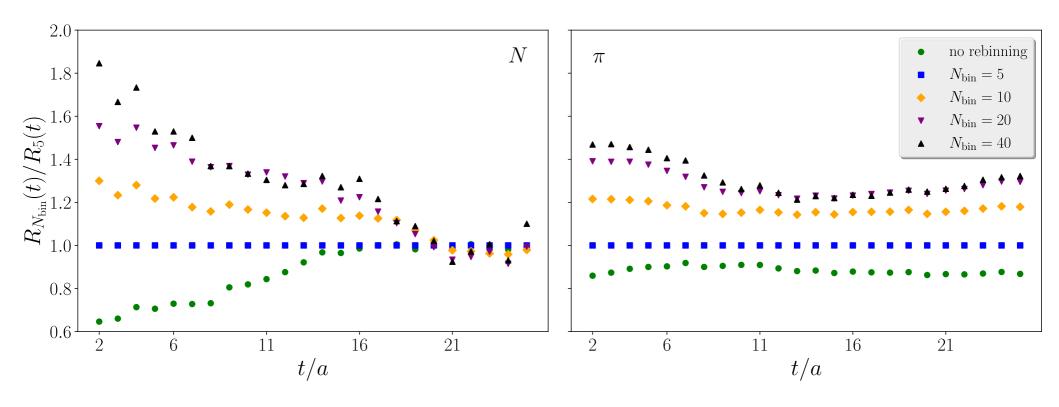
- Npi scattering amplitudes near/at the physical point are difficult, but within reach.
- Usual systematics need to be addressed: residual finite-volume effects, continuum limit

• Energy resolution of Delta(1232) limited by  $\,m_\pi L$ , larger volumes needed

- (Preliminary) interface with ChPT: NLO can describe scattering lengths, but with an LEC different than pheno.
- Stay Tuned for more from the Baryon Scattering Collaboration (BaSC)!

# **Autocorrelations**

• Relative errors on  $\,C_{\pi}(t)\,$  and  $\,C_{
m N}(t)\,$ 



# Ratio Fit Comparison

For I=3/2, G1u(O), lvl O compare ratio fits to simultaneous fit:

$$C_{\pi N}(t) = Ae^{-\Delta E t} \left\{ 1 + B_{\pi}e^{-\Delta E_{\pi} t} \right\} \times \left\{ 1 + B_{N}e^{-\Delta E_{N} t} \right\}$$
$$\left\{ 1 + B_{N}e^{-\Delta E_{N} t} \right\}$$
$$C_{\pi,N}(t) = A_{\pi,N}e^{-m_{\pi,N}t} \left\{ 1 + B_{\pi,N}e^{-\Delta E_{\pi,N}t} \right\}$$

