

LLP Coverage & Gaps

- The ever-expanding LLP search program is super impressive and full of creative ideas!
 - We've come a long way
 - LLPs used to be *fringe* but they are now a *major focus* of the LHC search program

LLP Coverage & Gaps

- The ever-expanding LLP search program is super impressive and full of creative ideas!
 - We've come a long way
 - LLPs used to be *fringe* but they are now a *major focus* of the LHC search program
- However, gaps in coverage remain
 - Where can we improve?

LLP Coverage & Gaps

- The ever-expanding LLP search program is super impressive and full of creative ideas!
 - We've come a long way
 - LLPs used to be *fringe* but they are now a *major focus* of the LHC search program
- However, gaps in coverage remain
 - Where can we improve?
- NB: My personal view! Biased from my CMS (CODEX-b, FCC) perspective
 - Meant to generate discussion. Tell me what I missed!

How are we doing, for a variety of models?

Status?

Current Model Coverage & Gaps

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

ATLAS Preliminary

12

Wide range of signatures, models, and lifetimes explored at the LHC

Overview of CMS long-lived particle searches

RPV SUSY

RPC SΥ SU

Higgs+Othe

SM $H \rightarrow XX(10\%)$, $X \rightarrow \tau \tau$, $m_X = 7 \text{ GeV}$ SM $H \rightarrow XX(10\%)$, $X \rightarrow ee$, $m_X = 0.4$ GeV SM $H\rightarrow\Psi\bar{\Psi}(1\%)$, Gluon portal, $m_n = 5$ GeV, $(X_{10}, X_{10}) = (2.5, 1)$ SM $H \rightarrow \Psi \tilde{\Psi}(1\%)$, Photon portal, $m_n = 5$ GeV, $(X_{i\Omega}, X_{ih}) = (2.5, 1)$ SM $H \rightarrow \Psi \overline{\Psi}(1\%)$, Vector portal, $m_{\tilde{\omega}} = 5$ GeV, $(X_{I\Omega}, X_{I\Lambda}) = (1, 1)$ dark QCD, mnov = 5 GeV, mxov = 1200 GeV

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

Overview of CMS long-lived particle searches

Clearly we've made some progress...

SUSY

Split SUSY: $\tilde{g} \rightarrow qq\tilde{\chi}^0$

- Analyses with complementary lifetime coverage
- Target fairly high mass here

Split SUSY: $\tilde{g} \rightarrow qq\tilde{\chi}^0$

- For the same model, can also go to:
 - Smaller lifetimes when you reinterpret a prompt search
 - Longer lifetimes with searches for stopped particles (EXO-16-004) and HSCPs (EXO-16-036)

Split SUSY: $\tilde{g} \rightarrow qq\tilde{\chi}^0$

18

Split SUSY: $\tilde{g} \rightarrow qq\tilde{\chi}^0$

Look how far we've come!

2015

2022

GMSB: Displaced leptons

- CMS search better at shorter lifetimes, ATLAS better at longer lifetimes
 - ATLAS has a bigger detector! Naively this difference in results makes sense
- Room for improvement for CMS search:
 - Can take advantage of more displaced muon reconstruction
 - Better displaced electron reconstruction would be great!
- For both CMS and ATLAS:
 - Can try with non-isolated leptons (harder! more bkg)
 - Could try for lower masses if have improved triggers
 - Displaced hadronically decaying taus! Stay tuned :)

ATLAS has this nice plot to show both displaced lepton searches and searches for highly-ionizing particles at once

- I think CMS should do this once our full Run 2 HSCP analysis finally comes out :)
- Also missing: displaced taus!

GMSB Staus

ATLAS-CONF-2023-044

GMSB: Delayed/Non-pointing Photons ATLAS targets GMSB SUSY via H → NLSP NLSP...

GMSB: Delayed/Non-pointing Photons ... while CMS targets GMSB SUSY via SPS8

not easy to compare ATLAS and CMS for delayed photons, since production mechanism is different

AMSB

Displaced leptons (no vertex required) EXO-18-003

RPV SUSY

Displaced jets

EXO-19-021

Displaced leptons (no vertex required) EXO-18-003

RPV SUSY

- In general, different benchmark RPV SUSY interpretations in LLP searches
- Need a more systematic approach to facilitate comparisons across the experiments

(Exotic) Higgs and Dark Photons

 $H \rightarrow XX: Non-Hadronic$

Displaced Dimuons Vertex

Dark Photons to Dimuons: CMS

m_{Zn} [GeV]

- ATLAS has used lepton jets and other signatures to explore these types of models
- Signature: high multiplicity of collimated displaced leptons
- CMS hasn't probed this signature exactly

Dark Photons: ATLAS

Dark Photons: FASER

 $H \rightarrow XX$: Hadronic

q Z^* Z^0 Z^0

- Room for improvement with trackerbased searches at low mass
 - Wait for it!
- Lifetimes between what tracker-based searches can access and what muon system searches can access:
 - Could be helped by targeting decays in the calorimeters —> Wait for it!
- High multiplicity showers in the muon systems help CMS access longer
 lifetimes

$H \rightarrow XX$: Putting it All Together

$H \rightarrow XX$: Putting it All Together

$H \rightarrow XX$: Putting it All Together

$0.4 < m_X < 2 \text{ GeV}$

- If B(X → qq) ~ B(X → II), non-hadronic searches set stronger constraints than hadronic searches (depending on B(X))
- But $B(X \rightarrow qq) >> B(X \rightarrow ||)$ often in BSM models \rightarrow complementarity and coverage is the key

Heavy Neutral Leptons

Hidden Valleys, Dark QCD, Dark Showers

Hidden Valleys

- Complex dark sector w/ new force from non-Abelian gauge group
- No prior expectation for N_c^{dark} (group dimension) or N_f^{dark} (matter fields)
- Behavior can be QCD-like ($m_{\chi} \leq \Lambda_{dark}$), but other phenomena also possible

Dark QCD, Dark Showers

- Dark shower:
 - Confinement and hadronization in the dark sector result in a spray of composite hidden sector states, dark hadrons
- Many pheno scenarios possible, including:
 - Emerging jets

- Dark hadrons have decay length $c\tau_{\text{dark}}$
- Multiple displaced vertices within a single jet
- Semivisible jets
 - Some dark hadrons stable, others unstable and decay promptly
 - r_{inv} = N_{stable} / (N_{stable} + N_{unstable})

<u>⊀</u> ∞			
τ_{da}	p _T ^{miss} + X		
	emerging	emerging semivisible	
0	dijet/ multijet	semivisible	
0			1
			r _{inv}

Dark QCD

Sketch of plot that will be

<u>coming from CMS soon:</u>

CMS emerging jets

High mass dijet resonances (EXO-19-012)

Monojet and mono-V(had) (EXO-20-004)

Semivisible jets (cut-based, EXO-19-020)

Semivisible jets (BDT-based, model-dependent, EXO-19-020)

Dark QCD

EXOT-2022-37 Ē 0.8 0.6 ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 0.4 $\lambda = 1$ SV jets t-channel PRD 103 (2021) 112006 Monojets 0.2 - observed ---- expected 2.5 3.5 3 2 m_{Φ} [TeV]

ATLAS

High mass dijet resonances (EXO-19-012)

Monojet and mono-V(had) (EXO-20-004) Semivisible jets (cut-based, EXO-19-020)

Semivisible jets (BDT-based, model-dependent, EXO-19-020)

Dark QCD

- Some gaps:
 - Room for more dedicated searches with range of possible final states depending on mediator!
 - Only a small fraction of dark QCD scenarios probed at the LHC so far: more parameters to change —> different phenomenology

Beyond QCD-Like

- Soft Unclustered Energy Patterns (SUEPs)
 - Large λ ≡ α_{dark}N_c ^{dark}('t Hooft coupling): unsuppressed large angle radiation → wide, spherical showers
 - Search strategies: trigger on HT, use particle/ track multiplicity and event shape variables to reject background
 - Results coming soon from CMS and ATLAS!
- Glueballs
 - Hard to simulate...

soft-unclustered energy patterns (SUEPs)

> large multiplicity of soft tracks

Fractional and Milli Charged Particles

Fractional Charge

EXO-19-006

Milli Charge

What's Next?

LHC / HL-LHC Plan

Run 3

New Triggers in CMS for Run 3

- New L1 & HLT algorithms for displaced muons
- New L1 & HLT triggers for showers in the muon system

New Triggers in CMS for Run 3

- New L1 & HLT algorithms for displaced muons
- New L1 & HLT triggers for showers in the muon system
- New triggers for delayed jets:
 - Using HCAL depth and timing (thanks to HCAL upgrade): L1 & HLT
 - Using ECAL timing: HLT
- New HLT triggers for **displaced taus**
- More rate: parking displaced and delayed jet triggers

New Triggers → Increased Coverage First CMS Run 3 search: Displaced dimuons (common vertex)

- Generic, inclusive search for long-lived particles decaying into pairs of oppositely-charged muons (displaced dimuons) within the tracker and beyond
- Uses 36.7 fb⁻¹ of 13.6 TeV data taken in 2022

New Triggers → Increased Coverage First CMS Run 3 search: Displaced dimuons (common vertex)

- Generic, inclusive search for long-lived particles decaying into pairs of oppositely-charged muons (displaced dimuons) within the tracker and beyond
- Uses 36.7 fb⁻¹ of 13.6 TeV data taken in 2022
- Improved triggers → Substantial increase in acceptance x trigger efficiency compared to Run 2

New Triggers \rightarrow Increased Coverage

First CMS Run 3 search: Displaced dimuons (common vertex)

- Generic, inclusive search for long-lived particles decaying into pairs of oppositely-charged muons (displaced dimuons) within the tracker and beyond
- Uses 36.7 fb⁻¹ of 13.6 TeV data taken in 2022
- Improved triggers → Substantial increase in acceptance x trigger efficiency compared to Run 2
- Improve signal efficiency at low mass and large displacements up to a factor of 4
- Comparable or better sensitivity than Run 2 with only 38% of the data

How are we trying to improve? (I) Trends in late Run 2, early Run 3:

- More emphasis on more complicated models/ signatures:
 - E.g. Dark QCD/semivisible/emerging jets/ SUEPs
- Emphasis on low mass signatures
 - SM Higgs → LLPs, Heavy neutral leptons, Dark photons, Compressed SUSY, SUEPs
- Small cτ: pushing into prompt backgrounds
 - E.g. with prompt object (often used to trigger) produced in association with LLP(s)
- Large cτ: extending acceptance beyond tracker

How are we trying to improve? (II) Trends in late Run 2, early Run 3:

- CMS is developing an extensive muon showers program
 - Suite of analyses/papers looking for muon shower + other object
 - Dedicated L1 and HLT triggers in Run 3!
- New & improved trigger strategies:
 - More dedicated triggers: Displaced muons, displaced jets (ECAL and HCAL), displaced taus, disappearing tracks, showers in muon system, ...
 - Scouting/ Trigger Level Analysis/ Turbo Stream
 - Parking
- Increased use of machine learning (deep networks & other advanced techniques)
 - E.g. for challenging backgrounds

How are we trying to improve? (II) Trends in late Run 2, early Run 3:

- CMS is developing an extensive muon showers program
 - Suite of analyses/papers looking for muon shower other object coole,
 - Dedicated L1 and HLT triggers in Run 34
- New & improved trigger strategies;
 - More dedicated triggers: ns, displaced jets (ECAL and HCAL) as, disappearing tracks, showers
 - Scouting/ Analysis/ Turbo Stream
 - Parking
- Increased use of machine learning (deep networks & other advanced techniques)
 - E.g. for challenging backgrounds

u O

& 33 segments in ME-2/1

HL-LHC

LLPs at the HL-LHC

- See Flavia's talk on Monday for a nice comparison of the ATLAS and CMS detectors at the HL-LHC, and how that could impact LLP searches
- Lots of potential! Will show just a quick (biased) sampling of some options

Delayed Photons in Timing Detectors

ML Trigger for Nonpointing Particles in HGCAL

Needs:

- HLS4ML (showed it works)
- Realistic CMS implementation (to do)

Wants:

• Collaboration with ATLAS? Possibility for your High Granularity Timing Detector?

L1 Track Triggers for Displaced Jets

m(H)=125 GeV, m(Φ)=30 GeV

Disappearing Tracks

Summary

- I've summarized how well we are covering different models/scenarios with experimental searches for LLPs
 - Probably I've missed models/analyses/summary plots: please tell me!
 - [Or we see which summary plots we should make ;)]
- And pointed out the gaps and where we could improve
- I think we look like 🥵 . Do you agree? •

Summary

- I've summarized how well we are covering different models/scenarios with experimental searches for LLPs
 - Probably I've missed models/analyses/summary plots: please tell me!
 - [Or we see which summary plots we should make ;)]
- And **pointed out the gaps** and where we could improve
- I think we look like ______. Do you agree?
- Showed a bit of how far we've come and where we could be going
 - Run 1 \rightarrow Run 2 \rightarrow Run 3 \rightarrow HL-LHC
- And some hints of how we could do it: lots of awesome new ideas!
Summary

- I've summarized how well we are covering different models/scenarios with experimental searches for LLPs
 - Probably I've missed models/analyses/summary plots: please tell me!
 - [Or we see which summary plots we should make ;)]
- And **pointed out the gaps** and where we could improve
- I think we look like 600 . Do you agree?
- Showed a bit of how far we've come and where we could be going
 - Run 1 \rightarrow Run 2 \rightarrow Run 3 \rightarrow HL-LHC
- And some hints of how we could do it: lots of awesome new ideas!

Only up from here! The future looks bright :)

Backup