N_R SMEFT and long-lived HNLs

Martin Hirsch

Instituto de Física Corpuscular - CSIC Universidad Valencia, Spain

http://www.astroparticles.es/

Introduction

N_R or HNL?

From the experimental point of view a HNL is simply a heavy fermion singlet with suppressed charged (CC) and neutral current (NC) interactions are

$$\mathcal{L} = \frac{g}{\sqrt{2}} V_{\alpha N_j} \bar{l}_{\alpha} \gamma^{\mu} P_L N_j W_{L\mu}^- + \frac{g}{2\cos\theta_W} \sum_{\alpha,i,j} V_{\alpha i}^L V_{\alpha N_j}^* \overline{N_j} \gamma^{\mu} P_L \nu_i Z_{\mu},$$

 \Rightarrow This ${\boldsymbol{\mathcal L}}$ (+mass): "Minimal HNL"

 \Rightarrow Experimentally we know: $V_{\alpha N_i} \ll 1$ (for $m_N \leq 1$ TeV)

N_R or HNL?

From the experimental point of view a HNL is simply a heavy fermion singlet with suppressed charged (CC) and neutral current (NC) interactions are

$$\mathcal{L} = \frac{g}{\sqrt{2}} V_{\alpha N_j} \bar{l}_{\alpha} \gamma^{\mu} P_L N_j W_{L\mu}^- + \frac{g}{2\cos\theta_W} \sum_{\alpha,i,j} V_{\alpha i}^L V_{\alpha N_j}^* \overline{N_j} \gamma^{\mu} P_L \nu_i Z_{\mu},$$

 \Rightarrow This ${\boldsymbol{\mathcal L}}$ (+mass): "Minimal HNL"

 \Rightarrow Experimentally we know: $V_{\alpha N_i} \ll 1$ (for $m_N \leq 1$ TeV)

Note:

- \Rightarrow this makes no reference to any (neutrino mass) model
- \Rightarrow gives no explanation for mass of N
- \Rightarrow Does not specify N to be Majorana/Dirac

N_R or HNL?

From the experimental point of view a HNL is simply a heavy fermion singlet with suppressed charged (CC) and neutral current (NC) interactions are

$$\mathcal{L} = \frac{g}{\sqrt{2}} V_{\alpha N_j} \bar{l}_{\alpha} \gamma^{\mu} P_L N_j W_{L\mu}^- + \frac{g}{2\cos\theta_W} \sum_{\alpha,i,j} V_{\alpha i}^L V_{\alpha N_j}^* \overline{N_j} \gamma^{\mu} P_L \nu_i Z_{\mu},$$

 \Rightarrow This ${\boldsymbol{\mathcal L}}$ (+mass): "Minimal HNL"

 \Rightarrow Experimentally we know: $V_{\alpha N_i} \ll 1$ (for $m_N \leq 1$ TeV)

Note:

- \Rightarrow this makes no reference to any (neutrino mass) model
- \Rightarrow gives no explanation for mass of N
- \Rightarrow Does not specify N to be Majorana/Dirac
- \Rightarrow gives no explanation for neutrino oscillations!
- ⇒ Need to specify a specific seesaw variant to make contact to light neutrino masses!

Classical type-I seesaw:

Classical type-I seesaw:

 \Rightarrow Larger mixing possible for the price of fine-tuning parameters

 \Rightarrow Larger mixing possible for the price of fine-tuning parameters

LLPs, Bonn; Nov 13-17, 2023 - p.5/39

 \Rightarrow Larger mixing possible for the price of fine-tuning parameters

LLPs, Bonn; Nov 13-17, 2023 - p.5/39

Forecast searches

Forecast searches

LHC displaced vertex search forecast for $\mathcal{L} = 3/ab$:

Cottin et al.; PRD98 (2018) 035012 updated in R. Beltrán et al.; JHEP01 (2022) 044

Complementary to far detectors!

Forecast searches

LHC displaced vertex search forecast for $\mathcal{L} = 3/ab$:

Cottin et al.; PRD98 (2018) 035012

Experimental search result: CMS JHEP 07 (2022) 081 based on: $\mathcal{L} = 138/\mathrm{fb}$

(and tree-level UV completions)

R. Beltrán, R. Cepedello, M. Hirsch, JHEP08 (2023) 166

LLPs, Bonn; Nov 13-17, 2023 - p.9/39

Effective field theory

Basic idea of EFT:

New physics exists, but the mass scale involved is $\sqrt{s} \ll \Lambda$:

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}}^{d=4} + \sum_{k} rac{C_k}{\Lambda^{d-4}} \mathcal{O}_k$$

 \Rightarrow "Integrating out" the heavy resonances "generates" a tower of operators

- \Rightarrow *d* is the dimension of \mathcal{O}_k
- $\Rightarrow \Lambda$ is the energy scale of new physics
- $\Rightarrow C_k$ the Wilson coefficient, free parameters in SMEFT
- \Rightarrow Since suppressed by higher powers of Λ larger d operators become quickly irrelevant phenomenologically

Effective field theory

Basic idea of EFT:

New physics exists, but the mass scale involved is $\sqrt{s} \ll \Lambda$:

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}}^{d=4} + \sum_{k} rac{C_k}{\Lambda^{d-4}} \mathcal{O}_k$$

 \Rightarrow "Integrating out" the heavy resonances "generates" a tower of operators

- \Rightarrow d is the dimension of \mathcal{O}_k
- $\Rightarrow \Lambda$ is the energy scale of new physics
- $\Rightarrow C_k$ the Wilson coefficient, free parameters in SMEFT
- \Rightarrow Since suppressed by higher powers of Λ larger d operators become quickly irrelevant phenomenologically
- \Rightarrow At d = 5 in SMEFT only one operator: Weinberg operator with 6 complex parameters for 3 generations of leptons

Effective field theory

Basic idea of EFT:

New physics exists, but the mass scale involved is $\sqrt{s} \ll \Lambda$:

$$\mathcal{L}_{ ext{SMEFT}} = \mathcal{L}_{ ext{SM}}^{d=4} + \sum_{k} rac{C_k}{\Lambda^{d-4}} \mathcal{O}_k$$

 \Rightarrow "Integrating out" the heavy resonances "generates" a tower of operators

- \Rightarrow *d* is the dimension of \mathcal{O}_k
- $\Rightarrow \Lambda$ is the energy scale of new physics
- $\Rightarrow C_k$ the Wilson coefficient, free parameters in SMEFT
- \Rightarrow Since suppressed by higher powers of Λ larger d operators become quickly irrelevant phenomenologically
- \Rightarrow At d = 5 in SMEFT only one operator: Weinberg operator with 6 complex parameters for 3 generations of leptons
- \Rightarrow At d = 6 already more than $\mathcal{O}(50)$ operators, with 2499 (3045) independent parameters

Huge progress in construction of operator basis in recent years:

SMEFT is known up to d = 12!

Harlander et al., PRD108 (2023) 055020

Huge progress in construction of operator basis in recent years:

SMEFT is known up to d = 12! Harlander et al., PRD108 (2023) 055020

 N_R SMEFT:

d=5: A. Aparici et al., PRD 80 (2009) 013010 d=6: F. del Águila et al., PLB 670 (2009) 399

d=7: Liao and Ma, PRD 96, 015012 (2017)

Up to d=9: Li et al, JHEP11(2021)003

Table: Number of parameters as function of d, counting only new operators with at least one N_R

d	$n_N = 1$	$n_N = 3$
5	2	18
6	29	1614
7	80	4206
8	323	20400
9	1358	243944

Huge progress in construction of operator basis in recent years:

SMEFT is known up to d = 12!

Harlander et al., PRD108 (2023) 055020

N_R SMEFT:

d=5: A. Aparici et al., PRD 80 (2009) 013010
d=6: F. del Águila et al., PLB 670 (2009) 399
d=7: Liao and Ma, PRD 96, 015012 (2017)
Up to d=9: Li et al, JHEP11(2021)003

Table: Number of parameters as function of d, counting only new operators with at least one N_R

Want to check yourself?

Sym2Int R.M. Fonseca, Comput.Phys. Commun. 267 (2021) 108085

and:

AutoEFT Harlander et al. arXiv:2309.15783

d	$n_N = 1$	$n_N = 3$
5	2	18
6	29	1614
7	80	4206
8	323	20400
9	1358	243944

LLPs, Bonn; Nov 13-17, 2023 - p.11/39

Huge progress in construction of operator basis in recent years:

SMEFT is known up to d = 12!

Harlander et al., PRD108 (2023) 055020

N_R SMEFT:

d=5: A. Aparici et al., PRD 80 (2009) 013010
d=6: F. del Águila et al., PLB 670 (2009) 399
d=7: Liao and Ma, PRD 96, 015012 (2017)
Up to d=9: Li et al, JHEP11(2021)003

Table: Number of parameters as function of d, counting only new operators with at least one N_R

Want to check yourself?

Sym2Int R.M. Fonseca, Comput.Phys. Commun. 267 (2021) 108085

and:

d	$n_N = 1$	$n_N = 3$
5	2	18
6	29	1614
7	80	4206
8	323	20400
9	1358	243944

 $\leftarrow \text{Most relevant}$ for LLPs @ LHC: d = 6 and - maybe! - d = 7 AutoEFT Harlander et al. arXiv:2309.15783

d = 6 operators that can be opened at tree-level:

$\psi^2 H^3 ~(+{ m h.c.})$		$(\overline{R}R)(\overline{R}R)$		$(\overline{L}L)(\overline{R}R)$	
\mathcal{O}_{LNH^3}	$(\overline{L}N_R)\tilde{H}(H^{\dagger}H)$	\mathcal{O}_{NN}	$(\overline{N_R}\gamma^\mu N_R)(\overline{N_R}\gamma_\mu N_R)$	\mathcal{O}_{LN}	$(\overline{L}\gamma^{\mu}L)(\overline{N_R}\gamma_{\mu}N_R)$
1	$\psi^2 H^2 D~(+{ m h.c.})$	\mathcal{O}_{eN}	$(\overline{e}_R \gamma^\mu e_R) (\overline{N_R} \gamma_\mu N_R)$	\mathcal{O}_{QN}	$(\overline{Q}\gamma^{\mu}Q)(\overline{N_R}\gamma_{\mu}N_R)$
\mathcal{O}_{NH^2D}	$(\overline{N_R}\gamma^{\mu}N_R)(H^{\dagger}i\overleftrightarrow{D_{\mu}}H)$	\mathcal{O}_{uN}	$(\overline{u}_R \gamma^\mu u_R) (\overline{N_R} \gamma_\mu N_R)$	(\overline{L})	$R)(\overline{L}R) \;(+{ m h.c.})$
\mathcal{O}_{NeH^2D}	$(\overline{N_R}\gamma^{\mu}e_R)(\tilde{H}^{\dagger}iD_{\mu}H)$	\mathcal{O}_{dN}	$(\overline{d}_R\gamma^\mu d_R)(\overline{N_R}\gamma_\mu N_R)$	\mathcal{O}_{LNLe}	$(\overline{L}N_R)\epsilon(\overline{L}e_R)$
$(\overline{L}R)(\overline{R}L) (+{ m h.c.})$		\mathcal{O}_{duNe}	$(\overline{d}_R \gamma^\mu u_R)(\overline{N_R} \gamma_\mu e_R)$	\mathcal{O}_{LNQd}	$(\overline{L}N_R)\epsilon(\overline{Q}d_R)$
\mathcal{O}_{QuNL}	$(\overline{Q}u_R)(\overline{N_R}L)$	\mathcal{O}_{NNNN}	$(\overline{N_R^c}N_R)(\overline{N_R^c}N_R)$	\mathcal{O}_{LdQN}	$(\overline{L}d_R)\epsilon(\overline{Q}N_R)$

d = 6 operators that can be opened at tree-level:

$\psi^2 H^3~(+{ m h.c.})$		$(\overline{R}R)(\overline{R}R)$		$(\overline{L}L)(\overline{R}R)$	
\mathcal{O}_{LNH^3}	$(\overline{L}N_R)\tilde{H}(H^{\dagger}H)$	\mathcal{O}_{NN}	$(\overline{N_R}\gamma^\mu N_R)(\overline{N_R}\gamma_\mu N_R)$	\mathcal{O}_{LN}	$(\overline{L}\gamma^{\mu}L)(\overline{N_R}\gamma_{\mu}N_R)$
a a a a a a a a a a a a a a a a a a a	$\psi^2 H^2 D~(+{ m h.c.})$	\mathcal{O}_{eN}	$(\overline{e}_R \gamma^\mu e_R) (\overline{N_R} \gamma_\mu N_R)$	\mathcal{O}_{QN}	$(\overline{Q}\gamma^{\mu}Q)(\overline{N_R}\gamma_{\mu}N_R)$
\mathcal{O}_{NH^2D}	$(\overline{N_R}\gamma^{\mu}N_R)(H^{\dagger}i\overleftrightarrow{D_{\mu}}H)$	\mathcal{O}_{uN}	$(\overline{u}_R \gamma^\mu u_R) (\overline{N_R} \gamma_\mu N_R)$	$(\overline{L},$	$R)(\overline{L}R) \;(+{ m h.c.})$
\mathcal{O}_{NeH^2D}	$(\overline{N_R}\gamma^{\mu}e_R)(\tilde{H}^{\dagger}iD_{\mu}H)$	\mathcal{O}_{dN}	$(\overline{d}_R\gamma^\mu d_R)(\overline{N_R}\gamma_\mu N_R)$	\mathcal{O}_{LNLe}	$(\overline{L}N_R)\epsilon(\overline{L}e_R)$
$(\overline{L}R)(\overline{R}L) (+{ m h.c.})$		\mathcal{O}_{duNe}	$(\overline{d}_R \gamma^\mu u_R)(\overline{N_R} \gamma_\mu e_R)$	\mathcal{O}_{LNQd}	$(\overline{L}N_R)\epsilon(\overline{Q}d_R)$
\mathcal{O}_{QuNL}	$(\overline{Q}u_R)(\overline{N_R}L)$	\mathcal{O}_{NNNN}	$(\overline{N_R^c}N_R)(\overline{N_R^c}N_R)$	\mathcal{O}_{LdQN}	$(\overline{L}d_R)\epsilon(\overline{Q}N_R)$

$ ar{B} $:	ψ^4	(+h.c.)	
	\mathcal{O}_{QQdN}		$(QQ)(d_RN_R)$
	\mathcal{O}_{uddN}		$(u_R d_R)(d_R N_R)$

Tree-level, but

baryon number violating Hirsch, Helo & Ota proton decay! JHEP06 (2018) 047

d = 6 operators that can be opened at tree-level:

$\psi^2 H^3 ~(+{ m h.c.})$		$(\overline{R}R)(\overline{R}R)$		$(\overline{L}L)(\overline{R}R)$	
\mathcal{O}_{LNH^3}	$(\overline{L}N_R)\tilde{H}(H^{\dagger}H)$	\mathcal{O}_{NN}	$(\overline{N_R}\gamma^{\mu}N_R)(\overline{N_R}\gamma_{\mu}N_R)$	\mathcal{O}_{LN}	$(\overline{L}\gamma^{\mu}L)(\overline{N_R}\gamma_{\mu}N_R)$
1	$\psi^2 H^2 D ~(+{ m h.c.})$	\mathcal{O}_{eN}	$(\overline{e}_R \gamma^\mu e_R) (\overline{N_R} \gamma_\mu N_R)$	\mathcal{O}_{QN}	$(\overline{Q}\gamma^{\mu}Q)(\overline{N_R}\gamma_{\mu}N_R)$
\mathcal{O}_{NH^2D}	$(\overline{N_R}\gamma^{\mu}N_R)(H^{\dagger}i\overleftrightarrow{D_{\mu}}H)$	\mathcal{O}_{uN}	$(\overline{u}_R \gamma^\mu u_R) (\overline{N_R} \gamma_\mu N_R)$	(\overline{L})	$R)(\overline{L}R) \;(+{ m h.c.})$
\mathcal{O}_{NeH^2D}	$(\overline{N_R}\gamma^{\mu}e_R)(\tilde{H}^{\dagger}iD_{\mu}H)$	\mathcal{O}_{dN}	$(\overline{d}_R\gamma^\mu d_R)(\overline{N_R}\gamma_\mu N_R)$	\mathcal{O}_{LNLe}	$(\overline{L}N_R)\epsilon(\overline{L}e_R)$
$(\overline{L}R)(\overline{R}L) (+{ m h.c.})$		\mathcal{O}_{duNe}	$(\overline{d}_R \gamma^\mu u_R)(\overline{N_R} \gamma_\mu e_R)$	\mathcal{O}_{LNQd}	$(\overline{L}N_R)\epsilon(\overline{Q}d_R)$
\mathcal{O}_{QuNL}	$(\overline{Q}u_R)(\overline{N_R}L)$	\mathcal{O}_{NNNN}	$(\overline{N_R^c}N_R)(\overline{N_R^c}N_R)$	\mathcal{O}_{LdQN}	$(\overline{L}d_R)\epsilon(\overline{Q}N_R)$

$ ar{B} $:	ψ^4	(+h.c.)	
	\mathcal{O}_{QQdN}		$(QQ)(d_RN_R)$
	\mathcal{O}_{uddN}		$(u_R d_R)(d_R N_R)$

Tree-level, but

baryon number violating Hirsch, Helo & Ota proton decay! JHEP06 (2018) 047

 $\psi^2 H X$ (+h.c.) $\overline{L}\sigma_{\mu\nu}N_R\tilde{H}B^{\mu\nu}$ \mathcal{O}_{NB} $\overline{L}\sigma_{\mu\nu}N_R\tilde{H}W^{\mu\nu}$ \mathcal{O}_{NW}

Loop generated operators

Neutrino magnetic momentsAparici et al. $N_R \rightarrow \gamma + \nu$ PRD 80 (2009) 013010

d = 7 operators that can be opened at tree-level:

	$\psi^2 H^3 D$		$\psi^4 H$		$\psi^4 H$
()	$\epsilon_{ij}(\overline{N^c_R}\gamma_\mu L^i)(iD^\mu H^j)(H^\dagger H)$	\mathcal{O}_{LNLH}	$\epsilon_{ij}(\overline{L}\gamma_{\mu}L)(\overline{N_R^c}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{LNeH}	$(\overline{L}N_R)(\overline{N_R^c}e_R)H$
UNLH ³ D	$\epsilon_{ij}(\overline{N_R^c}\gamma_{\mu}L^i)H^j(H^{\dagger}i\overleftrightarrow{D^{\mu}}H)$	0	$\epsilon_{ij}(\overline{Q}\gamma_{\mu}Q)(\overline{N_R^c}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{eLNH}	$H^{\dagger}(\overline{e_R}L)(\overline{N_R^c}N_R)$
	$\psi^2 H^2 D^2$	UQNLH	$\epsilon_{ij} (\overline{Q} \gamma_{\mu} Q^i) (\overline{N_R^c} \gamma^{\mu} L^j) H$	\mathcal{O}_{QNdH}	$(\overline{Q}N_R)(\overline{N_R^c}d_R)H$
${\cal O}_{NeH^2D^2}$	$\epsilon_{ij}(\overrightarrow{N_R^c}\stackrel{\longleftrightarrow}{D_\mu}e_R)(H^iD^\mu H^j)$	\mathcal{O}_{eNLH}	$\epsilon_{ij}(\overline{e_R}\gamma_\mu e_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{dQNH}	$H^{\dagger}(\overline{d_R}Q)(\overline{N_R^c}N_R)$
$\mathcal{O}_{NH^2D^2}$	$(\overrightarrow{N_R^c}\overleftrightarrow{\partial_\mu}N_R)(H^\dagger\overleftrightarrow{D^\mu}H)$	\mathcal{O}_{dNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu d_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{QNuH}	$(\overline{Q}N_R)(\overline{N_R^c}u_R)\tilde{H}$
$C_{NH^2D^2}$	$(\overline{N_R^c}N_R)(D_\mu H)^\dagger D^\mu H$	\mathcal{O}_{uNLH}	$\epsilon_{ij}(\overline{u_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{uQNH}	$\tilde{H}^{\dagger}(\overline{u_R}Q)(\overline{N_R^c}N_R)$
	$\psi^2 H^2 X$	\mathcal{O}_{duNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)\tilde{H}^j$	\mathcal{O}_{LNNH}	$(\overline{L}N_R)(\overline{N_R^c}N_R)\tilde{H}$
\mathcal{O}_{NeH^2W}	$(\epsilon \tau^{I})_{ij} (\overline{N_{R}^{c}} \sigma^{\mu\nu} e_{R}) (H^{i} H^{j}) W^{I}_{\mu\nu}$	\mathcal{O}_{dQNeH}	$\epsilon_{ij}(\overline{d_R}Q^i)(\overline{N_R^c}e_R)H^j$	\mathcal{O}_{NLNH}	$\tilde{H}^{\dagger}(\overline{N_R}L)(\overline{N_R^c}N_R)$
\mathcal{O}_{NH^2B}	$(\overline{N_R^c}\sigma^{\mu u}N_R)(H^{\dagger}H)B_{\mu u}$	() o N H	$(\overline{Q}u_R)(\overline{N_R^c}e_R)H$		$\psi^2 H^4$
\mathcal{O}_{NH^2W}	$(\overline{N_R^c}\sigma^{\mu u}N_R)(H^{\dagger}\tau^I H)W^I_{\mu u}$	♥QuNeH	$(\overline{Q}\sigma_{\mu\nu}u_R)(\overline{N_R^c}\sigma^{\mu\nu}e_R)H$	${\cal O}_{NH^4}$	$(\overline{N_R^c}N_R)(H^{\dagger}H)^2$

d = 7 operators that can be opened at tree-level:

	$\psi^2 H^3 D$		$\psi^4 H$		$\psi^4 H$
0	$\epsilon_{ij}(\overline{N^c_R}\gamma_\mu L^i)(iD^\mu H^j)(H^\dagger H)$	\mathcal{O}_{LNLH}	$\epsilon_{ij}(\overline{L}\gamma_{\mu}L)(\overline{N_R^c}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{LNeH}	$(\overline{L}N_R)(\overline{N_R^c}e_R)H$
UNLH ³ D	$\epsilon_{ij}(\overline{N_R^c}\gamma_\mu L^i)H^j(H^\dagger i \overleftrightarrow{D^\mu} H)$	0	$\epsilon_{ij}(\overline{Q}\gamma_{\mu}Q)(\overline{N_R^c}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{eLNH}	$H^{\dagger}(\overline{e_R}L)(\overline{N_R^c}N_R)$
	$\psi^2 H^2 D^2$	UQNLH	$\epsilon_{ij}(\overline{Q}\gamma_{\mu}Q^{i})(\overline{N_{R}^{c}}\gamma^{\mu}L^{j})H$	\mathcal{O}_{QNdH}	$(\overline{Q}N_R)(\overline{N_R^c}d_R)H$
${\cal O}_{NeH^2D^2}$	$\epsilon_{ij}(\overrightarrow{N_R^c}\stackrel{\longleftrightarrow}{D_\mu}e_R)(H^iD^\mu H^j)$	\mathcal{O}_{eNLH}	$\epsilon_{ij}(\overline{e_R}\gamma_\mu e_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{dQNH}	$H^{\dagger}(\overline{d_R}Q)(\overline{N_R^c}N_R)$
$O_{NH^2D^2}$	$(\overrightarrow{N_R^c}\overleftrightarrow{\partial_\mu}N_R)(H^\dagger\overleftrightarrow{D^\mu}H)$	\mathcal{O}_{dNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu d_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{QNuH}	$(\overline{Q}N_R)(\overline{N_R^c}u_R)\tilde{H}$
	$(\overline{N_R^c}N_R)(D_\mu H)^\dagger D^\mu H$	\mathcal{O}_{uNLH}	$\epsilon_{ij}(\overline{u_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{uQNH}	$\tilde{H}^{\dagger}(\overline{u_R}Q)(\overline{N_R^c}N_R)$
	$\psi^2 H^2 X$	\mathcal{O}_{duNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)\tilde{H}^j$	\mathcal{O}_{LNNH}	$(\overline{L}N_R)(\overline{N_R^c}N_R)\tilde{H}$
\mathcal{O}_{NeH^2W}	$(\epsilon \tau^{I})_{ij} (\overline{N_{R}^{c}} \sigma^{\mu \nu} e_{R}) (H^{i} H^{j}) W^{I}_{\mu \nu}$	\mathcal{O}_{dQNeH}	$\epsilon_{ij}(\overline{d_R}Q^i)(\overline{N_R^c}e_R)H^j$	\mathcal{O}_{NLNH}	$\tilde{H}^{\dagger}(\overline{N_R}L)(\overline{N_R^c}N_R)$
\mathcal{O}_{NH^2B}	$(\overline{N_R^c}\sigma^{\mu u}N_R)(H^{\dagger}H)B_{\mu u}$	() o v u	$(\overline{Q}u_R)(\overline{N_R^c}e_R)H$		$\psi^2 H^4$
\mathcal{O}_{NH^2W}	$(\overline{N_R^c}\sigma^{\mu u}N_R)(H^{\dagger}\tau^I H)W^I_{\mu u}$	\sim_{QuNeH}	$(\overline{Q}\sigma_{\mu\nu}u_R)(\overline{N_R^c}\sigma^{\mu\nu}e_R)H$	\mathcal{O}_{NH^4}	$(\overline{N_R^c}N_R)(H^{\dagger}H)^2$

Are these operators violating lepton number?

d = 7 operators that can be opened at tree-level:

	$\psi^2 H^3 D$		$\psi^4 H$		$\psi^4 H$
() yr us p	$\epsilon_{ij}(\overline{N_R^c}\gamma_{\mu}L^i)(iD^{\mu}H^j)(H^{\dagger}H)$	\mathcal{O}_{LNLH}	$\epsilon_{ij}(\overline{L}\gamma_{\mu}L)(\overline{N_R^c}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{LNeH}	$(\overline{L}N_R)(\overline{N_R^c}e_R)H$
O_{NLH^3D}	$\epsilon_{ij}(\overline{N_R^c}\gamma_\mu L^i)H^j(H^\dagger i \overleftrightarrow{D^\mu} H)$	0	$\epsilon_{ij}(\overline{Q}\gamma_{\mu}Q)(\overline{N_R^c}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{eLNH}	$H^{\dagger}(\overline{e_R}L)(\overline{N_R^c}N_R)$
	$\psi^2 H^2 D^2$	UQNLH	$\epsilon_{ij} (\overline{Q} \gamma_{\mu} Q^i) (\overline{N_R^c} \gamma^{\mu} L^j) H$	\mathcal{O}_{QNdH}	$(\overline{Q}N_R)(\overline{N_R^c}d_R)H$
$\mathcal{O}_{NeH^2D^2}$	$\epsilon_{ij}(\overrightarrow{N_R^c}\stackrel{\longleftrightarrow}{D_\mu} e_R)(H^i D^\mu H^j)$	\mathcal{O}_{eNLH}	$\epsilon_{ij}(\overline{e_R}\gamma_\mu e_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{dQNH}	$H^{\dagger}(\overline{d_R}Q)(\overline{N_R^c}N_R)$
$\mathcal{O}_{NH^2D^2}$	$(\overrightarrow{N_R^c}\overleftrightarrow{\partial_\mu}N_R)(H^\dagger\overleftrightarrow{D^\mu}H)$	\mathcal{O}_{dNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu d_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{QNuH}	$(\overline{Q}N_R)(\overline{N_R^c}u_R)\tilde{H}$
$C_{NH^2D^2}$	$(\overline{N_R^c}N_R)(D_\mu H)^\dagger D^\mu H$	\mathcal{O}_{uNLH}	$\epsilon_{ij}(\overline{u_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{uQNH}	$\tilde{H}^{\dagger}(\overline{u_R}Q)(\overline{N_R^c}N_R)$
	$\psi^2 H^2 X$	\mathcal{O}_{duNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)\tilde{H}^j$	\mathcal{O}_{LNNH}	$(\overline{L}N_R)(\overline{N_R^c}N_R)\tilde{H}$
\mathcal{O}_{NeH^2W}	$(\epsilon \tau^{I})_{ij} (\overline{N_{R}^{c}} \sigma^{\mu \nu} e_{R}) (H^{i} H^{j}) W^{I}_{\mu \nu}$	\mathcal{O}_{dQNeH}	$\epsilon_{ij}(\overline{d_R}Q^i)(\overline{N_R^c}e_R)H^j$	\mathcal{O}_{NLNH}	$\tilde{H}^{\dagger}(\overline{N_R}L)(\overline{N_R^c}N_R)$
\mathcal{O}_{NH^2B}	$(\overline{N_R^c}\sigma^{\mu u}N_R)(H^{\dagger}H)B_{\mu u}$	() o v u	$(\overline{Q}u_R)(\overline{N_R^c}e_R)H$		$\psi^2 H^4$
\mathcal{O}_{NH^2W}	$(\overline{N_R^c}\sigma^{\mu u}N_R)(H^{\dagger}\tau^I H)W^I_{\mu u}$	\sim_{QuNeH}	$(\overline{Q}\sigma_{\mu\nu}u_R)(\overline{N_R^c}\sigma^{\mu\nu}e_R)H$	\mathcal{O}_{NH^4}	$(\overline{N_R^c}N_R)(H^{\dagger}H)^2$

Are these operators violating lepton number?

If $L(N_R) = 1$: yes! But ...

d = 7 operators that can be opened at tree-level:

	$\psi^2 H^3 D$		$\psi^4 H$		$\psi^4 H$
Our	$\epsilon_{ij}(\overline{N_R^c}\gamma_{\mu}L^i)(iD^{\mu}H^j)(H^{\dagger}H)$	\mathcal{O}_{LNLH}	$\epsilon_{ij}(\overline{L}\gamma_{\mu}L)(\overline{N_R^c}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{LNeH}	$(\overline{L}N_R)(\overline{N_R^c}e_R)H$
O_{NLH^3D}	$\epsilon_{ij}(\overline{N_R^c}\gamma_\mu L^i)H^j(H^\dagger i \overleftrightarrow{D^\mu} H)$	0	$\epsilon_{ij}(\overline{Q}\gamma_{\mu}Q)(\overline{N_R^c}\gamma^{\mu}L^i)H^j$	\mathcal{O}_{eLNH}	$H^{\dagger}(\overline{e_R}L)(\overline{N_R^c}N_R)$
	$\psi^2 H^2 D^2$	O_{QNLH}	$\epsilon_{ij} (\overline{Q} \gamma_{\mu} Q^i) (\overline{N_R^c} \gamma^{\mu} L^j) H$	\mathcal{O}_{QNdH}	$(\overline{Q}N_R)(\overline{N_R^c}d_R)H$
$\mathcal{O}_{NeH^2D^2}$	$\epsilon_{ij}(\overrightarrow{N_R^c}\overset{\longleftrightarrow}{D_\mu}e_R)(H^iD^\mu H^j)$	\mathcal{O}_{eNLH}	$\epsilon_{ij}(\overline{e_R}\gamma_\mu e_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{dQNH}	$H^{\dagger}(\overline{d_R}Q)(\overline{N_R^c}N_R)$
$\mathcal{O}_{MH^2D^2}$	$(\overrightarrow{N_R^c}\overleftrightarrow{\partial_\mu}N_R)(H^\dagger\overleftrightarrow{D^\mu}H)$	\mathcal{O}_{dNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu d_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{QNuH}	$(\overline{Q}N_R)(\overline{N_R^c}u_R)\tilde{H}$
$C_{NH^2D^2}$	$(\overline{N_R^c}N_R)(D_\mu H)^\dagger D^\mu H$	\mathcal{O}_{uNLH}	$\epsilon_{ij}(\overline{u_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)H^j$	\mathcal{O}_{uQNH}	$\tilde{H}^{\dagger}(\overline{u_R}Q)(\overline{N_R^c}N_R)$
	$\psi^2 H^2 X$	\mathcal{O}_{duNLH}	$\epsilon_{ij}(\overline{d_R}\gamma_\mu u_R)(\overline{N_R^c}\gamma^\mu L^i)\tilde{H}^j$	\mathcal{O}_{LNNH}	$(\overline{L}N_R)(\overline{N_R^c}N_R)\tilde{H}$
\mathcal{O}_{NeH^2W}	$(\epsilon \tau^{I})_{ij} (\overline{N_{R}^{c}} \sigma^{\mu \nu} e_{R}) (H^{i} H^{j}) W^{I}_{\mu \nu}$	\mathcal{O}_{dQNeH}	$\epsilon_{ij}(\overline{d_R}Q^i)(\overline{N_R^c}e_R)H^j$	\mathcal{O}_{NLNH}	$\tilde{H}^{\dagger}(\overline{N_R}L)(\overline{N_R^c}N_R)$
\mathcal{O}_{NH^2B}	$(\overline{N_R^c}\sigma^{\mu u}N_R)(H^{\dagger}H)B_{\mu u}$	() o v u	$(\overline{Q}u_R)(\overline{N_R^c}e_R)H$		$\psi^2 H^4$
\mathcal{O}_{NH^2W}	$(\overline{N_R^c}\sigma^{\mu u}N_R)(H^{\dagger}\tau^I H)W^I_{\mu u}$	$ u_{QuNeH}$	$(\overline{Q}\sigma_{\mu\nu}u_R)(\overline{N_R^c}\sigma^{\mu\nu}e_R)H$	\mathcal{O}_{NH^4}	$(\overline{N_R^c}N_R)(H^{\dagger}H)^2$

Are these operators violating lepton number?

If $L(N_R) = 1$: yes! But ...

(i) Single N_R operators conserve L if $L(N_R) = -1$ (ii) Pair N_R operators conserve L if $L(N_R) = 0$

One operator alone not sufficient to define LNV!

Tree-level diagrams for d = 6 operators:

Tree-level diagrams for d = 7 operators:

Tree-level diagrams for d = 6 operators:

Tree-level diagrams for d = 6 operators:

One more example ($\psi^2 H^3$):

Tree-level diagrams for d = 6 operators:

One more example ($\psi^2 H^3$):

 \Rightarrow Repeat for all operators and diagrams $\rightarrow \rightarrow \rightarrow$ "dictionary"

Tree-level diagrams for d = 6 operators:

 \Rightarrow Repeat for all operators and diagrams $\rightarrow \rightarrow \rightarrow$ "dictionary"

 \Rightarrow Mathematica COde ModGen

Cepdello et al., JHEP09 (2022) 229

LLPs, Bonn; Nov 13-17, 2023 - p.17/39

Fields in N_R SMEFT at d = 6/7

J LS	Name	S	\mathcal{S}_1	φ	Ξ	Ξ_1	No	otation follows closely:
Scalo	d = 6	(1,1,0)	(1,1,1)	$(1, 2, \overline{2})$ o	(1,3,0)	0	=	de Blas et al. JHEP 03 (2018) 109
	Name Irrep	$\omega_1 \ \left(3,1,-rac{1}{3} ight)$	$\omega_2 \ \left(3,1,rac{2}{3} ight)$	$\Pi_1\\ \left(3,2,\frac{1}{6}\right)$	$\frac{\Pi_7}{\left(3,2,\frac{7}{6}\right)}$	$\zeta \ (3,3,-rac{1}{3})$)	`Granada dictionary"
	d = 6	0	0	0			-	tree-level $d = 6$ SMEFT
ions	Name Irrep d = 6	<i>N</i> (1,1,0) (1,1 ○	E 2 , -1) (1, 2	$\Delta_1 \qquad \Delta_2 \ , -\frac{1}{2}) (1,2)$	$\Delta_3 \qquad \Sigma$ $, -\frac{3}{2}) (1, 3, \circ)$	$\begin{array}{c} \Sigma_1 \\ 0) (1,3,-1) \\ \circ \end{array}$	1)	
Ferm	Name Irrep d = 6	$\begin{array}{c} U \\ \left(3,1,\frac{2}{3}\right) \\ \end{array} (3,1)$	$D \qquad Q$ $,-\frac{1}{3}) \qquad (3,$	Q_1 Q_1 Q_1 Q_1 Q_1 Q_2 $(3, 2)$	$Q_5 \qquad Q_7 \\ , -\frac{5}{6}) (3, 2, $	$\begin{array}{c} T_1 \\ rac{7}{6} \end{pmatrix} \left(3,3,-rac{1}{3} ight)$	$\begin{array}{c} T_2\\ \frac{1}{3} \end{array} \left(3,3,\frac{2}{3}\right) \end{array}$	
-	Nama	p	p	147	٦ <i>٨</i> ،	C	C	
Ors	Irrep $d = 6$	(1,1,0)	\mathcal{D}_1 (1,1,1) \circ	(1, 3, 0)	(1,3,1)	$\mathcal{L}_1 \ \left(1,2,\frac{1}{2}\right) \ \circ$	$\left(1,2,-rac{3}{2} ight)$	
ect	Name Irrep	$\mathcal{U}_1 \ (3,1,-rac{1}{3})$	$\mathcal{U}_2 \ (3,1,rac{2}{3})$	$\mathcal{Q}_1 \ (3,2,rac{1}{6})$	$\mathcal{Q}_5 \ (3,2,-rac{5}{6})$	$\mathcal{X} \ (3,3,rac{2}{3})$		
>	d = 6	0	0	0	× 0/	、 U/		LLPs, Bonn; Nov 13-17, 2023

n; Nov 13-17, 2023 – p.18/39
Models and operators: d = 6

Models	Operators
S	$\mathcal{O}_{NN},\mathcal{O}_{NNNN}$
\mathcal{S}_1	$\mathcal{O}_{LNLe},~\mathcal{O}_{eN}$
arphi	$\mathcal{O}_{QuNL}, \mathcal{O}_{LNLe}, \mathcal{O}_{LNQd}, \mathcal{O}_{LN}, \mathcal{O}_{LNH^3}$
ω_1	$\mathcal{O}_{LNQd},\mathcal{O}_{dN},\mathcal{O}_{duNe}$
ω_2	\mathcal{O}_{uN}
Π_1	$\mathcal{O}_{LNQd},\mathcal{O}_{QN}$
Δ_1	$\mathcal{O}_{NH^2D},\mathcal{O}_{NeH^2D}$
${\mathcal B}$	$\mathcal{O}_{NH^2D}, \mathcal{O}_{NN}, \mathcal{O}_{eN}, \mathcal{O}_{uN}, \mathcal{O}_{dN}, \mathcal{O}_{LN}, \mathcal{O}_{QN}$
\mathcal{B}_1	$\mathcal{O}_{NeH^2D},\mathcal{O}_{eN},\mathcal{O}_{duNe}$
\mathcal{L}_1	\mathcal{O}_{LN}
\mathcal{U}_1	\mathcal{O}_{dN}
\mathcal{U}_2	$\mathcal{O}_{QuNL},\mathcal{O}_{uN},\mathcal{O}_{duNe}$
\mathcal{Q}_1	$\mathcal{O}_{QuNL},\mathcal{O}_{QN}$

Table: One particle models and operators

Models and operators: d = 6

Models	Operators
S	$\mathcal{O}_{NN},\mathcal{O}_{NNNN}$
\mathcal{S}_1	$\mathcal{O}_{LNLe}, \mathcal{O}_{eN}$
arphi	$\mathcal{O}_{QuNL}, \mathcal{O}_{LNLe}, \mathcal{O}_{LNQd}, \mathcal{O}_{LN}, \mathcal{O}_{LNH^3}$
ω_1	$\mathcal{O}_{LNQd},\mathcal{O}_{dN},\mathcal{O}_{duNe}$
ω_2	\mathcal{O}_{uN}
Π_1	$\mathcal{O}_{LNQd},\mathcal{O}_{QN}$
Δ_1	$\mathcal{O}_{NH^2D},\mathcal{O}_{NeH^2D}$
${\mathcal B}$	$\mathcal{O}_{NH^2D},\mathcal{O}_{NN},\mathcal{O}_{eN},\mathcal{O}_{uN},\mathcal{O}_{dN},\mathcal{O}_{LN},\mathcal{O}_{QN}$
\mathcal{B}_1	$\mathcal{O}_{NeH^2D},\mathcal{O}_{eN},\mathcal{O}_{duNe}$
\mathcal{L}_1	\mathcal{O}_{LN}
\mathcal{U}_1	\mathcal{O}_{dN}
\mathcal{U}_2	$\mathcal{O}_{QuNL},\mathcal{O}_{uN},\mathcal{O}_{duNe}$
\mathcal{Q}_1	$\mathcal{O}_{QuNL},\mathcal{O}_{QN}$

 $\begin{array}{c|c} \psi^2 H^3 & \text{Two-particle models} \\ \\ \mathcal{O}_{LNH^3} & SS: & (\mathcal{S}, \varphi), \, (\Xi_1, \varphi), \, (\Xi, \varphi) \\ \\ FF: & (\Delta_1, \mathcal{N}), \, (\Delta_1, \Sigma_1), \, (\Delta_1, \Sigma) \\ \\ FS: & (\mathcal{N}, \mathcal{S}), \, (\Delta_1, \mathcal{S}), \, (\Delta_1, \Xi_1), \, (\Sigma_1, \Xi_1), \, (\Delta_1, \Xi), \, (\Sigma, \Xi) \end{array}$

Two particle models and operator \mathcal{O}_{LNH^3}

Table: One particle models and operators

Models and operators: d = 6

Models	Operators
S	$\mathcal{O}_{NN},\mathcal{O}_{NNNN}$
\mathcal{S}_1	$\mathcal{O}_{LNLe},\mathcal{O}_{eN}$
φ	$\mathcal{O}_{QuNL}, \mathcal{O}_{LNLe}, \mathcal{O}_{LNQd}, \mathcal{O}_{LN}, \mathcal{O}_{LNH^3}$
ω_1	$\mathcal{O}_{LNQd},\mathcal{O}_{dN},\mathcal{O}_{duNe}$
ω_2	\mathcal{O}_{uN}
Π_1	$\mathcal{O}_{LNQd},\mathcal{O}_{QN}$
Δ_1	$\mathcal{O}_{NH^2D},\mathcal{O}_{NeH^2D}$
${\mathcal B}$	$\mathcal{O}_{NH^2D}, \mathcal{O}_{NN}, \mathcal{O}_{eN}, \mathcal{O}_{uN}, \mathcal{O}_{dN}, \mathcal{O}_{LN}, \mathcal{O}_{QN}$
\mathcal{B}_1	$\mathcal{O}_{NeH^2D},\mathcal{O}_{eN},\mathcal{O}_{duNe}$
\mathcal{L}_1	\mathcal{O}_{LN}
\mathcal{U}_1	\mathcal{O}_{dN}
\mathcal{U}_2	$\mathcal{O}_{QuNL},\mathcal{O}_{uN},\mathcal{O}_{duNe}$
\mathcal{Q}_1	$\mathcal{O}_{QuNL},\mathcal{O}_{QN}$

$\psi^2 H^3$	Two-particle models		
	$SS: (\mathcal{S}, arphi), (\Xi_1, arphi), (\Xi, arphi)$		
${\cal O}_{LNH^3}$	$FF: (\Delta_1, \mathcal{N}), (\Delta_1, \Sigma_1), (\Delta_1, \Sigma)$		
	$FS: (\mathcal{N}, \mathcal{S}), (\Delta_1, \mathcal{S}), (\Delta_1, \Xi_1), (\Sigma_1, \Xi_1), (\Delta_1, \Xi), (\Sigma, \Xi)$		

Two particle models and operator \mathcal{O}_{LNH^3}

One particle models

and operators

 \Rightarrow Repeat for d = 7: see JHEP08 (2023) 166

LLPs, Bonn; Nov 13-17, 2023 - p.19/39

Table:

LNV and N_R SMEFT

LLPs, Bonn; Nov 13-17, 2023 - p.20/39

The "black box" theorem for $0\nu\beta\beta$ decay:

The "black box" theorem for $0\nu\beta\beta$ decay:

Any mechanism generating $0\nu\beta\beta$ decay will also generate a Majorana mass term for (at least) one neutrino Schechter & Valle, 1982

The "black box" theorem for $0\nu\beta\beta$ decay:

Any mechanism generating $0\nu\beta\beta$ decay will also generate a Majorana mass term for (at least) one neutrino Schechter & Valle, 1982

In SMEFT: $0\nu\beta\beta$ decay is a d=9 operator Simplest example: $\mathcal{O}_{u^2d^2e^2} = \frac{1}{\Lambda^5}(u_Ru_R)(d_R^cd_R^c)(e_Re_R)$

The "black box" theorem for $0\nu\beta\beta$ decay:

Any mechanism generating $0\nu\beta\beta$ decay will also generate a Majorana mass term for (at least) one neutrino Schechter & Valle, 1982

In SMEFT: $0\nu\beta\beta$ decay is a d=9 operator Simplest example: $\mathcal{O}_{u^2d^2e^2} = \frac{1}{\Lambda^5}(u_Ru_R)(d_R^cd_R^c)(e_Re_R)$

The "black box" theorem for $0\nu\beta\beta$ decay:

Any mechanism generating $0\nu\beta\beta$ decay will also generate a Majorana mass term for (at least) one neutrino Schechter & Valle, 1982

In SMEFT: $0\nu\beta\beta$ decay is a d=9 operator Simplest example: $\mathcal{O}_{u^2d^2e^2} = \frac{1}{\Lambda^5}(u_Ru_R)(d_R^cd_R^c)(e_Re_R)$

Decomposition of $0\nu\beta\beta$ decay d = 9 operators in: Bonnet et al., JHEP 03 (2013) 055

Consider this simple example diagram with N_R :

Consider this simple example diagram with N_R :

Sterile neutrino decaying to like-sign lepton "equivalent" to $0\nu\beta\beta$ decay

Consider this simple example diagram with N_R :

Sterile neutrino decaying to like-sign lepton "equivalent" to $0\nu\beta\beta$ decay

Cut off the quarks:

2-loop diagram for m_{ν} in mass eigenstate basis

Consider this simple example diagram with N_R :

Sterile neutrino decaying to like-sign lepton "equivalent" to $0\nu\beta\beta$ decay

Cut off the quarks:

2-loop diagram for m_{ν} in mass eigenstate basis

Again: Not the dominant contribution to m_{ν} !

Consider this simple example diagram with N_R :

Sterile neutrino decaying to like-sign lepton "equivalent" to $0\nu\beta\beta$ decay

Cut off the quarks:

2-loop diagram for m_{ν} in mass eigenstate basis

Again: Not the dominant contribution to m_{ν} ! Tree-level seesaw!

LLPs, Bonn; Nov 13-17, 2023 - p.22/39

Diagram using $d = 6 N_R$ SMEFT operator(s):

Example: \mathcal{O}_{duNe} LNV via M_M

Diagram using $d = 6 N_R$ SMEFT operator(s):

Example: LNV via $\mathcal{O}_{dLNH} + \mathcal{O}_{QdNL}$

Diagram using $d = 6 N_R$ SMEFT operator(s):

Example: LNV via \mathcal{O}_{dLNH} + \mathcal{O}_{QdNL}

Diagram using $d = 6 N_R$ SMEFT operator(s):

LLPs, Bonn; Nov 13-17, 2023 - p.23/39

Example operator: \mathcal{O}_{LNLH} , four decompositions:

Example operator: \mathcal{O}_{LNLH} , four decompositions:

seesaw type-l strong constraint on c_{LNLH} from $m_{
u}$

Example operator: \mathcal{O}_{LNLH} , four decompositions:

seesaw type-l strong constraint on c_{LNLH} from $m_{
u}$

seesaw type-ll strong constraint on c_{LNLH} from $m_{
u}$

Example operator: \mathcal{O}_{LNLH} , four decompositions:

Example operator: \mathcal{O}_{LNLH} , four decompositions:

Phenomenology

LLPs, Bonn; Nov 13-17, 2023 - p.25/39

Which EFT?

Which EFT?

SMEFT / N_R SMEFT: Standard model symmetries and SM field content + N_R

Which EFT?

SMEFT / N_R SMEFT: Standard model symmetries and SM field content + N_R

> Below m_t/m_W : LEFT / N_R LEFT Integrate out t, H, \cdots

d = 6 operators in N_R SMEFT

List of d = 6 4-fermion operators with one or two N_R :

Name	Structure	$n_N = 1$	$n_N = 3$
\mathcal{O}_{dN}	$\left(\overline{d_R}\gamma^{\mu}d_R ight)\left(\overline{N_R}\gamma_{\mu}N_R ight)$	9	81
${\cal O}_{uN}$	$\left(\overline{u_R}\gamma^{\mu}u_R\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$	9	81
\mathcal{O}_{QN}	$\left(\overline{Q}\gamma^{\mu}Q\right)\left(\overline{N_{R}}\gamma_{\mu}N_{R}\right)$	9	81
\mathcal{O}_{eN}	$\left(\overline{e_R}\gamma^{\mu}e_R ight)\left(\overline{N_R}\gamma_{\mu}N_R ight)$	9	81
${\cal O}_{LN}$	$\left(\overline{L}\gamma^{\mu}L\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$	9	81

pair N_R operators

Name	Structure (+ h.c.)	$n_N = 1$	$n_N = 3$
\mathcal{O}_{duNe}	$\left(\overline{d_R}\gamma^{\mu}u_R ight)\left(\overline{N_R}\gamma_{\mu}e_R ight)$	54	162
\mathcal{O}_{LNQd}	$\left(\overline{L}N_R\right)\epsilon\left(\overline{Q}d_R\right)$	54	162
\mathcal{O}_{LdQN}	$\left(\overline{L}d_R ight)\epsilon\left(\overline{Q}N_R ight)$	54	162
\mathcal{O}_{LNLe}	$\left(\overline{L}N_R ight)\epsilon\left(\overline{L}e_R ight)$	54	162
\mathcal{O}_{QuNL}	$\left(\overline{Q}u_R ight)\left(\overline{N_R}L ight)$	54	162

single N_R operators

d = 6 operators in N_R SMEFT

List of d = 6 4-fermion operators with one or two N_R :

Name	Structure	$n_{N} = 1$	$n_N = 3$
\mathcal{O}_{dN}	$\left(\overline{d_R}\gamma^{\mu}d_R ight)\left(\overline{N_R}\gamma_{\mu}N_R ight)$	9	81
${\cal O}_{uN}$	$\left(\overline{u_R}\gamma^{\mu}u_R\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$	9	81
\mathcal{O}_{QN}	$\left(\overline{Q}\gamma^{\mu}Q\right)\left(\overline{N_{R}}\gamma_{\mu}N_{R}\right)$	9	81
${\cal O}_{eN}$	$\left(\overline{e_R}\gamma^{\mu}e_R ight)\left(\overline{N_R}\gamma_{\mu}N_R ight)$	9	81
${\cal O}_{LN}$	$\left(\overline{L}\gamma^{\mu}L\right)\left(\overline{N_{R}}\gamma_{\mu}N_{R}\right)$	9	81

pair N_R operators

Lightest N_R can not decay via N_R pair operators!

```
\Rightarrow N_R decay via mixing
```

Name	Structure (+ h.c.)	$n_N = 1$	$n_N = 3$
\mathcal{O}_{duNe}	$\left(\overline{d_R}\gamma^{\mu}u_R\right)\left(\overline{N_R}\gamma_{\mu}e_R ight)$	54	162
\mathcal{O}_{LNQd}	$\left(\overline{L}N_R ight)\epsilon\left(\overline{Q}d_R ight)$	54	162
\mathcal{O}_{LdQN}	$\left(\overline{L}d_R ight)\epsilon\left(\overline{Q}N_R ight)$	54	162
\mathcal{O}_{LNLe}	$\left(\overline{L}N_R\right)\epsilon\left(\overline{L}e_R\right)$	54	162
\mathcal{O}_{QuNL}	$\left(\overline{Q}u_R\right)\left(\overline{N_R}L\right)$	54	162

single N_R operators

 $\Rightarrow N_R \text{ decay}$ via operator
(easily)
dominates!

Cross sections

Example cross sections for production via mixing and single N_R operator, example \mathcal{O}_{duNe} :

Beltrán et al., 2021

Minimal HNL: $\sigma^{\text{Mix}} \propto |V_{eN}|^2$ N_R SMEFT: $\sigma^{\mathcal{O}} \propto (1/\Lambda)^4$

Cross sections

Example cross sections for production via mixing and single N_R operator, example \mathcal{O}_{duNe} :

Beltrán et al., 2021

Minimal HNL: $\sigma^{\text{Mix}} \propto |V_{eN}|^2$ N_R SMEFT: $\sigma^{\mathcal{O}} \propto (1/\Lambda)^4$

Below roughly $m_N \sim 30 \text{ GeV}$ $\Lambda = 25 \text{ TeV} \Leftrightarrow |V_{eN}|^2 \simeq 10^{-9}$

But ...

Cross section from mixing drops exponentially for $m_N > m_W$

Forecast: Single- N_R

Beltrán et al., 2021

Production cross section:

 $\sigma(pp \to N + l^{\pm}) \propto \frac{1}{\Lambda^4}$

Decay length:

$$c au \propto rac{\Lambda^4}{m_N^5}$$

No displaced vertex for $m_N\gtrsim 50~{\rm GeV}$

LLPs, Bonn; Nov 13-17, 2023 - p.29/39

Forecast: Pair-N_R operators

Cottin et al., 2021

- \Rightarrow Assumption: only N_R pair operators, decay via mixing
- ⇒ Mixing as small as (and smaller!) than naive seesaw expectation can be probed!
- $\Rightarrow m_N$ up to TeV could be probed!

Forecast searches

Only \mathcal{O}_{dN}

 $\Lambda = 2 \text{ TeV}$

LLPs, Bonn; Nov 13-17, 2023 - p.31/39

Forecast searches

 m_N [GeV]

 $\Lambda = 7 \text{ TeV}$

LLPs, Bonn; Nov 13-17, 2023 - p.32/39

Forecast searches

Only \mathcal{O}_{dN}

LLPs, Bonn; Nov 13-17, 2023 - p.33/39
4F operators in N_R LEFT

d = 6 operators with pairs of N_R :

	Name	Structure	$n_N = 1$	$n_N = 3$	
LNC	$\mathcal{O}_{dN}^{V,RR}$	$\left(\overline{d_R}\gamma_\mu d_R ight)\left(\overline{N_R}\gamma^\mu N_R ight)$	9	81	lept
	$\mathcal{O}_{uN}^{V,RR}$	$\left(\overline{u_R}\gamma_\mu u_R\right)\left(\overline{N_R}\gamma^\mu N_R\right)$	4	36	
	$\mathcal{O}_{dN}^{V,LR}$	$\left(\overline{d_L}\gamma_\mu d_L ight)\left(\overline{N_R}\gamma^\mu N_R ight)$	9	81	
	${\cal O}_{uN}^{V,LR}$	$\left(\overline{u_L}\gamma_\mu u_L\right)\left(\overline{N_R}\gamma^\mu N_R\right)$	4	36	
LNV	$\mathcal{O}_{dN}^{S,RR}$	$\left(\overline{d_L}d_R\right)\left(\overline{N_R^c}N_R ight)$	18	108	lept
	$\mathcal{O}_{dN}^{T,RR}$	$\left(\overline{d_L}\sigma_{\mu\nu}d_R\right)\left(\overline{N_R^c}\sigma^{\mu\nu}N_R\right)$	0	54	
	$\mathcal{O}_{uN}^{S,RR}$	$\left(\overline{u_L}u_R\right)\left(\overline{N_R^c}N_R\right)$	8	48	
	$\mathcal{O}_{uN}^{T,RR}$	$\left(\overline{u_L}\sigma_{\mu u}u_R ight)\left(\overline{N_R^c}\sigma^{\mu u}N_R ight)$	0	24	
	$\mathcal{O}_{dN}^{S,LR}$	$\left(\overline{d_R}d_L ight)\left(\overline{N_R^c}N_R ight)$	18	108	
	${\cal O}_{uN}^{S,LR}$	$\left(\overline{u_R}u_L ight)\left(\overline{N_R^c}N_R ight)$	8	48	

lepton number conserved

epton number violated

 \Rightarrow For single N_R operators, see:

R. Beltrán et al., 2210.02461 and De Vries et al., 2010.07305

Mesons at LHC

Meson production at LHC for $\mathcal{L} = 3/ab$:

D^0	D^{\pm}	D_s^{\pm}	B^0	B^{\pm}	B_s^0
4.12×10^{16}	2.16×10^{16}	7.02×10^{15}	1.58×10^{15}	1.58×10^{15}	2.73×10^{14}

Mesons at LHC

Meson production at LHC for $\mathcal{L} = 3/ab$:

D^0	D^{\pm}	D_s^{\pm}	B^0	B^{\pm}	B^0_s
4.12×10^{16}	2.16×10^{16}	7.02×10^{15}	1.58×10^{15}	1.58×10^{15}	2.73×10^{14}

Meson decay via N_R LEFT operators:

For example: $B^0 \rightarrow NN$

 $B^+ \to \pi^+ N N$

Projected sensitivities

3-dimensional parameter space fix, as example: $c = 10^{-3}/v^2$

Projected sensitivities

Example LNC operator:

 \Rightarrow Rough estimate, LNC scales as $1/\Lambda^2$:

 $c \sim 10^{-4} (10^{-5}) \longrightarrow \Lambda \sim 100(300) \text{ TeV}$

Beltran et al, 2022

Projected sensitivities

Example LNV operator:

 \Rightarrow Rough estimate, LNV scales as $1/\Lambda^3$:

 $c \sim 10^{-4} (10^{-5}) \longrightarrow \Lambda \sim 10(21) \text{ TeV}$

Beltran et al, 2022

- \Rightarrow Renewed interest in long-lived particles (dark matter & neutrinos)
- \Rightarrow Many new proposals to look for LLPs at LHC: ATLAS/CMS (!!), MATHUSLA, FASER, CODEX-b, ANUBIS ...
- \Rightarrow If EW scale N_R exists, it should be long-lived
- ⇒ Large discovery potential or improvement of existing limits by several orders of magnitude
- $\Rightarrow N_R$ SMEFT (N_R LEFT) operators can be probed up to $\Lambda < (10 20)$ TeV ($\Lambda < (100 300)$ TeV)
- \Rightarrow For pair- N_R operators, can probe tiny mixing angles!