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How to search for physics beyond the Standard Model

Energy Frontier

Direct searches in high-energy collisions

Reach limited (mainly) by energy of collider

Precision Frontier

Indirect searches in precision observables

Reach limited by precision of experiment and theory

Can be sensitive to higher scales
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Sakurai Prize 2023

Quantum chromodynamics (QCD)

Protons and neutrons made of quarks

Strong force mediated via gluons
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Nobel Prize 2004

PDG 2019

Asymptotic freedom/confinement

Strong interactions become stronger at low energies, weaker at high energies. In

consequence, quarks are confined into hadrons and never appear as free particles.
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The challenge with strong interactions

David Gross at Mani-Fest 2022

M. Hoferichter (Institute for Theoretical Physics) BSM matrix elements from dispersion relations Apr 18, 2023 5



Model-independent, non-perturbative methods for low-energy QCD

1 Effective field theories: symmetries, separation of scales

Example: chiral symmetry of QCD 2023 Sakurai Prize citation: “For

fundamental contributions to the effective field theory of pions at low energies”

↪→ Chiral perturbation theory (ChPT)

Pions as pseudo Goldstone bosons

Expansion parameter: Mπ/Λχ, Λχ ∼ 1 GeV

Wide range of applications, from kaon decays to nuclear forces

2 Dispersion relations: analyticity, unitarity, crossing symmetry

Example: optical theorem

Based on Cauchy’s theorem, analytic structure of amplitudes

Experimental input

3 Lattice QCD: Monte-Carlo simulations

Solve QCD on a lattice

π,K, η

Λχ
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Interplay among methods
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Searching for physics beyond the SM at the Precision Frontier

Low-energy precision observables

Dipole moments (ℓ = e, µ, τ ; n, . . . )

↪→ Fermilab, J-PARC, PSI, . . .

Rare decays (B mesons, kaons, pions)

↪→ Belle II, LHCb, NA62, PIONEER, . . .
Atomic nuclei as BSM laboratories

Direct detection searches for dark matter

↪→ XENONnT, LZ, PANDAX, DARWIN, . . .

Lepton flavor violation: µ → e conversion in nuclei

↪→ Mu2e, COMET

Neutrino oscillation experiments: DUNE, HyperK

Many, many more

Experimental program at Precision Frontier

Need to understand complex systems

to isolate/interpret a potential BSM signal

XENONnT detector

Fermilab E989 storage ring
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Example: anomalous magnetic moment of the muon

Anomalous magnetic moment of the muon

aexp
µ = 116,592,061(41)× 10−11

aSM
µ = 116,591,810(43)× 10−11

aexp
µ − aSM

µ = 251(59)× 10−11[4.2σ]

Fermilab experiment: ∆aexp
µ = 16 × 10−11

↪→ needs to be matched by theory

Uncertainty in aSM
µ dominated by strong interactions

Hadronic vacuum polarization

Hadronic light-by-light scattering

Experimental program at Precision Frontier

Control over SM prediction crucial for discovery potential (and interpretation of limits)
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Complex analysis

Principle of maximal analyticity
Scattering amplitudes and form factors are represented by a complex function that

exhibits no further singularities except for those required by general principles such as

unitarity and crossing symmetry.

Unitarity: “right-hand cut”

↪→ when particles can go on-shell

Crossing symmetry: “left-hand cut”

↪→ crossed channels

Bound states/resonances

↪→ poles on real axis/on second Riemann sheet

Other singularities: partial-wave expansion,

anomalous thresholds, . . .

Peláez, Rodas, Ruiz de Elvira 2022
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From Cauchy’s theorem to dispersion relations

Cauchy’s theorem

f (s) =
1

2πi

∫
∂Ω

ds′ f (s′)

s′ − s

Subtractions

f (s) =
g

s − M2 + C︸︷︷︸
f (0)+ g

M2

+
s
π

∫
cuts

ds′ Im f (s′)

s′(s′ − s)

Imaginary part from Cutkosky rules

↪→ forward direction: optical theorem

Unitarity for partial waves: Im f (s) = ρ(s)|f (s)|2

Residue g reaction-independent

f(s) f(s)
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From Cauchy’s theorem to dispersion relations

Dispersion relation

f (s) =
g

s − M2 +
1
π

∫
cuts
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A concrete example: vacuum polarization by leptons

Vacuum polarization of the photon by a lepton loop:

k, µ k, ν
ℓ = −i

(
k2gµν − kµkν

)
Π
(
k2)

Π(k2)− Π(0) =
2α
π

∫ 1

0
dx x(1 − x) log

m2
ℓ − x(1 − x)k2

m2
ℓ

Logarithm develops a cut once m2
ℓ − x(1 − x)k2 can become negative

↪→ k2 > 4m2
ℓ with discontinuity

discΠ(k2) = 2i ImΠ(k2) = −2iθ(k2 − 4m2
ℓ)

α

3

√
1 − 4m2

ℓ

k2

(
1 +

2m2
ℓ

k2

)
Dispersion relation

Π(k2) = Π(0) +
k2

π

∫ ∞

4m2
ℓ

ds
ImΠ(s)

s(s − k2)

Physical value on real axis defined by k2 → k2 + iϵ
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A concrete example: vacuum polarization by hadrons
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ρ ω φ ψJ/ (2S)ψ
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(HVPTools compilation)

BES

KEDR
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Davier-Hoecker-Malaescu-Zhang, 2019
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π+π−

π+π−π0

K
+
K

−

π+π−π0π0

π+π−π+π−

K
0
S K

0
L

π0γ
KKππ
KKπ

(π+π−π+π−π0π0
)no η

ηπ+π−

(π+π−π+π−π0
)no η

ωπ0

ηγ
All other states

(π+π−π0π0π0
)no η

ωηπ0

ηω

π+π−π+π−π+π−

(π+π−π0π0π0π0
)no η

Davier, Hoecker, Malaescu, Zhang 2019 Keshavarzi, Nomura, Teubner 2018

For quarks at low energy perturbation theory breaks down

But: know the imaginary from unitarity

ImΠ(s) = − s
4πα

σtot
(
e+e− → hadrons

)
= −α

3
Rhad(s)

Master formula for HVP contribution to aµ

aHVP, LO
µ =

(
αmµ

3π

)2 ∫ ∞

sthr

ds
K̂ (s)

s2
Rhad(s)
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General strategy

Hadronic vacuum polarization is the ideal case

↪→ only one Lorentz structure, one kinematic variable, automatic subtraction

Otherwise, typical steps include derivation of

Lorentz decomposition e.g. Bardeen, Tung 1968, Tarrach 1975

Unitarity relation e.g. Watson 1954

Solution of dispersion relation e.g. Omnès 1958

Rest of the talk: Rescattering corrections to proton decay matrix elements

Compact, but non-trivial example for dispersive constraints

Interplay with lattice QCD and ChPT
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Searches for proton decay

Best limit on proton decay from SuperKamiokande

Br[p → π0e+] > 2.4 × 1034yr

Many other exclusive channels, but also inclusive

limits, e.g., p → e+X

Future experiments:

HyperKamiokande: another order of magnitude in

p → π0e+

DUNE, JUNO: competitive limits for kaon modes

Why measure all these different modes?

Channel Limit [1030 y]

p → π0e+ 2.4 × 104

p → π0µ+ 1.6 × 104

p → π+ν̄ 3.9 × 102

p → K 0e+ 1.0 × 103

p → K 0µ+ 3.6 × 103

p → K+ν̄ 5.9 × 103

p → ηe+ 1.0 × 104

p → ηµ+ 4.7 × 103

n → π−e+ 5.3 × 103

n → π−µ+ 3.5 × 103

n → π0ν̄ 1.1 × 103

n → K 0ν̄ 1.3 × 102

n → ην̄ 1.6 × 102

p, n → e+X 0.6

p, n → µ+X 12
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Standard Model EFT

Standard Model effective field theory

L = LSM +
1

ΛBSM

∑
k

C(5)
k O(5)

k +
1

Λ2
BSM

∑
k

C(6)
k O(6)

k +O
(

1
Λ3

BSM

)

Impose SM symmetries SU(3)c × SU(2)L × U(1)Y on higher-dimensional
operators Buchmüller, Wyler 1986, Grzadkowski et al. 2010

Dim 5: one operator structure, Weinberg operator O(5)
k = (ϕ̃†Lp)T C(ϕ̃†Lr )

Dim 6: 15︸︷︷︸
bosonic

+ 19︸︷︷︸
two-fermion

+ 25︸︷︷︸
four-fermion

= 59 B-conserving operator structures

B-violating operator structures Wilczek 1979, Weinberg 1979

Qduq = ε
αβγ

εjk

[(
dα

p

)T
Cuβ

r

] [(
qγ j

s

)T
CLk

t

]
Qqqu = ε

αβγ
εjk

[(
qαj

p

)T
Cqβk

r

] [(
uγ

s
)T Cet

]
Qqqq = ε

αβγ
εjnεkm

[(
qαj

p

)T
Cqβk

r

] [(
qγm

s

)T
CLn

t

]
Qduu = ε

αβγ
[(

dα
p

)T
Cuβ

r

] [(
uγ

s
)T Cet

]
How can we constrain the C(6)

k ?
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Matrix elements for nucleon decay

In all cases: need hadronization of quark-level operators

↪→ matrix elements

For most operators dominant limits from two-body decays,

e.g., p → π0e+

↪→ kinematics fixed

Exception: operators with τ require off-shell processes

such as p → π0ℓ+νℓν̄τ because decay into τ

kinematically forbidden

Momentum dependence of the form factors from dispersion

relations ⇒ pion–nucleon rescattering

Nτ+ν̄τ

ℓ+

νℓ

P

O /B

GF

N ′

N P

P ′

O /B

TPN
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Matrix elements for nucleon decay: normalization

Xi W
XiL
0 (0) W

XiL
1 (0) W

XiR
0 (0) W

XiR
1 (0)

U1 0.151(31) −0.134(18) −0.159(35) 0.169(37)

S1 0.043(4) 0.028(7) 0.085(12) −0.026(4)

S2 0.028(4) −0.049(7) −0.040(6) 0.053(7)

S3 0.101(11) −0.075(13) −0.109(19) 0.080(17)

S4 −0.072(8) 0.024(6) −0.044(5) −0.026(6)

S1+2+4 0.000(0) 0.000(0) 0.000(0) 0.000(0)

S2−3−4 0.000(0) 0.000(0) 0.112(15) 0.000(12) Yoo et al. 2022

Normalizations from lattice QCD

⟨π0|
[
ūcPAd

]
uB |p⟩ =

1
√

2
⟨π+|

[
ūcPAd

]
dB |p⟩ ≡

1
√

2
UAB

1

⟨K 0|
[
ūcPAs

]
uB |p⟩ ≡ SAB

1 ⟨K+|
[
ūcPAs

]
dB |p⟩ ≡ SAB

2 ⟨K+|
[
ūcPAd

]
sB |p⟩ ≡ SAB

3 ⟨K+|
[
d̄cPAs

]
uB |p⟩ ≡ SAB

4

Two form factors: X AB
i = PB

[
W

XAB
i

0 (s) + /q
mN

W
XAB

i
1 (s)

]
uN(p), write XiA ≡ X AL

i

Found two new relations:

S1A + S2A + S4A = 0 (isospin) S2L − S3L − S4L = 0 (Fierz)
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Matrix elements for nucleon decay: unitarity and ChPT

For which scalar functions should one write dispersion relations?

Need to avoid kinematic singularities and zeros: W0(s), W1(s)

Would like simple unitary relations: W±(s) = W0(s)±
√

s
mN

W1(s) because

Im W+(s) = W+(s)e−iδ0+(s) sin δ0+(s) Im W−(s) = W−(s)e−iδ1−(s) sin δ1−(s)

with πN phase shifts δℓ±, j = ℓ± 1/2

Further constraint from baryon-pole diagrams (from ChPT Aoki et al. 2000)

W ChPT
0 (s) = W0(0)

[
1 − mB

mN

W1(0)
W0(0)

s
m2

B − s

]

W ChPT
1 (s) = W1(0)

m2
B

m2
B − s

Suppressed isospin label I = {1/2, 1, 0} ⇒ mB = {mN ,mΣ,mΛ}

↪→ how can we combine all of that?
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Omnès solution for pion vector form factor

Electromagnetic form factor of the pion

⟨π±(p′)|jµem(0)|π±(p)⟩ = ±(p + p′)µF V
π (s) s = (p′ − p)2

Unitarity

Im F V
π (s) = θ

(
s − 4M2

π

)
F V
π (s)e−iδ1

1(s)sin δ1
1(s) F V

π t1

↪→ final-state theorem: phase of F V
π equals ππ P-wave phase δ1

1 Watson 1954

Solution in terms of Omnès function Omnès 1958

F V
π (s) = P(s)Ω1

1(s) Ω1
1(s) = exp

{
s
π

∫ ∞

4M2
π

ds′
δ1

1(s
′)

s′(s′ − s)

}
↪→ can be predicted in terms of elastic phase shift!

Function P(s) free of 2π cut, but may still have other singularities (3π, 4π, . . .)
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Matrix elements for nucleon decay: solution strategy

Would be tempted to write

W+(s) = P+(s)Ω0+(s) Ω0+(s) = exp

{
s
π

∫ ∞

sth

ds′
δ0+(s′)

s′(s′ − s)

}
W−(s) = P−(s)Ω1−(s) Ω1−(s) = exp

{
s
π

∫ ∞

sth

ds′
δ1−(s′)

s′(s′ − s)

}
with sth = (mN + MP)

2, P = π,K

But: W±(s) = W0(s)±
√

s
mN

W1(s) has kinematic singularity ∼
√

s

↪→ P±(s) have to inherit this cut

Idea: W0(s) = W+(s) + W−(s) again free of kinematic singularities

↪→ singularities have to cancel between P±(s)

Ansatz:
W0(s) = W0(0)

[
(1 − α)Ω0+(s) + α

m2
B

m2
B − s

Ω1−(s)
]

since baryon pole sits in W−(s)

ChPT fixes α = − mB
mN

W1(0)
W0(0)
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Matrix elements for nucleon decay: solution strategy II

Second idea:
W+(s)W−(s) =

[
W0(s)

]2 − s
m2

N

[
W1(s)

]2

is again free of kinematic singularities and has an Omnès solution with δ0+ + δ1−

Second ansatz:

W+(s)W−(s) =
[
W0(0)

]2
Ω0+(s)Ω1−(s)

m2
B

m2
B − s

(1 + βs)

β =
(
1 − 2α

)[
Ω̇0+ − Ω̇1− − 1

m2
B

]
−

[
W1(0)

]2

m2
N

[
W0(0)

]2 Ω̇ℓ± =
dΩℓ±(s)

ds

∣∣∣∣
s=0

↪→ implements normalization, unitarity, and chiral constraints
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Matrix elements for nucleon decay: results
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S3L
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Typical limits:

Two-body decays:

|Ci | ≲ (10−15/GeV)2

Four-body decays:

|Ci | ≲ (10−10/GeV)2

↪→ phase space and GF

Closes flat directions for τ

operators

Important input for global

analysis of B-violating

sector of SMEFT
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Conclusions

Matrix elements for BSM searches from dispersion relations

Convert quark-level operators to observables

Non-perturbative methods required

Analyticity and unitarity implemented via dispersion relations

Rescattering corrections to proton-decay matrix elements

Unitarity corrections from meson–nucleon rescattering

Momentum dependence of form factors

Application to τ -mediated nucleon decay

N ′

N P

P ′

O /B

TPN
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