UNIVERSAL PARAMETERS OF EXCITED STATES OF MATTER

Maxim Mai

University of Bonn

The George Washington University

OUTLINE

Big picture
Case #1: Strangeness resonances
Case #2: Three-body resonances
Case #2.1: Three-body resonances from Lattice QCD

<u>``Towards a theory of hadron resonances''</u> Phys. Rept. 1001 (2023) — MM/Meißner/Urbach
 <u>``Multi-particle systems on the lattice and chiral extrapolations: a brief review,''</u> Eur. Phys. J. ST 230 (2021) — MM/Döring/Rusetsky
 <u>``Review of the Lambda(1405) A curious case of a strangeness resonance,''</u> Eur. Phys. J. ST 230 (2021) — MM

Deutsche Forschungsgemeinschaft

LEARNING NATURE'S LANGUAGE

General workflow

- mathematisation (abstract concepts)
- comparison with phenomena (predictions)
- observations, riddles ...

HISTORICAL EXAMPLE

Quantum mechanics

- governs subatomic world
- unconventional language
- many subtleties/interpretations

"If you think you understand quantum mechanics then you don't understand quantum mechanics" R. P. Feynman

> "... a new perspective on the physical nature of momentum at the quantum level." U.- J. Wiese Physics Colloquium Bonn — 12.05.2023

HISTORICAL EXAMPLE

Breakthrough

- explanation of atomic spectra
- discrete excitation energies
- new paradigm of physics

STRONG INTERACTION

Protons/neutrons

- 99% of the mass of visible matter in the universe
- Building blocks: quarks & gluons
- Part of a larger class of particles: hadrons

— 6 —

HADRON SPECTROSCOPY

Mostly excited states

 \approx 100 mesons & \approx 50 baryons (****)

Key questions

"can we write a law for the pattern of these states?" "do we understand how they are formed?"

— 7 — R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

QUANTUM CHROMODYNAMICS

- Compact form + passed all tests so far
- Non-perturbative at low energies
- Additional tools needed for hadron spectroscopy Effective field theories Cattice QCD

 $\begin{aligned} \chi &= \frac{1}{4g^2} \left(\int_{uv}^{\alpha} \int_{uv}^{\alpha} + \sum_{j} \overline{g}_{j} \left(i \partial^{-\mu} D_{\mu} + m_{j} \right) g_{j} \right) \\ \text{where } \left(\int_{uv}^{\alpha} = \partial_{\mu} \overline{f}_{v}^{\ \alpha} - \partial_{\nu} \overline{f}_{\mu}^{\ \alpha} + i f_{be}^{\ \alpha} \overline{f}_{\mu}^{\ b} \overline{f}_{v}^{\ c} \right) \\ \text{and } D_{\mu} &= \partial_{\mu} + i t^{\alpha} \overline{f}_{\mu}^{\ \alpha} \end{aligned}$ That's it!

http://frankwilczek.com/Wilczek_Easy_Pieces/298_QCD_Made_Simple.pdf

CASE #I

LAMBDA(1405) — A CURIOUS CASE OF A STRANGENESS RESONANCE

BROADER IMPACT

Twice non-perturbative regime of QCD

- too low for perturbative QCD
- too high for low-energy EFT

Antikaons in nuclear medium

- Strangeness in the EoS of neutron stars
- K-condensate can change EoS-stiffness

KbarNN & KbarNNN bound states

- dominated by KbarN interaction
- KbarN input is critical for interpretation

DEVELOPMENTS AND OUTLOOK

- Predicted in late 1950's
- Long history of experimental and theoretical efforts¹

 Reviews: Meißner, Symmetry 12 (2020); MM Eur.Phys.J.ST 230 (2021); Hyodo/Niiyama Prog.Part.Nucl.Phys. 120 (2021) Pro

	THEORY		EXPER
NNLO UCHPT	2023(?) Mohler et al. (LQCD) 2022 Sadasivan et al. 2022 Lu et al.	Klong 20xx SIDDHARTA2 20xx	Kaon beam Kaonic Deuteriu
	2019 Anisovich et al. 2018 Bayar et al. 2018 Revai et al. 2018 Sadasivan et al	AMADEUS 2022	K- absorption
Lattice QCD oduction amplitudes	2016 Cieply et al. 2015 Hall et al. (LQCD) 2014 Mai/Meißner 2013 Roca/Oset	AMADEUS 2018	in-flight capture
	2013 Guo/Oller 2012 Mai/Meißner 2012 Ikeda/Hyodo/Weise	CLAS 2015	Photoproductio
	2001 Oller/Meißner	HADES 2013	pp collisions
UCHPT Baryon ChPT	1998 Oset/Ramos 1995 Kaiser et al.	SIDDHARTA 2011	Kaonic Hydroge
ChPT	1985 Veitand et al.	COSY 2008	
	1978 Isgur Karl	Hemingway 1985	Sequential dec
Quark model		Rutherford Lab 1980s	Bubble chamb
	1960 Dalitz/Tuan 1959 Dalitz/Tuan	 LNL 1960s	
_			

um

e on He4

on

en

cays

oer

pole positions on unphysical Riemann Sheets

• Reaction-independent (universal) parameters:

... depends strongly on reaction, background, etc..

- data
- Resonances can show up as bumps in experimental

— I2 —

pole positions on unphysical Riemann Sheets

• Reaction-independent (universal) parameters:

... depends strongly on reaction, background, etc..

- data
- Resonances can show up as bumps in experimental

TRANSITION AMPLITUDE

One way:

- Chiral Perturbation Theory (#QCD#EFT) dictates the form of the interaction at low energies
- Unitary scattering amplitude from the Bethe-Salpeter equation
 - Fit: free parameters to experimental data / LQCD
 - **Extract:** Complex pole positions for complex energies

RESONANCE POLE(S)

Narrow pole below KbarN threshold
 W*= (1421...1429)-i(10...25) MeV
 → systematical and statistical uncertainties shrinking

— I5 —

RESONANCE POLE(S)

Inclusion of chiral symmetry constants demands a second state¹:

 $W^* = (I325...I38I) - i(56...II4) MeV$ $\rightarrow \text{ Common phenomenon in hadron physics}^2$

Oller/Meißner (2001); Ikeda/Hyodo/Weise(2011); MM/Meißner(2012); Guo/Oller(2012),...
 Meißner, Symmetry 12 (2020) 6, 981

CURRENT FRONTIER

- many tests:
 - \rightarrow K⁺ $\Sigma\pi$ photo-production constraints⁺
 - → Theory update: NNLO UCHPT²
 - \rightarrow K- absorption data³
- Two pole structure from Lattice QCD⁴

- Roca/Oset Phys.Rev.C 87 (2013); MM/Meißner Eur.Phys.J.A 51 (2015); Sarantsev et al. Eur.Phys.J.A 55 (2019); Bruns/Cieply/MM Phys.Rev.D 106 (2022)
- 2) Lu/Geng/Döring/MM Phys.Rev.Lett. 130 (2023)
- 3) AMADEUS Phys. Lett. B 782 (2018); Sadasivan et al Front.Phys. 11 (2023)
- 4) Daniel Mohler's Talk at the INT workshop 2023

CASE #2

THREE-BODY RESONANCES

HADRONIC 3-BODY PROBLEM: IMPACT

Hadron spectroscopy riddles

- Roper(1440) $\rightarrow \pi\pi N$ [first FV evaluations¹]
- $X(3872) \rightarrow DbarD\pi$
- $a_1(1260) \rightarrow \pi\pi\pi$

- I) Severt/MM/Meißner JHEP04(2023) >>> PHD talk on Friday
- 2) Sirunyan et al. [CMS@CERN] PRL122

. . .

3) Experimental programs: GlueX@JLAB; COMPASS@CERN;

SCATTERING AMPLITUDE

Three-body scattering amplitude^{1,2}

- constructed from unitarity
- novel result from the S-matrix theory

1) MM/Hu/Döring/Pilloni/Szczepaniak Eur.Phys.J.A 53 (2017)

2) related approaches: Wunderlich et al. JHEP 08 (2019); Jackura et al. Eur.Phys.J.C 79 (2019);

a_I(1260) PHENOMENOLOGY

- Fix quantum numbers to $a_1(1260) \rightarrow \pi\pi\pi$
- solution via complex spectator momentum
- unknown parameter from fits¹ to data

Data: Schael [ALEPH] Phys.Rept. 421 (2005); Estabrooks et al. Nucl.Phys.B 79; Protopopescu et al. Phys.Rev.D 7;

— 2I —

a_I(1260) PHENOMENOLOGY

- Predictions¹:
 - generalized kinematics: Dalitz Plot _
 - universal parameters of $a_1(1260)$

— 22 —

a_I(1260) PHENOMENOLOGY

- Predictions¹:
 - generalized kinematics: Dalitz Plot
 - universal parameters of $a_1(1260)$

1) Sadasivan/MM/Döring/Alexandru/Culver/Lee Phys.Rev.D 101 (2020)

2) [PDG]Workman et al. (2022); Mikhasenko et al. Phys.Rev.D 98 (2018)

CASE #2.1

THREE-BODY RESONANCES FROM LATTICE QCD

LATTICE HADRON SPECTROSCOPY

• Numerical evaluation of QCD Green's functions

$\mathcal{L}_{\text{QCD}} = \sum \bar{q}_f^a (i \not{D}_{ab} - m_f \delta_{ab}) q_f^b - \frac{1}{\Delta} G_{\mu\nu}^a G_a^{\mu\nu}$

LATTICE HADRON SPECTROSCOPY

Many studies of 2-body systems¹

I) [NPLQCD], [RQCD], [ETMC], [HadSpec], ...

2) Reviews: Briceño/Dudek/Young Rev.Mod.Phys. 90 (2018); MM/Meißner/Urbach Phys.Rept. 1001 (2023) — 26 —

LATTICE HADRON SPECTROSCOPY

- Experimentally inaccessible scenarios:
 - → Unconventional quantum numbers
 - → Three-body scattering
 - → Unphysical pion mass (chiral trajectories)

I) [NPLQCD], [RQCD], [ETMC], [HadSpec], ...

. . .

2) Reviews: Briceño/Dudek/Young Rev.Mod.Phys. 90 (2018); MM/Meißner/Urbach Phys.Rept. 1001 (2023) — 27 —

Review: MM/Döring/Rusetsky EPJ ST (2021)

LATTICE QCD

Lattice QCD: numerical evaluation of QCD Green's functions. But...

- discretized Euclidean space time (a>0)
- in finite volume (*L<oo*)

$\mathcal{L}_{\mathbf{QCD}} = \sum \bar{q}_f^a (i \not{D}_{ab} - m_f \delta_{ab}) q_f^b - \frac{1}{\Delta} G_{\mu\nu}^a G_a^{\mu\nu}$

— 28 —

HADRONS IN A BOX

Finite-volume spectrum is real and discrete! ... requires mapping: Quantization condition^{1,2}

I) Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...

2) Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021); 29 ____

HADRONS IN A BOX

Heavily simplified: on-shell particle-configurations: $\Delta E \sim mL$ off-shell particle-configurations: $\Delta E \sim e^{-mL}$

I) Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...

2) Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021); 30 ____

HADRONS IN A OX B

Heavily simplified: on-shell particle-configurations: $\Delta E \sim mL$ off-shell particle-configurations: $\Delta E \sim e^{-mL}$

I) Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...

2) Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021); 31 ____

3-BODY QUANTISATION CONDITION

Finite-volume unitarity (FVU)^{1,2}

- separates volume dependent terms
- volume independent terms connect infinite/finitevolume spectra

I) Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...

2) Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021); 32 —

 $0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{n}'\mathbf{n}}$

- First LQCD calculation¹ of a resonant 3b system
 - $N_f = 2$ dynamical fermions
 - LapH smearing
 - P = (0, 0, 0)
 - m_{π} =**224** MeV, m_{π} L=3.3
 - GEVP with one-/two-/three-meson operators

I) MM/Culver/Döring/Alexandru/Lee/Brett/Sadasivan [GWQCD] Phys.Rev.Lett. 127

"Heavier Universe"

I) MM/Culver/Döring/Alexandru/Lee/Brett/Sadasivan [GWQCD] Phys.Rev.Lett. 127

I) MM/Culver/Döring/Alexandru/Lee/Brett/Sadasivan [GWQCD] Phys.Rev.Lett. 127

 $T^{c} = B + C + \int \frac{d^{3}\ell}{(2\pi)^{3}} \frac{(B + C)}{2E_{l}} \frac{1}{\tilde{K}_{m}^{-1} - \Sigma_{m}} T^{c}$

— 35 —

I) MM/Culver/Döring/Alexandru/Lee/Brett/Sadasivan [GWQCD] Phys.Rev.Lett. 127

SUMMARY

• New synergetic approaches to universal parameters of resonance become available

• Chiral unitary models

→ QCD symmetries constraints to hadron-hadron dynamics → Strong predictive power

Lattice hadron spectroscopy

- → Novel 3-body methodology has matured
- → Effective field theories and S-matrix theory provide a
 - bridge to real world physics

SUMMARY

• New synergetic approaches to universal parameters of resonance become available

• Chiral unitary models

→ QCD symmetries constraints to hadron-hadron dynamics → Strong predictive power

Lattice hadron spectroscopy

- → Novel 3-body methodology has matured
- → Effective field theories and S-matrix theory provide a
 - bridge to real world physics

THANK YOU

