X17 discovery potential from $yd \rightarrow e^+e^-pn$ with neutron tagging

Cornelis J.G. Mommers & Marc Vanderhaeghen Johannes Gutenberg-Universität Mainz arXiv:2307.02181 [hep-ph]

Outline

- 1. What is X17?
- 2. Neutron tagging at MESA
- 3. X17 signal and QED background
- 4. Outlook
- 5. Questions

• New particle conjectured to explain ATOMKI anomaly in $^{7}\text{Li}(p,\gamma)^{8}\text{Be}$ with 1⁺ state of $^{8}\text{Be}(18.15)$

• New particle conjectured to explain ATOMKI anomaly in $^{7}\text{Li}(p,\gamma)^{8}\text{Be}$ with 1⁺ state of $^{8}\text{Be}(18.15)$

 New particle conjectured to explain ATOMKI anomaly in ⁷Li(p,γ)⁸Be with 1⁺ state of ⁸Be(18.15)

• New particle conjectured to explain ATOMKI anomaly in $^{7}\text{Li}(p,\gamma)^{8}\text{Be}$ with 1⁺ state of $^{8}\text{Be}(18.15)$

Phys. Rev. Lett. 116, 042501 (2016)

PRL 116, 042501 (2016)

PHYSICAL REVIEW LETTERS

week ending 29 JANUARY 2016

Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,^{*} M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, and Zs. Vajta Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

> T. J. Ketel Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary (Received 7 April 2015; published 26 January 2016)

• Assume definite parity (J^{P})

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺
- $\bullet\; A \to XB$

$$\mathbf{J}_A = \mathbf{S}_X + \mathbf{S}_B + \mathbf{L} \qquad P_A = P_X \times P_B \times (-1)^L$$

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

$$\mathbf{J}_A = \mathbf{S}_X + \mathbf{S}_B + \mathbf{L} \qquad P_A = P_X \times P_B \times (-1)^L$$
$$\mathbf{1} = \mathbf{S}_X + \mathbf{0} + \mathbf{L} \qquad +1 = P_X \times (+1) \times (-1)^L$$

- Assume definite parity (J^P)
- Example: ⁸Be(18.15), 1⁺
- $\bullet \; A \to XB$

$$\mathbf{J}_A = \mathbf{S}_X + \mathbf{S}_B + \mathbf{L} \qquad P_A = P_X \times P_B \times (-1)^L$$
$$\mathbf{1} = \mathbf{S}_X + \mathbf{0} + \mathbf{L} \qquad +1 = P_X \times (+1) \times (-1)^L$$
$$\mathbf{S}_X = \mathbf{0} \implies |L - 1| \le 0 \le L + 1 \implies L = 1$$

- Assume definite parity (J^{P})
- Example: ⁸Be(18.15), 1⁺
- $\bullet \ A \to XB$

- Assume definite parity (J^{P})
- Example: ⁸Be(18.15), 1⁺
- $A \to XB$

• Assume definite parity (J^{P})

 State (MeV)
 Scalar (0+)
 Pseudoscalar (0-)
 Vector (1-)
 Axial vector (1+)

 ⁸Be(18.15), 1+
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *

• Assume definite parity (J^{P})

State (MeV)	Scalar (0 ⁺)	Pseudoscalar (0 ⁻)	Vector (1 ⁻)	Axial vector (1 ⁺)
⁸ Be(18.15), 1 ⁺		\checkmark	\checkmark	\checkmark
⁸ Be(17.64), 1 ⁺		\checkmark	\checkmark	\checkmark
⁴ He(21.01), 0 ⁻		\checkmark		\checkmark
⁴ He(20.21), 0 ⁺	\checkmark		\checkmark	
¹² C(17.23), 1 ⁻	\checkmark		\checkmark	\checkmark

 Proton coupling bounded by SINDRUM, NA48/2 (protophobic), derive limits on neutron coupling

• Parity etc. still unclear

- Parity etc. still unclear
- Need independent verification!

- Parity etc. still unclear
- Need independent verification!
- Ongoing/planned experiments at MEG II (PSI), CCPAC (Montreal) and others (see Eur.Phys.J.C 83 (2023) 3, 230)

- Parity etc. still unclear
- Need independent verification!
- Ongoing/planned experiments at MEG II (PSI), CCPAC (Montreal) and others (see Eur.Phys.J.C 83 (2023) 3, 230)
- We propose a direct search at MAGIX experiment at MESA

MAGIX@MESA

• MESA is a linear accelerator under construction in Mainz

MESA Experiments

MAGIX@MESA

- MESA is a linear accelerator under construction in Mainz
- Low energy, high intensity electron beam ~105 MeV

MESA Experiments

MAGIX@MESA

- MESA is a linear accelerator under construction in Mainz
- Low energy, high intensity electron beam ~105 MeV
- MAGIX is a pair of multipurpose spectrometers, can measure m_{ee} with precision of 0.1 MeV

MESA Experiments

• Direct search using $\gamma N \rightarrow Ne^+e^-$

- Direct search using $\gamma N \rightarrow Ne^+e^-$
- Stronger signal with neutrons, QED background suppressed

- Direct search using $\gamma N \rightarrow Ne^+e^-$
- Stronger signal with neutrons, QED background suppressed
- No free neutron target!

- Direct search using $\gamma N \rightarrow Ne^+e^-$
- Stronger signal with neutrons, QED background suppressed
- No free neutron target!
- Consider neutron bound in deuteron, $\gamma d \rightarrow e^+e^-pn$

- Direct search using $\gamma N \rightarrow Ne^+e^-$
- Stronger signal with neutrons, QED background suppressed
- No free neutron target!
- Consider neutron bound in deuteron, $\gamma d \rightarrow e^+e^-pn$
- Pick kinematics where neutron is "quasi-free"

- Direct search using $\gamma N \rightarrow Ne^+e^-$
- Stronger signal with neutrons, QED background suppressed
- No free neutron target!
- Consider neutron bound in deuteron, $\gamma d \rightarrow e^+e^-pn$
- Pick kinematics where neutron is "quasi-free"
- Work within plane-wave impulse approximation: $\mathcal{M}(\gamma D \to e^+e^-pn) \propto \psi_D \times \mathcal{M}(\gamma n \to e^+e^-n) + \psi_D \times \mathcal{M}(\gamma p \to e^+e^-p)$

n

Relevant diagrams

Relevant diagrams

• Higher-order corrections ~25%, tree level sufficient for this work

Signal optimization

• Optimize kinematics such that X17 signal is visible over QED background, subject to constraints

Signal optimization

• Optimize kinematics such that X17 signal is visible over QED background, subject to constraints

Signal optimization

• Optimize kinematics such that X17 signal is visible over QED background, subject to constraints

• Sensitivity MESA: $\delta m_{ee} = 0.1 \text{ MeV}$

Results (I)

Results (II)

X17 discovery potential from $\gamma d \rightarrow e^+ e^- pn$, Cornelis J.G. Mommers & Marc Vanderhaeghen, arXiv:2307.02181 [hep-ph] 14

Outlook

• Not limited to X17 – can draw exclusion limits

Outlook

- Not limited to X17 can draw exclusion limits
- Use same measurement data to get neutron polarizabilities

Photon Scattering on Quasi-Free Neutrons in the Reaction $\gamma d \rightarrow \gamma' np$ and Neutron Polarizabilities

M. I. Levchuk¹, A. I. L'vov², and V. A. Petrun'kin²

- ¹ B. I. Stepanov Institute of Physics, Belorussian Academy of Sciences, F. Scarina Prospect 70, 220602 Minsk, Belarus
- ² P. N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky Prospect 53, Moscow 117924, Russia

- ATOMKI anomaly is a smoking gun
- Much is still unclear, clear need for independent experiments
- MAGIX experiment at MESA is uniquely suited for a direct search using neutron tagging
- Calculation may be extended for exclusion plots

X17 discovery potential from yd→e⁺e⁻pn with neutron tagging

Cornelis J.G. Mommers & Marc Vanderhaeghen Johannes Gutenberg-Universität Mainz arXiv:2307.02181 [hep-ph]

X17 discovery potential from $yd \rightarrow e^+e^-pn$ with neutron tagging

Compared to a fast-moving

photon, the slow-moving X17

electron-positron opening

would give a larger

Cornelis J.G. Mommers and Marc Vanderhaegher JGU Mainz, arXiv:2307.02181 [hep-ph]

1. What is X17?

 The ATOMKI group found anomalous signals in the decays of excited Be (figure below), "He, and "C nuclei with statistical significances exceeding

. To account for these anomalies, they proposed the existence of X17, a light boson with a mass of 17.02(10) MeV

 Assuming definite parity, X17 is either a pseudoscalar, vector or axia This conjecture has sparked a global experimental effort to replicate the anomaly. There are ongoing experiments at CCPAC (Canada), PSI (Switzerland), New JEDI (France), among others.

2. X17 at electron accelerators

· Ongoing experiments focus on nuclear decays. X17 must take part in other processes • In $yn \rightarrow e^+e^-n$ the X17 signal would be clearly visible ver the QED background. Direct search in this way would provide a timely nd independent confirmation of X17's existe MAGIX experiment at MESA is ideal for such Produce photon from low-energy yet high-intensity electron bea (E = 105 MeV) High-resolution spectrometers (δm = 0.1 MeV) Similar results (not shown) hold nseudoscalar and axial-vector X17

$E_{\gamma} = 105 \text{ MeV}$ $m_{00} = 17.02 \text{ MeV}$ $m_{00} = 0.1 \text{ MeV}$ - QED + X17 V/[The] - QED + X17 V/[The]

3. Neutron tagging

Neutron target is not available in the lab

 vd → e'e pn with neutron tagging instead Bound neutron is guasi free, proton a spectato

Scattering events primarily on quasi-free neutror

X17 has a very narrow width, F_<< 100 keV

· Cross section only depend

single bin.

coupling.

coupling to nucleons.

Influence of electron coupling not resolvable inside

4. X17 signal visible over **QED** background

X17 signal would appear

as a sharp spike in a single bin

Use beryllium and carbon measurements to constrain X17

Slight tension between couplings derived from beryllium and carbon nuclear decays highlights need for independent verification.

· X17 signal (dashed) is visible over the QED background

MAGIX@MESA would be able to provide this verification!

▲ Cross section axial vector XI7 inside a single bir

Bonus slides

Table ATOMKI decays

Ref.	State (MeV)	Transition	(J^P)
[2]-[4], [6]	$^{8}\text{Be}(18.15)$	$1^+ \rightarrow 0^+$	(M1, isoscalar)
[2]-[4], [6]	${}^{8}\mathrm{Be}(17.64)$	$1^+ \rightarrow 0^+$	(M1, isovector)
[5], [7]-[9]	$^{4}\text{He}(21.01)$	$0^- \rightarrow 0^+$	(M0)
[5], [7]-[9]	${}^{4}\text{He}(20.21)$	$0^+ \rightarrow 0^+$	(E0)
[10]	$^{12}C(17.23)$	$1^- \rightarrow 0^+$	(E1, isovector)

States (MeV)	$m_X \ (MeV)$	Γ_X (eV)	B
8 Be(18.15)	$16.70 \pm 0.35(\text{stat}) \pm 0.5(\text{syst})$	$1.1(2) \times 10^{-5}$	5.8×10^{-6}
${}^{8}\text{Be}(18.15), {}^{8}\text{Be}(17.64)$	17.01(16)	$1.2(2) \times 10^{-5}$	$6(1) \times 10^{-6}$
${}^{4}\text{He}(21.01), {}^{4}\text{He}(20.21)$	$16.94 \pm 0.12(\text{stat}) \pm 0.21(\text{syst})$		
${}^{4}\text{He}(21.01), {}^{4}\text{He}(20.21)$	$16.84 \pm 0.16(\text{stat}) \pm 0.20(\text{syst})$	3.9×10^{-5}	$1.2(4) \times 10^{-1}$
$^{12}C(17.23)$	$17.03 \pm 0.11(\text{stat}) \pm 0.20(\text{syst})$	$1.6(1) \times 10^{-4}$	$3.6(3) \times 10^{-6}$

Deriving limits on couplings (P)

 $\mathcal{L}_{0^{-}} = i\bar{N}\gamma_5 \left(g_{XNN}^{(0)} + g_{XNN}^{(1)}\tau^3\right)NX$

• SINDRUM: $|g_{XNN}^{(1)}| \lesssim 0.6 \times 10^{-3}$ (Phys. Lett. B 175, 101 (1986))

• Multipole:
$$\frac{\Gamma_X^{^{8}\text{Be}}}{\Gamma_\gamma^{\text{M1}}} = \frac{1}{2\pi\alpha} \left(\frac{g_{XNN}^{(0)}\cos\theta_{1^+} - g_{XNN}^{(1)}\sin\theta_{1^+}}}{[\mu^{(0)} - \eta^{(0)}]\cos\theta_{1^+} - [\mu^{(1)} - \eta^{(1)}]\sin\theta_{1^+}} \right)^2 \left(\frac{k_X}{k_\gamma}\right)^3$$

Deriving limits on couplings (V)

$$\mathcal{L}_{\rm V} = -eX_{\mu} \sum_{N=p,n} \varepsilon_N \bar{N} \gamma^{\mu} N$$

• NA48/2:
$$|\varepsilon_p| \lesssim \frac{(0.8 - 1.2) \times 10^{-3}}{\sqrt{\mathcal{B}(X \to e^+ e^-)}}$$
 (Phys. Lett. B 746, 178 (2015))

• Multipole: $\frac{\Gamma_X^{^{8}\text{Be}}}{\Gamma_\gamma^{^{M1}}} = \frac{|(\varepsilon_p + \varepsilon_n)\cos\theta_{1^+}M1_{1,T=0} + (\varepsilon_p - \varepsilon_n)(-\sin\theta_{1^+}M1_{1,T=1} + \cos\theta_{1^+}\kappa M1_{1,T=1})|^2}{|\cos\theta_{1^+}M1_{1,T=0} - \sin\theta_{1^+}M1_{1,T=1} + \cos\theta_{1^+}\kappa M1_{1,T=1}|^2} \left(\frac{k_X}{k_\gamma}\right)^3$

$$\frac{\Gamma_{X,V}^{^{12}\mathrm{C}(17.23)}}{\Gamma_{\gamma}^{\mathrm{E1}}} = \frac{k}{\Delta E} \left(1 + \frac{m_X^2}{2\Delta E^2}\right) |\varepsilon_p - \varepsilon_n|^2$$

Deriving limits on couplings (A)

$$\mathcal{L}_{\mathcal{A}} = -X_{\mu} \sum_{N=p,n} a_N \bar{N} \gamma^{\mu} \gamma_5 N$$

• Matrix elements from Phys. Rev. D 95, 115024

• Multipole:
$$\frac{\Gamma_{X,A}^{^{8}\text{Be}(18.15)}}{\Gamma_{\gamma}^{^{M1}}} = \frac{1}{\Gamma_{\gamma}(^{8}\text{Be}(18.15))} \frac{k_{X}}{18\pi} \left[2 + \left(\frac{\Delta E}{m_{X}}\right)^{2}\right] |\langle f||a_{p}\hat{\sigma}_{M}^{(p)} + a_{n}\hat{\sigma}_{M}^{(n)}||i_{*}\rangle|^{2}$$

Diagrams in detail (QED)

Figure 2: The direct and crossed diagram for the BH process.

Figure 1: The direct and crossed diagram for the Born process.

Figure 3: The diagram for the pion-pole amplitude.

Diagrams in detail (signal)

Deuteron wave function

 Use CD-Bonn wave function in momentum space (DOI: <u>10.1103/PhysRevC.63.024001</u>)

$$\tilde{\Psi}_{d}^{M_{d}}(\boldsymbol{p}) = \frac{(2\pi)^{3/2}}{\sqrt{4\pi}} \left[\psi_{0}(p) - \frac{1}{\sqrt{8}} \psi_{2}(p) S_{12}(\hat{\boldsymbol{p}}) \right] \chi_{1}^{M_{d}}$$

PWIA

$$\begin{split} \mathcal{M}_{\mathrm{IA}}^{\mathrm{lab}}(d\gamma \to e^{+}e^{-}pn) &= \frac{(2\pi)^{3/2}(2m_{d})^{1/2}}{\sqrt{2}} \\ &\times \bigg\{ \left(\frac{E_{pn}^{(n)}}{E_{pn}^{(p)}}\right)^{1/2} \bigg[\mathcal{M}\left(\gamma(\boldsymbol{q},\lambda) \, p(-\boldsymbol{p}_{n},m_{d}-s_{n}) \to e^{-}(\boldsymbol{p}_{-},s_{-}) \, e^{+}(\boldsymbol{p}_{+},s_{+}) \, p(\boldsymbol{p}_{p},s_{p}) \right. \\ &\times \frac{1}{\sqrt{4\pi}} \psi_{0}(p_{n}) \, \langle \frac{1}{2} \frac{1}{2} \, ; \, m_{d} - s_{n} \, s_{n} \, | \, 1m_{d} \rangle \\ &- \sum_{m_{s}=-1}^{+1} \mathcal{M}\left(\gamma(\boldsymbol{q},\lambda) \, p(-\boldsymbol{p}_{n},m_{s}-s_{n}) \to e^{-}(\boldsymbol{p}_{-},s_{-}) \, e^{+}(\boldsymbol{p}_{+},s_{+}) \, p(\boldsymbol{p}_{p},s_{p}) \right) \\ &\times Y_{2}^{m_{d}-m_{s}}(-\hat{\boldsymbol{p}}_{n}) \psi_{2}(p_{n}) \, \langle 2\,1\,; \, m_{d} - m_{s} \, m_{s} \, | \, 1m_{d} \rangle \, \langle \frac{1}{2} \, \frac{1}{2}\,; \, m_{s} - s_{n} \, s_{n} \, | \, 1m_{s} \rangle \, \bigg] \\ &+ \left(\frac{E_{pp}^{(p)}}{E_{pp}^{(n)}} \right)^{1/2} \left[\mathcal{M}\left(\gamma(\boldsymbol{q},\lambda) \, n(-\boldsymbol{p}_{p},m_{d}-s_{p}) \to e^{-}(\boldsymbol{p}_{-},s_{-}) \, e^{+}(\boldsymbol{p}_{+},s_{+}) \, n(\boldsymbol{p}_{n},s_{n}) \right) \\ &\times \frac{1}{\sqrt{4\pi}} \psi_{0}(p_{p}) \, \langle \frac{1}{2} \, \frac{1}{2} \, ; \, s_{p} \, m_{d} - s_{p} \, | \, 1m_{d} \rangle \\ &- \sum_{m_{s}=-1}^{+1} \mathcal{M}\left(\gamma(\boldsymbol{q},\lambda) \, n(-\boldsymbol{p}_{p},m_{s}-s_{p}) \to e^{-}(\boldsymbol{p}_{-},s_{-}) \, e^{+}(\boldsymbol{p}_{+},s_{+}) \, n(\boldsymbol{p}_{n},s_{n}) \right) \\ &\times Y_{2}^{m_{d}-m_{s}}(\hat{\boldsymbol{p}}_{p}) \psi_{2}(p_{p}) \, \langle 2\,1\,; \, m_{d} - m_{s} \, m_{s} \, | \, 1m_{d} \rangle \, \langle \frac{1}{2} \, \frac{1}{2}\,; \, s_{p} \, m_{s} - s_{p} \, | \, 1m_{s} \rangle \, \bigg] \bigg\}. \end{split}$$

Averaging the signal

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\boldsymbol{p}_{+}|\,\mathrm{d}|\boldsymbol{p}_{-}|\,\mathrm{d}\Omega_{n}\,\mathrm{d}\Omega_{-}\,\mathrm{d}\Omega_{+}} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

We have

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}\bigg|_{\mathrm{measured}} = \frac{1}{\delta m_X} \int_{m_X - \delta m_X/2}^{m_X + \delta m_X/2} \mathrm{d}\sqrt{q'^2} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

Averaging the signal

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\boldsymbol{p}_+|\,\mathrm{d}|\boldsymbol{p}_-|\,\mathrm{d}\Omega_n\,\mathrm{d}\Omega_-\,\mathrm{d}\Omega_+} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

We have

$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} \right|_{\mathrm{measured}} = \frac{1}{\delta m_X} \int_{m_X - \delta m_X/2}^{m_X + \delta m_X/2} \mathrm{d}\sqrt{q'^2} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

$$\frac{1}{q'^2} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}\right) \frac{\left[\left(q'^2 - m_X^2\right)^2 + \left(m_X\Gamma_X\right)^2\right]}{g_{Xee}^2} \approx \text{ constant between } \left[m_X - \frac{\delta m_X}{2}, m_X + \frac{\delta m_X}{2}\right]$$

Averaging the signal

$$\frac{\mathrm{d}\sigma}{\mathrm{d}|\boldsymbol{p}_+|\,\mathrm{d}|\boldsymbol{p}_-|\,\mathrm{d}\Omega_n\,\mathrm{d}\Omega_-\,\mathrm{d}\Omega_+} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

We have

$$\left. \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} \right|_{\mathrm{measured}} = \frac{1}{\delta m_X} \int_{m_X - \delta m_X/2}^{m_X + \delta m_X/2} \mathrm{d}\sqrt{q'^2} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}.$$

$$\frac{1}{q^{\prime 2}} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}\right) \frac{\left[\left(q^{\prime 2} - m_X^2\right)^2 + \left(m_X \Gamma_X\right)^2\right]}{g_{Xee}^2} \approx \text{ constant between } \left[m_X - \frac{\delta m_X}{2}, m_X + \frac{\delta m_X}{2}\right]$$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}\Big|_{\mathrm{measured}} \approx \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi}\right)\Big|_{q'^2 = m_X^2, \ \varepsilon_e^2 = 1, \ \Gamma_X = 1} \frac{1}{\delta m_X} \frac{6\pi^2}{e^2 m_X} \left(1 + \frac{2m_e^2}{m_X^2}\right)^{-1} \left(1 - \frac{4m_e^2}{m_X^2}\right)^{-1/2} \mathcal{B}(a \to e^+e^-),$

Verifying the QED background (I)

Verifying the QED background (II)

Optimizing kinematics

- 1. $|\mathbf{p}_p| < (m_N \Delta)^{1/2} \sim 45.7 \text{ MeV/c}$
- 2. $15^{\circ} < |\Theta_i| < 165^{\circ}, i = +, -$
- 3. 5 ° < $|\Theta_n|$ < 165 °,

4. |**p**_±| > 20 MeV/c

- Scan parameter range
- Find maximum
- Fine tune parameters