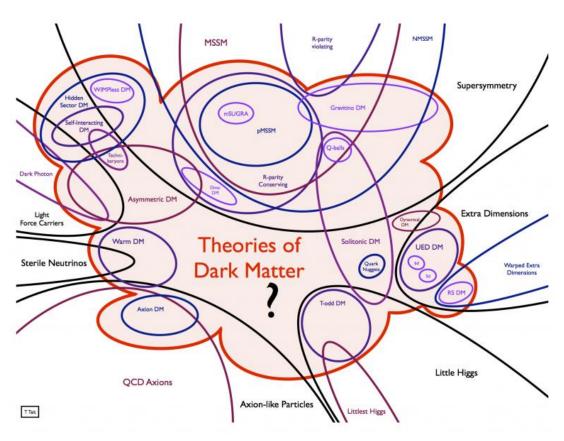
Search for Light Dark Matter with the DarkMESA Experiment

Saskia Plura, Achim Denig, Luca Doria, and Mirco Christmann

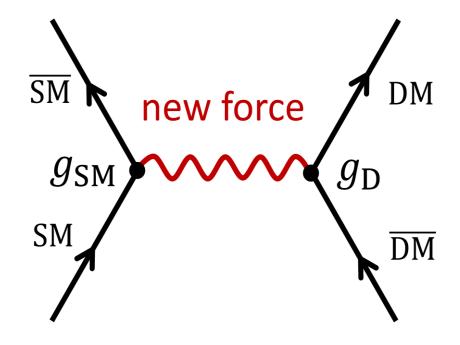
Frontiers & Careers in Nuclear and Hadronic Physics
Paphos, Cyprus

October 30, 2023

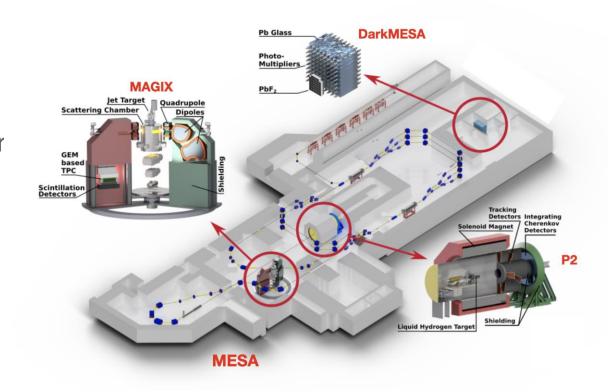


JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Dark Matter Searches


- Dark Matter searches needed to extend the Standard Model
 - Especially interesting: Models with possible SM interactions
- Search for Dark Matter relies on large data sets due to rare processes
 - High intensity accelerator experiments needed!

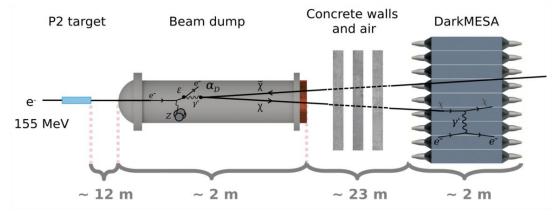
Tim Tait, https://physics.aps.org/articles/v11/48


Light Dark Matter Searches

- Especially interesting for low-energy accelerators
- Thermal relic targets exist for the MeV-GeV scale
- Beyond the Standard Model forces required
- Different portals possible:
 - Vector (Dark Photon)
 - Axion
 - •

The MESA Accelerator

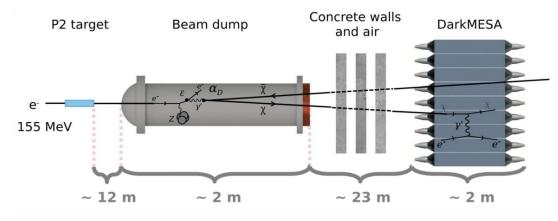
- Electron accelerator
- 2 modes of operation:
 - Energy recovery mode: 105 MeV @ 1 mA for MAGIX
 - Extracted beam mode: 150 MeV @ 0.15 mA for P2 and DarkMESA
- Currently under construction



https://magix.uni-mainz.de/mesa.php

The DarkMESA Experiment

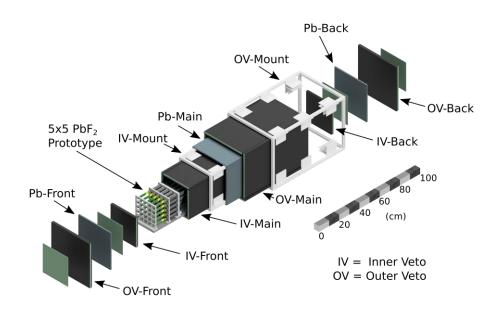
- Parasitic beam dump experiment behind P2
- High-Z calorimeter
- Research objective: direct detection of Dark Matter

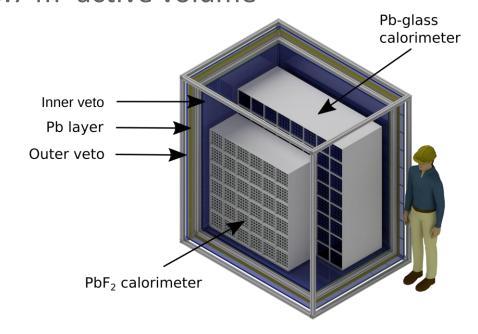


https://magix.uni-mainz.de/physics.php

The DarkMESA Experiment

Operating principle


- Produce Dark Matter in Bremsstrahlung processes in the beam dump
- Dark Matter particles travel through the beam dump and walls towards the detector
- Detect Dark Matter through scattering processes in the detector


https://magix.uni-mainz.de/physics.php

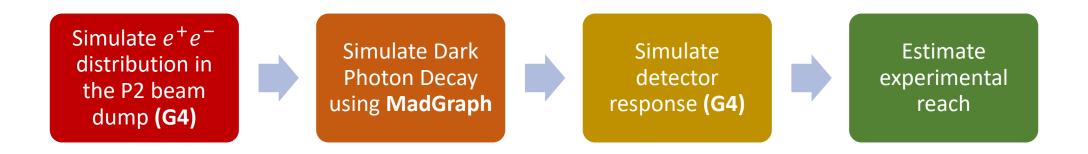
DarkMESA Setup

Phase A: 1 PbF₂ module, 0.004 m³
 active volume

Phase B: 30 PbF₂ + 64 SF5 modules,
 0.7 m³ active volume

■ Phase C (projected): Phase B setup + 1m³ negative ion TPC

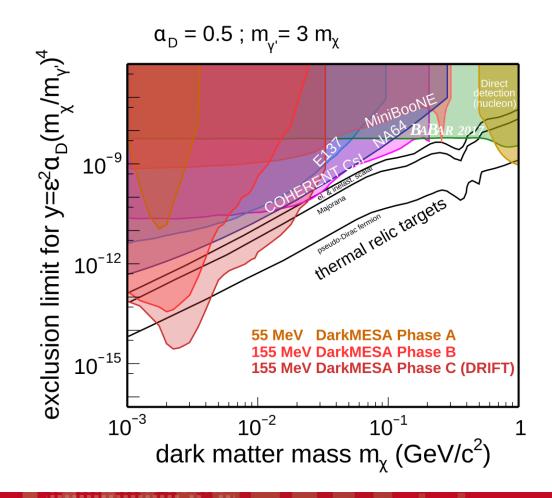
https://magix.uni-mainz.de/DarkMESA.php


Simulations of the Experimental Reach

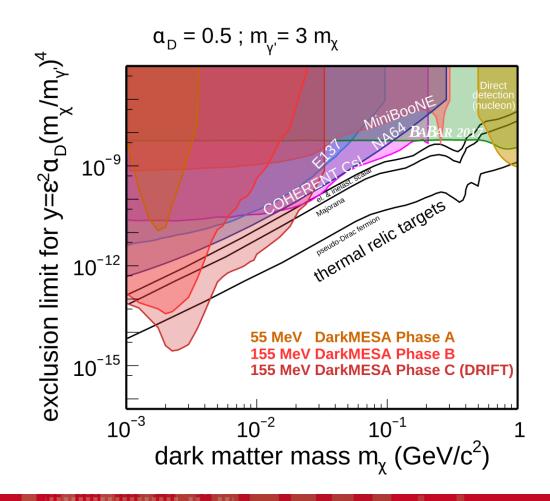
- Evaluation of experimental range necessary before start
 - Modeling of the accessible parameter space
 - Comparison for data analyses in the future
 - Creation of a research programme
- 3 Data taking Phases:
 - 55 MeV Phase A
 - 150 MeV Phase B
 - 150 MeV Phase C

Phase	Time	EOT
Α	2.200 h	$7.42 \cdot 10^{21}$
В	6.600 h	$2.22 \cdot 10^{22}$
С	13.200 h	$4.45 \cdot 10^{22}$

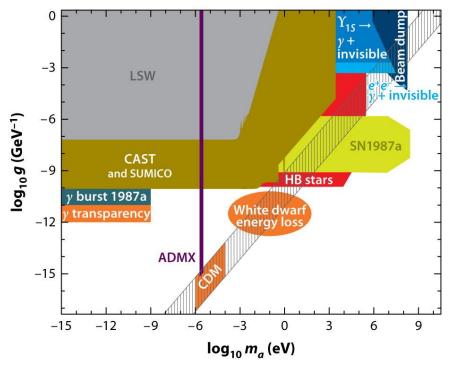
Simulation of the Experimental Reach


- GEANT4-based detector simulation
- Utilise MadGraph to calculate BSM process
- Select LDM model: Dark Photon decays

Simulations of the Experimental Reach

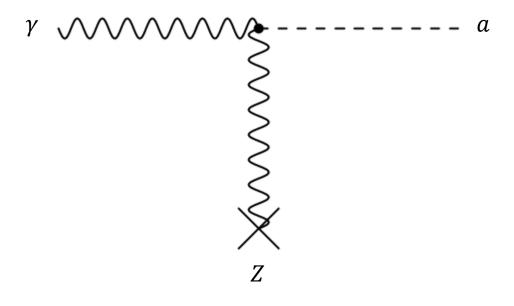

- Limits are calculated for $m_{\gamma'}=3~m_\chi$ and $\alpha_D=0.5$
- Considered decay processes:
 - Dark Bremsstrahlung
 - Positron Annihilation

Phase	Time	EOT
А	2.200 h	$7.42 \cdot 10^{21}$
В	6.600 h	$2.22 \cdot 10^{22}$
С	13.200 h	$4.45 \cdot 10^{22}$


Expanding the Simulation

- Dark Photon models are interesting, but not the only viable candidate
- Other portal models explorable by DarkMESA
- Potentially interesting cases:
 - Dark Photon decay to visible
 - Axions/ALPs

The QCD Axion


- QCD allows for CP violation through $\mathcal{L}_{\theta} = -\frac{\alpha_s}{8\pi} \theta \tilde{G}^a_{\mu\nu} G^a_{\mu\nu}$
- however: θ is extremely small, making QCD CP conserving
- introducing new global $U(1)_{PQ}$ symmetry could explain smallness of θ
- Symmetry breaking gives rise to pseudo-Goldstone boson a, the Axion

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.075

Production of Axions at DarkMESA

- Axions are produced via Primakoff processes
- Decay into two photons
 - Need to be stable enough to decay only in the detector
- Simulation question: How efficient is DarkMESA in detecting axions?

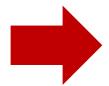
Upgrading the Simulation

- Current simulation framework only able to simulate $\gamma' \to \bar{\chi} \chi$
- Need more versatile approach: DMG4

DMG4

- Fully compatible with GEANT4, no separate simulations needed
- Includes several LDM models
- Fully customizable parameters

Model	Parent PDG
Dark Photon (Annihilation)	e ⁻ (e ⁺)
Dark Scalar (Annihilation)	e- (e+)
Dark Pseudoscalar (Annihilation)	e- (e+)
Dark Axial (Annihilation)	e- (e+)
Spin-2 Dark Matter (Annihilation)	e- (e+)
ALP	γ
Dark Vector	e ⁻
Dark Z	μ
Dark Muphilic Scalar	μ
Dark Muphilic Pseudoscalar	μ

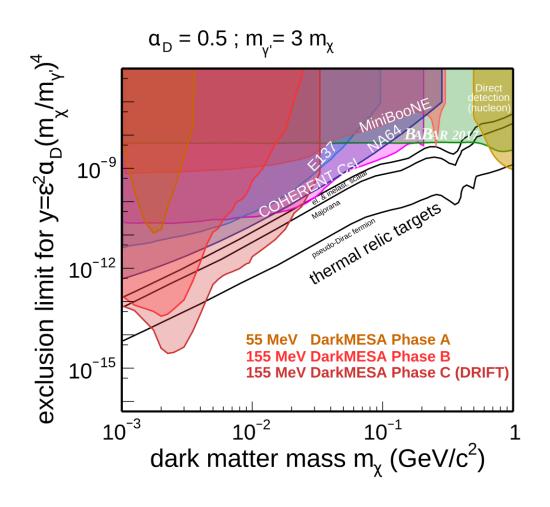

https://arxiv.org/pdf/2101.12192.pdf

Upgrading the Simulation

DMG4

- Fully compatible with GEANT4, no separate simulations needed
- Includes several LDM models
- Fully customizable parameters

Simulation is currently being reworked to include DMG4!


Model	Parent PDG
Dark Photon (Annihilation)	e ⁻ (e+)
Dark Scalar (Annihilation)	e- (e+)
Dark Pseudoscalar (Annihilation)	e- (e+)
Dark Axial (Annihilation)	e- (e+)
Spin-2 Dark Matter (Annihilation)	e- (e+)
ALP	γ
Dark Vector	e ⁻
Dark Z	μ
Dark Muphilic Scalar	μ
Dark Muphilic Pseudoscalar	μ

https://arxiv.org/pdf/2101.12192.pdf

Conclusion

- High intensity experiments provide a great environment for LDM searches
- DarkMESA will search for LDM at MESA
- Current simulation only includes $\gamma' \to \bar{\chi} \chi$
- Utilise DMG4 package to expand the simulation and streamline the generation
- First tests with Axions/ALPs will be completed soon – stay tuned!

