

On the origin of the Reactor Antineutrino Anomalies

A particle to nuclear physics journey

Alain Letourneau – (LEARN – aletourneau@cea.fr)

Particle Physics Seminar – University of Bonn -13 July 2023

A 10 years-long journey

What is known:

- Discovered in 1956
- Letpon particles with only 3 flavors

What is known:

- Discovered in 1956
- Letpon particles with only 3 flavors

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{PMNS} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

What is known:

- Discovered in 1956
- Letpon particles with only 3 flavors
- Mass and flavour eigenstates are not aligned

- Mixing angles known better than 10%
- ∆m² ~2 %

$$P(\bar{v}_e \to \bar{v}_e) = \left| < \bar{v}_e(t) \left| \bar{v}_e(0) > \right|^2 = f(sin^2(2\theta)sin^2\left(\frac{\Delta m^2}{4E}L\right)) \right|$$

Particle Physics Seminar at University of Bonn - 13/07/2023

Combined Cosmological Observations and Particle Physics Experiments

What is known:

- Discovered in 1956
- Letpon particles with only 3 flavors
- Mass and flavour eigenstates are not aligned
- Masses are tiny: $\sum m_{\nu} < 0.25 \text{ eV}, m_0 < 0.086 \text{ eV}$

Normal hierarchy **Inverted hierarchy** ν_3 ν_2 Δm_{21}^2 ν_1 Δm^2_{32} Δm_{31}^2 ν_2 Δm_{21}^2 ν_3 ν_1 $m^2_{ m lightest}$; $m_{ m lightest}^2$ ν_e $\Delta m_{ij}^2 = m_{\nu_i}^2$

What is known:

- Discovered in 1956
- Letpon particles with only 3 flavors
- Mass and flavour eigenstates are not aligned
- Masses are tiny: $\sum m_{v} < 0.25 \text{ eV}, m_{0} < 0.086 \text{ eV}$

Burning questions:

The mass values, hierarchy and nature (Majorana or Dirac) ?

What is known:

- Discovered in 1956
- Letpon particles with only 3 flavors
- Mass and flavour eigenstates are not aligned
- Masses are tiny: $\sum m_v < 0.25 \text{ eV}, m_0 < 0.086 \text{ eV}$

Burning questions:

- The mass values, hierarchy and nature (Majorana or Dirac) ?
- The CP symmetry violation phase ?

Excess of \bar{v}_e in LSND \bar{v}_{μ} beams: 87.9±22.4±6.0 events (3.8 σ) ٠

Not confirmed by MiniBooNe experiment but an ٠ excess at lower energy

What is known:

- Discovered in 1956
- Letpon particles with only 3 flavors
- Mass and flavour eigenstates are not aligned
- Masses are tiny: $\sum m_{v} < 0.25 \text{ eV}, m_{0} < 0.086 \text{ eV}$

Burning questions:

- The mass values, hierarchy and nature (Majorana or Dirac)?
- The CP symmetry violation phase ?
- Origin of some anomalies ?

Particle Physics Seminar at University of Bonn - 13/07/2023

Cez

• Deficit of v_e produced by ⁵¹Cr and ³⁷Ar sources in Gallium solar neutrino detectors

What is known:

- Discovered in 1956
- Letpon particles with only 3 flavors
- Mass and flavour eigenstates are not aligned
- Masses are tiny: $\sum m_{v} < 0.25 \text{ eV}, m_{0} < 0.086 \text{ eV}$

Burning questions:

- The mass values, hierarchy and nature (Majorana or Dirac) ?
- The CP symmetry violation phase ?
- Origin of some anomalies ?

The Reactor Antineutrino Anomaly (RAA)

• Deficit of \bar{v}_e produced by nuclear reactors

PHYSICAL REVIEW C 83, 054615 (2011)

Existence of ligth sterile neutrinos ?

The « 5 MeV bump » anomaly

Reactor Antineutrino Experiments in the world

The Sterile Neutrino hypothesis

Particle Physics Seminar at University of Bonn - 13/07/2023

STEREO experiment

Particle Physics Seminar at University of Bonn - 13/07/2023 cea

High Flux Reactor @ Institut Laue Langevin

HFR@ILL site

 Challenging mitigation of the background :

- reactor
- neighboring experiments
- cosmic-rays.

HFR@ILL site

Stereo data taking

Inverse Beta Decay event selection

Background rejection (cosmic rays)

Pulse Shape Discrimination for background rejection

PSD allows to reject fast neutrons

Neutrino rate extraction

Accurate control of detector response

- Tuned MC of the detector
- Weekly calibration with ⁵⁴Mn source
- Every few month, full calibrations with ¹³⁷Cs, ⁵⁴Mn, ⁶⁵Zn, ⁴²K, ⁶⁰Co, ²⁴Na, ²⁴¹Am⁹Be sources
- Stability of the detector response monitor with LED and n-H reaction, better than 0,5%

Energy resolution 9% at 1 MeV, 5% at 8 MeV A control of the systematic uncertainties at the 1% level

STEREO results (1/3)

Confirms the RAA in ²³⁵U and possibly ²³⁵U as the primary source of the RAA

STEREO results (2/3)

Confirms the « 5 MeV bump » in ²³⁵U and provides a new energy spectrum reference

STEREO results (3/3)

Rejects the hypothesis of a light Sterile neutrino to explain the RAA

Reactor Antineutrino Modeling

Particle Physics Seminar at University of Bonn - 13/07/2023

$S_f(E,t) = \sum A_f(t) \sum I_b \times S_f^b(E)$

2

3

4

5

6

8

v kinetic energy [MeV]

9

235₁

Total

More than 800 fission fragments, more than 10000 β -decay branches

Fission fragment activities

Beta branch intensities

$$S_{f}(E,t) = \sum_{f} A_{f}(t) \sum_{b} I_{b} \times S_{f}^{b}(E)$$

 Intensities from evaluated nuclear structure data base (ENSDF)

Beta branch intensities

$$S_{f}(E,t) = \sum_{f} A_{f}(t) \sum_{b} I_{b} \times S_{f}^{b}(E)$$

- Intensities from evaluated nuclear structure data base (ENSDF)
- But incomplete and Pandemonium effect

Electron/Antineutrino energy spectrum

$$S_{f}(E,t) = \sum_{f} A_{f}(t) \sum_{b} I_{b} \times S_{f}^{b}(E)$$

Fermi Golden rule: $S(E_{e})dE_{e} = \left(G_{F}^{2}/2\pi^{3}\right) |H|^{2} p_{e} E_{e}(E_{0} - E_{e})^{2} dE_{e}$

$$H = \frac{G_F}{\sqrt{2}} \sum_k \sum_{\mu} \int \left[\psi_f^* Q_k^- (\gamma_\mu - \lambda \gamma_\mu \gamma_5) \psi_i \right] \left[\psi_e^* \gamma^\mu (1 + \gamma_5) \psi_\nu \right]$$

Nuclear current Lepton current

Particle Physics Seminar at University of Bonn - 13/07/2023

β spectrum modeling

$$S_f^b(E) = K_f^b \times \mathcal{F}(Z_f, E) \times pE(E - E_{0f}^b)^2 \times C_f^b(E) \times \left(1 + \delta_f^b(Z_f, A_f, E)\right)$$

Comparison to ILL fission electrons

Muller-Huber model converts the ILL fission electron spectra

Pandemonium and missing data

2 Particle Physics Seminar at University of Bonn - 13/07/2023

Phenomenological Gamow-Teller strength model

- Below 2-3 MeV, ENSDF data are used or random discrete transitions are generated
- Above, random resonances are generated using the resonance parameter distributions from TAGS data.
- The strength is supposed to be proportional to the nuclear level densities :

$$\rho(E^*) = e^{\alpha \sqrt{E^*}} \rho_{HFB}(E^*)$$

 Based on the observation that in charge exchange reactions, resonance structures appear in the strength of the reaction due to collective effects with universal features.

Effect of $\boldsymbol{\alpha}$ parameter

Overall in good agreement for α ~ 0,7

Antineutrino and electron spectra for ²³⁵U

Shape and Norm incompatibility between STEREO antineutrino and BILL electron spectra for ²³⁵U

Electron spectra

The norm anomaly is carried by ²³⁵U but the shape anomaly seems to be carried by both

Conclusions and perspectives

- The Norm and Shape reactor antineutrino anomalies are 10 years long exciting scientific adventure opening the possibility for the existence of a light sterile neutrino.
- This hypothesis is now **rejected** by the results of the STEREO experiment.
- Recent theoretical works points to biases in the ILL fission electron energy spectra used to anchor the prediction as the origin of the anomalies.
- Progresses in the antineutrino energy spectra modeling and new measurements of the fission electron energy spectra are needed for confirmation
- Neutrino physics is now in the precision area allowing testing non standard interactions.
 Most systematic uncertainties are now on nuclear physics models.

Thank you for your attention