Heavy Neutral Leptons

Juraj Klarić Bethe Forum on Long-Lived Particles November 14th 2023

What do we look for when we look for HNLs?

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

LLP experiments

LLP experiments

LLP experiments

Most phenomenological studies are based on the Lagrangian:

Phenomenological Lagrangian

$$\mathcal{L} \supset -\frac{m_W}{v} \overline{N} \theta_a^* \gamma^\mu e_{La} W_\mu^+ - \frac{m_Z}{\sqrt{2}v} \overline{N} \theta_a^* \gamma^\mu \nu_{L\alpha} Z_\mu - \frac{M}{v} \theta_a h \overline{\nu_{La}} N + \text{h.c.}$$

where $U_a^2 = |\theta_a|^2$, and the field N can be either a Dirac or a Majorana field.

With only 4 free parameters!

In a realistic model we instead have more fields N_I (where I = 1, 2...) and parameters:

Realistic parameters

$$\theta_a \to \theta_{aI}$$
, and $M \to M_I$

But also more constraints!

Seesaw relation

$$(m_{\nu})_{ab} = -\theta_{aI} M_I(\theta)_{bI}$$

$$\theta = i U_{\nu} \sqrt{m_{\nu}^{\text{diag}}} \mathcal{R} \sqrt{\underline{M_M^{-1}}}$$

[Casas, Ibarra 2001]

2 Heavy Neutrinos

+ 2 RHN masses

3 Heavy Neutrinos

+ 3 RHN masses

2 parameters

$$\theta = i U_{\nu} \sqrt{m_{\nu}^{\text{diag}}} \mathcal{R} / \overline{M_M^{-1}}$$

[Casas, Ibarra 2001]

2 Heavy Neutrinos

- + 2 RHN masses
- + 1 complex $(\times 2)$ angle

3 Heavy Neutrinos

- + 3 RHN masses
- + $3 \text{ complex } (\times 2) \text{ angles}$

3 parameters

$$\theta = i U_{\nu} \sqrt{m_{\nu}^{\text{diag}}} \mathcal{R} \sqrt{M_M^{-1}}$$

[Casas, Ibarra 2001]

2 Heavy Neutrinos

- + 2 RHN masses
- + 1 complex $(\times 2)$ angle
- + 2 light neutrino masses

3 Heavy Neutrinos

- + 3 RHN masses
- + $3 \text{ complex } (\times 2) \text{ angles}$
- + 2 + 1 light neutrino masses

5 parameters

$$\theta = U_{\nu} \sqrt{m_{\nu}^{\text{diag}}} \mathcal{R} \sqrt{M_M^{-1}}$$

[Casas, Ibarra 2001]

2 Heavy Neutrinos

- + 2 RHN masses
- + 1 complex $(\times 2)$ angle
- + 2 light neutrino masses
- + 3 PMNS angles
- + 1 CP phase δ
- + 1 Majorana phase lpha

11 (6 free) parameters

3 Heavy Neutrinos

- + 3 RHN masses
- + $3 \text{ complex } (\times 2) \text{ angles}$
- + 2 + 1 light neutrino masses
- + 3 PMNS angles
- + 1 CP phase δ
- + 2 Majorana phases $lpha_{1,2}$
 - 18 (13 free) parameters 4/18

How to map realistic models onto the phenomenological Lagrangian

Mass and mixing angle

We assume close to mass degenerate HNLs:

 $M_1 \approx M_2$

Only consider the *total* mixng angle:

$$U_a^2 = \sum_I U_{aI}^2 \,, \quad \text{and} \quad U^2 = \sum_a U_a^2 \,$$

Back to 4 parameters and a discrete assumption about the a Dirac or Majorana nature of the HNL.

Still too many parameters for efficient experimental exploration? Ideally just a mass and a coupling. \rightarrow Fix the ratios U_a^2/U^2 !

How to map realistic models onto the phenomenological Lagrangian

Mass and mixing angle

We assume close to mass degenerate HNLs:

 $M_1 \approx M_2 \approx M_3$

Only consider the *total* mixng angle:

$$U_a^2 = \sum_I U_{aI}^2 \,, \quad \text{and} \quad U^2 = \sum_a U_a^2 \,$$

Back to 4 parameters and a discrete assumption about the a Dirac or Majorana nature of the HNL.

Still too many parameters for efficient experimental exploration? Ideally just a mass and a coupling. \rightarrow Fix the ratios U_a^2/U^2 !

Sensitivity of experiments highly depends on mixing ratios

[Drewes/Hajer/JK/Lanfranchi

[Tastet/Ruchayskiy/Timiryasov

2107.12980]

[CMS-PAS-EXO-21-013]

Constraints from the seesaw mechanism

[Drewes/JK/Lopez-Pavon 2207.02742]

[using nuFIT 5.1 2007.14792]

- in the minimal seesaw model the flavour ratios are completely determined by U_{PMNS}
- uncertainty dominated by Majorana phase η , Dirac phase δ and θ_{23}
- allowed ratios become smaller as we pin down the PMNS parameters
- How to choose future-proof benchmarks?

Constraints from the seesaw mechanism

[Drewes/JK/Lopez-Pavon 2207.02742]

[using nuFIT 5.1 2007.14792]

- in the minimal seesaw model the flavour ratios are completely determined by U_{PMNS}
- uncertainty dominated by Majorana phase η , Dirac phase δ and θ_{23}
- allowed ratios become smaller as we pin down the PMNS parameters
- How to choose future-proof benchmarks?

Future sensitivity?

- significant improvement expected with DUNE and HyperK
- we can use the sensitivity estimates to estimate how the allowed flavor ratios change

[nuFIT 5.1 2007.14792]

[DUNE TDR 2002.03005]

Future sensitivity?

[nuFIT 5.1 2007.14792]

[Drewes/JK/Lopez-Pavon 2207.02742]

[DUNE TDR 2002.03005]

New Benckmark Points

[Figure from 2207.02742]

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $U_e^2: U_\mu^2: U_\tau^2 = 0:1:1$
 - $U_e^2: U_{\mu}^2: U_{\tau}^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

New Benckmark Points

NO, M = 30 GeV

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $U_e^2: U_\mu^2: U_\tau^2 = 0:1:1$
 - $U_e^2: U_\mu^2: U_\tau^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

New Benckmark Points

 $\Delta M/M = 10^{-2}$

[Hernandez/Lopez-Pavon/Rius/Sandner 2207.01651]

- new benchmarks prepared for the HNL WG of the FIPs physics centre
- selection criteria:
 - 1. consistency with ν -osc. data
 - 2. added value
 - 3. symmetry considerations
 - 4. simplicity
 - 5. leptogenesis
- in addition to the single flavor benchmarks, we propose the new points:
 - $U_e^2: U_{\mu}^2: U_{\tau}^2 = 0: 1: 1$
 - $\cdot \ U_e^2: U_{\mu}^2: U_{\tau}^2 = 1:1:1$
- Common benchmarks can used to compare the reach of different searches

Dirac or Majorana HNLs?

LNV / LNC ratio

$$R_{\ell\ell} = \frac{\Delta M_N^2}{2\Gamma_N^2 + \Delta M_N^2}$$

[Anamiati/Hirsch/Nardi 1607.05641]

- for $\Delta M_N \ll \Gamma_N$ lepton number is conserved - Dirac HNLs
- for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated - Majorana HNLs
- technical naturalness implies lower limit on the mass splitting $\Delta M_N \gtrsim \Delta m_{\nu}$

Dirac or Majorana HNLs?

[Antusch/Hajer/Rosskopp 2307.06208]

LNV / LNC ratio

$$R_{\ell\ell} = \frac{\Delta M_N^2}{2\Gamma_N^2 + \Delta M_N^2}$$

[Anamiati/Hirsch/Nardi 1607.05641]

- for $\Delta M_N \ll \Gamma_N$ lepton number is conserved Dirac HNLs
- for $\Delta M_N \gtrsim \Gamma_N$ lepton number is violated - Majorana HNLs
- technical naturalness implies lower limit on the mass splitting $\Delta M_N \gtrsim \Delta m_{\nu}$
- ratio can be modified by decoherence effects

From discovery to tests

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP
- $\cdot\,$ strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)

10, M = 30 GeV

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of U_e^2/U^2
- similar sensitivity @ SHiP
- $\cdot\,$ strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of $U_e^2/U^2\,$
- similar sensitivity @ SHiP
- strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)

 $M_N = 1 \text{ GeV} \textcircled{O} \text{SHiP}$

[Snowmass HNL WP 2203.08039]

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of $U_e^2/U^2\,$
- similar sensitivity @ SHiP
- strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)

$\Delta M/M = 10^{-2}$

[Hernández/López-Pavón/Rius/Sandner 2207.01651]

- the HNL branching ratios are constrained for a fixed U^2
- large number of HNLs possible at FCC-ee allow for measurement of $U_e^2/U^2\,$
- similar sensitivity @ SHiP
- strong constraints on flavour for large ΔM
- even more predictive when combined with discrete flavour and CP symmetries (in the case with 3 RHN)

Complementarity with neutrinoless double beta decay

- + m_{etaeta} is a complementary probe of the flavor mixing ratios for $M_N \gg 100 MeV$
- excluding m_{etaeta} limits allowed flavour ratios

Complementarity with neutrinoless double beta decay

- + m_{etaeta} is a complementary probe of the flavor mixing ratios for $M_N \gg 100 MeV$
- excluding m_{etaeta} limits allowed flavour ratios

Measuring the mass splitting in model with 2 HNLs

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few\%})$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting
- smaller mass splittings can be probed in HNL oscillations

[Antusch/Hajer/Rosskopp 2210.10738]

- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few}\%)$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting
- smaller mass splittings can be probed in HNL oscillations

Measuring the mass splitting in model with 2 HNLs

[Tastet/Timiryasov 1912.05520]

- large range of ΔM consistent with leptogenesis
- energy resolution of planned experiments $\Delta M/M \sim \mathcal{O}(\text{few}\%)$
- Higgs vev contribution to RHN mass difference $\Delta M_{\theta\theta}$ practically implies lower limit on the mass splitting
- smaller mass splittings can be probed in HNL oscillations

- benchmark with fixed $U^2_{lpha I}/U^2$

- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

- benchmark with fixed $U^2_{lpha I}/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

- benchmark with fixed $U^2_{lpha I}/U^2$
- upper bound on U² arises through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

 $U_{\alpha I}^2/U^2$ • upper bound on U^2 arises

benchmark with fixed

- through a combination of baryogenesis + fine tuning constraints
- leptogenesis consistent with both LNV and LNC RHN decays
- nontrivial LNV/LNC ratios can further constrain the RHN parameters

Indirect probes of HNLs

[figure from 1910.04688]

HNL contribution to $0 u\beta\beta$

$$\begin{split} m_{\beta\beta} &\simeq \left| [1 - f_A(\bar{M})] m_{\beta\beta}^\nu \right. \\ &+ 2 f_A^2(\bar{M}) \frac{\bar{M}^2}{\Lambda^2} \Delta M(\Theta_{e1}^2 - \Theta_{e2}^2) \end{split}$$

- + HNLs can contribute to $m_{\beta\beta}$ when $M\sim 100~{\rm MeV}$
- the HNL contribution suppressed when $\Delta M \ll M$ approximate lepton number conservation
- leptogenesis imposes bounds on the size of ΔM and Θ_{ei}^2
- parts of the leptogenesis parameter space can already be excluded in existing experiments
- much large parameter space with 3 HNLs
 - $\cdot \ m_{lightest} \neq 0$
 - \cdot larger rates due to wider range of ΔM_{ij}
 - + large HNL contribution implies $M \lesssim 1$ GeV

[figure from 1910.04688]

HNL contribution to $0 u\beta\beta$

$$\begin{split} m_{\beta\beta} &\simeq \left| [1 - f_A(\bar{M})] m_{\beta\beta}^{\nu} \right. \\ &+ 2 f_A^2(\bar{M}) \frac{\bar{M}^2}{\Lambda^2} \Delta M(\Theta_{e1}^2 - \Theta_{e2}^2) \end{split}$$

- + HNLs can contribute to $m_{\beta\beta}$ when $M\sim 100~{\rm MeV}$
- the HNL contribution suppressed when $\Delta M \ll M$ approximate lepton number conservation
- leptogenesis imposes bounds on the size of ΔM and Θ_{ei}^2
- parts of the leptogenesis parameter space can already be excluded in existing experiments
- much large parameter space with 3 HNLs
 - $\cdot \ m_{lightest} \neq 0$
 - \cdot larger rates due to wider range of ΔM_{ij}
 - + large HNL contribution implies $M \lesssim 1$ GeV

[Eijima/Drewes 1606.06221,

Hernández/Kekic/López-Pavón/Salvado 1606.06719]

- + HNLs can contribute to $m_{\beta\beta}$ when $M\sim 100~{\rm MeV}$
- the HNL contribution suppressed when $\Delta M \ll M$ approximate lepton number conservation
- leptogenesis imposes bounds on the size of ΔM and Θ_{ei}^2
- parts of the leptogenesis parameter space can already be excluded in existing experiments
- much large parameter space with 3 HNLs
 - $\cdot \ m_{lightest} \neq 0$
 - \cdot larger rates due to wider range of ΔM_{ij}
 - + large HNL contribution implies $M \lesssim 1$ GeV

- + HNLs can contribute to $m_{\beta\beta}$ when $M\sim 100~{\rm MeV}$
- the HNL contribution suppressed when $\Delta M \ll M$ approximate lepton number conservation
- leptogenesis imposes bounds on the size of ΔM and Θ_{ei}^2
- parts of the leptogenesis parameter space can already be excluded in existing experiments
- much large parameter space with 3 HNLs
 - $\cdot \ m_{lightest} \neq 0$
 - \cdot larger rates due to wider range of ΔM_{ij}
 - + large HNL contribution implies $M \lesssim 1$ GeV

[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]

- parameters space in the TeV region already severly constrained by cLFV observables
- future $\mu \to e$ conversion experiments can probe a large part of the leptogenesis parameter space with 3 HNLs
- simultaneous LFV possible in several channels

- parameters space in the TeV region already severly constrained by cLFV observables
- future $\mu \to e$ conversion experiments can probe a large part of the leptogenesis parameter space with 3 HNLs
- simultaneous LFV possible in several channels

- parameters space in the TeV region already severly constrained by cLFV observables
- future $\mu \to e$ conversion experiments can probe a large part of the leptogenesis parameter space with 3 HNLs
- simultaneous LFV possible in several channels

- parameters space in the TeV region already severly constrained by cLFV observables
- future $\mu \to e$ conversion experiments can probe a large part of the leptogenesis parameter space with 3 HNLs
- simultaneous LFV possible in several channels

- right-handed neutrinos can offer a minimal solution to the origins of neutrino masses and the baryon asymmetry of the Universe
- theoretical considerations can motivate benchmark models for experimental searches
- the existence right-handed neutrinos can be tested at existing and near-future experiments
 - excellent synergy between direct and indirect probes!
- HNLs can have a very rich phenomenology displaced vertices, LFV ($\mu \rightarrow e\gamma$), LNV ($0\nu\beta\beta$), HNL oscillations...

Thank you!