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What do we look for when we look

for HNLs?



Direct probes of the HNL parameter space

HNL mixing
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[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

1/18



Direct probes of the HNL parameter space

HNL mixing

N
W ∓

`±
aθa

U2
a = |θa|2

U2 =
∑

a

U2
a

U2 & mν/M

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

1/18



Direct probes of the HNL parameter space

Displaced Vertices
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LLP experiments
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The phenomenological HNL model

Most phenomenological studies are based on the Lagrangian:

Phenomenological Lagrangian

L ⊃ −mW

v
Nθ∗

aγµeLaW +
µ − mZ√

2v
Nθ∗

aγµνLαZµ− M

v
θahνLaN +h.c.

where U2
a = |θa|2, and the field N can be either a Dirac or a

Majorana field.

With only 4 free parameters!
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Realistic models of neutrino masses

In a realistic model we instead have more fields NI (where
I = 1, 2 . . . ) and parameters:

Realistic parameters

θa → θaI , and M → MI

But also more constraints!

Seesaw relation

(mν)ab = −θaIMI(θ)bI
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HNL mixing angles in realistic neutrino mass models

θ = iUν

√
mdiag

ν R
√

M−1
M

[Casas, Ibarra 2001]

2 Heavy Neutrinos

+ 2 RHN masses

+ 1 complex (×2) angle
+ 2 light neutrino masses

+ 3 PMNS angles

+ 1 CP phase δ

+ 1 Majorana phase α

2 parameters

3 Heavy Neutrinos

+ 3 RHN masses

+ 3 complex (×2) angles
+ 2 + 1 light neutrino

masses

+ 3 PMNS angles

+ 1 CP phase δ

+ 2 Majorana phases α1,2

3 parameters 4/18
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HNL mixing angles in realistic neutrino mass models

θ = iUν

√
mdiag

ν R
√

M−1
M

[Casas, Ibarra 2001]

2 Heavy Neutrinos

+ 2 RHN masses
+ 1 complex (×2) angle
+ 2 light neutrino masses

+ 3 PMNS angles

+ 1 CP phase δ

+ 1 Majorana phase α

11 (6 free) parameters

3 Heavy Neutrinos

+ 3 RHN masses
+ 3 complex (×2) angles
+ 2 + 1 light neutrino

masses

+ 3 PMNS angles

+ 1 CP phase δ

+ 2 Majorana phases α1,2

18 (13 free) parameters 4/18



How to map realistic models onto the phenomenological La-

grangian

Mass and mixing angle

We assume close to mass degenerate HNLs:

M1 ≈ M2

≈ M3

Only consider the total mixng angle:

U2
a =

∑
I

U2
aI , and U2 =

∑
a

U2
a

Back to 4 parameters and a discrete assumption about the a Dirac or Majorana nature
of the HNL.

Still too many parameters for efficient experimental exploration?
Ideally just a mass and a coupling. → Fix the ratios U2

a/U2!
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Sensitivity of experiments highly depends on mixing ratios

NA62 in beam dump

[Drewes/Hajer/JK/Lanfranchi

1801.04207]

ATLAS

[Tastet/Ruchayskiy/Timiryasov

2107.12980]

CMS

[CMS-PAS-EXO-21-013]
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Constraints from the seesaw mechanism

[Drewes/JK/Lopez-Pavon 2207.02742]

[using nuFIT 5.1 2007.14792]

• in the minimal seesaw model the
flavour ratios are completely
determined by UP MNS

• uncertainty dominated by Majorana
phase η, Dirac phase δ and θ23

• allowed ratios become smaller as we
pin down the PMNS parameters

• How to choose future-proof
benchmarks?
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Future sensitivity?

• significant improvement
expected with DUNE and HyperK

• we can use the sensitivity
estimates to estimate how the
allowed flavor ratios change

[nuFIT 5.1 2007.14792]

[DUNE TDR 2002.03005]
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New Benckmark Points

[Figure from 2207.02742]

• new benchmarks prepared for the
HNL WG of the FIPs physics centre

• selection criteria:
1. consistency with ν-osc. data
2. added value
3. symmetry considerations
4. simplicity
5. leptogenesis

• in addition to the single flavor

benchmarks, we propose the new

points:

• U2
e : U2

µ : U2
τ = 0 : 1 : 1

• U2
e : U2

µ : U2
τ = 1 : 1 : 1

• Common benchmarks can used to
compare the reach of different
searches
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New Benckmark Points

∆M/M = 10−2
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Dirac or Majorana HNLs?

[Drewes/Klose/JK 1907.13034]

LNV / LNC ratio

R`` = ∆M2
N

2Γ2
N + ∆M2

N

[Anamiati/Hirsch/Nardi 1607.05641]

• for ∆MN � ΓN lepton number
is conserved - Dirac HNLs

• for ∆MN & ΓN lepton number
is violated - Majorana HNLs

• technical naturalness implies
lower limit on the mass splitting
∆MN & ∆mν

• ratio can be modified by
decoherence effects
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From discovery to tests



Measuring flavor ratios at experiments

• the HNL branching ratios are
constrained for a fixed U2

• large number of HNLs
possible at FCC-ee allow for
measurement of U2

e /U2

• similar sensitivity @ SHiP
• strong constraints on flavour
for large ∆M

• even more predictive when
combined with discrete
flavour and CP symmetries
(in the case with 3 RHN)

IO, M = 30 GeV
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MN = 1 GeV @ SHiP

[Snowmass HNL WP 2203.08039]
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Measuring flavor ratios at experiments

• the HNL branching ratios are
constrained for a fixed U2

• large number of HNLs
possible at FCC-ee allow for
measurement of U2

e /U2

• similar sensitivity @ SHiP
• strong constraints on flavour
for large ∆M

• even more predictive when
combined with discrete
flavour and CP symmetries
(in the case with 3 RHN)

[Drewes/Georis/HagedornKlaric 2203.08538]

[Drewes/Georis/HagedornKlaric 230a.bcde]
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Complementarity with neutrinoless double beta decay

• mββ is a complementary probe of
the flavor mixing ratios for
MN � 100MeV

• excluding mββ limits allowed
flavour ratios
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Measuring the mass splitting in model with 2 HNLs

Normal Ordering:
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[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

1710.03744]

• large range of ∆M consistent with
leptogenesis

• energy resolution of planned
experiments - ∆M/M ∼ O(few%)

• Higgs vev contribution to RHN mass
difference ∆Mθθ practically implies
lower limit on the mass splitting

• smaller mass splittings can be
probed in HNL oscillations
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Measuring the mass splitting in model with 2 HNLs

[Tastet/Timiryasov 1912.05520]
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Mass splittings with 3 HNLs

10 8 6 4 2
log10U2
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PRELIMINARY

M = 10 GeV

[ Drewes/Georis/JK 231x.xxxx]

• benchmark with fixed
U2

αI/U2

• upper bound on U2 arises
through a combination of
baryogenesis + fine tuning
constraints

• leptogenesis consistent
with both LNV and LNC RHN
decays

• nontrivial LNV/LNC ratios
can further constrain the
RHN parameters
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Indirect probes of HNLs



Probing HNLs in neutrinoless double β decay

[figure from 1910.04688]

HNL contribution to 0νββ

mββ '
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Λ2
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e1 − Θ2
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∣∣∣

• HNLs can contribute to mββ

when M ∼ 100 MeV

• the HNL contribution
suppressed when ∆M � M

approximate lepton number conservation

• leptogenesis imposes bounds
on the size of ∆M and Θ2

ei

• parts of the leptogenesis
parameter space can already be
excluded in existing experiments

• much large parameter space
with 3 HNLs

• mlightest 6= 0
• larger rates due to wider range of ∆Mij

• large HNL contribution implies M . 1
GeV
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[Eijima/Drewes 1606.06221,
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Probing HNLs in neutrinoless double β decay

[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]
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Indirect probes: Charged LFV with 3 HNLs
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[Granelli/JK/Petcov 2206.04342]

• parameters space in the TeV region already severly constrained by cLFV
observables

• future µ → e conversion experiments can probe a large part of the leptogenesis
parameter space with 3 HNLs

• simultaneous LFV possible in several channels
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Conclusions

• right-handed neutrinos can offer a minimal solution to
the origins of neutrino masses and the baryon asymmetry
of the Universe

• theoretical considerations can motivate benchmark
models for experimental searches

• the existence right-handed neutrinos can be tested at
existing and near-future experiments

• excellent synergy between direct and indirect probes!

• HNLs can have a very rich phenomenology
displaced vertices, LFV (µ → eγ), LNV (0νββ), HNL oscillations…
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Thank you!
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