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Motivation.
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Why dark matter?

Rotation Curves of Spiral Galaxies

Different qualitative and quantitative evidence for the existence of Dark Matter!

PLANCK 2018

Bullet Cluster
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What is dark matter?

• Minimal  WIMP models are currently under tension due to no 
observations at the LHC, direct or indirect detection 

• Many possible reasons such as  

(a) a more complex WIMP model that can evade bounds
(b) “exception” or effect that have been overlooked (co-scattering, early kinetic decoupling, bound states, etc.)
(c) freeze-in instead of freeze-out 
(d) completely different DM candidate (PBHs, wavy DM etc.)

WIMP miracle?
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Freeze-in vs Freeze-out

(1) Thermal equilibrium regime (T >> m)

(2) Annihilation regime (T ~ m/10)

(3) Freeze-out (T ~ m/30)

annihilation and production of DM
in thermal equilibrium

SM particles not energetic enough to create DM 
particles

Annihilation rate falls behind expansion rate 
 → DM abundance

cooling down
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Freeze-in vs Freeze-out

(1) DM not in thermal equilibrium with SM bath

(3) Freeze-in
 

DM is feebly interacting with the SM bath; 
abundance negligible

when T falls below mass of parent particle Y, 
production gets Boltzmann suppressed

cooling down

(2) DM production

DM gets produced via decay of a heavier particle Y 
that is in equilibrium with the SM bath
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Why Inflation?

● Horizon problem:

● Flatness problem:

At recombination photons could have had 
causal contact only up to θ ~ 3.5°

 → why so homogeneous?

 → why is the Universe so flat? Extreme fine-tuning would have been required!

for radiation or matter domination
 → unstable fixed point 

Introduce accelerated expansion             before radiation domination
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Inflation and reheating

Introduce scalar inflaton field

If potential energy dominates over kinetic energy                       , the field is slowly rolling down the potential.

with

Such that the flatness and horizon problem is solved:
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Inflation and reheating

At end of inflation, inflaton oscillates and transmits energy to SM particles = reheating

The reheating temperature T
rh 

is defined as

Slow-roll parameters define the end of inflation:

Length of inflation measured by numbers of efolds:
E. Copello
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Evolution of the Universe
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Dark Matter production during reheating.
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The model set-up
Heavier parent particle P carries SM gauge charges, with DM (SM) odd (even) under Z

2
 symmetry

Majorana DM 
model

Scalar Singlet 
DM model

For this work, we neglect non-thermal production of DM via the inflaton

And neglect Higgs interactions (  flatness inflaton potential, stability of EW vacuum)→

Relevant for reheating

Upcoming work includes a 

systematic study of all 

possibilities! 
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Freeze-in Dark Matter Production

Standard case,  T
rh

 > T
fi
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Evolution of the Universe

 T
rh

 > m
P
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Evolution of the Universe

m
P
> T

rh
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Pre-thermalization effects

We assume that gauge charged parent particle P thermalizes rapidly and is in equilibrium with SM bath,
as long as m

P
/T

rh
 not to huge.

Requiring fast thermalization, we find the following condition for k=2:

such that
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Reheating phase 

Starting from a generic reheating potential at the end of inflation

One can derive the evolution of the energy density of the inflaton and radiation

And identify the reheating temperature by 
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Reheating phase 

Starting from a generic reheating potential at the end of inflation

One can derive the evolution of the energy density of the inflaton and radiation

And identify the reheating temperature by 

approximated:

(for intuition, we solved it numerically)
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Bosonic and Fermionic Reheating

a-3/2

a-3/8 a-3/8

a-3/2

a-1/4 a-3/4

a-1 a-3

Bosonic reheating Fermionic reheating

k=2 k=4k=2 k=4
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Bosonic and Fermionic Reheating

Bosonic reheating Fermionic reheating



Confronting Dark Matter Freeze-In during Reheating with 
Constraints from Inflation 

Julia Harz 22

Evolution of energy densities and temperature

a-3/2

a-3/8

a-1

a-3

a-1/4

a-3/4

a-4 a-4 a-4

a-3

a-3a-3
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Freeze-in Dark Matter Production

Non-standard case,  T
fi
 > T

rh

● Production of entropy during reheating

● Altered expansion rate
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Freeze-in Dark Matter Production

Non-standard case,  T
fi
 > T

rh

● Production of entropy during reheating

● Altered expansion rate
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Time evolution of DM Yield

 → recovery of classical freeze-in during RD

 → no impact of reheating phase

T
rh

 > m
P
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Time evolution of DM Yield
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Time evolution of DM Yield

T
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 → DM production peaks at later times for bosonic       
     reheating
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Constraints on decay length from relic abundance

m
DM 

= 12keV, m
P
= 500 GeV
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Collider Constraints.
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Long lived particle searches at the LHC
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Heavy Stable Charged Particles (HSCP)

• parent particle is sufficiently long lived such that it decays outside the detector 
 → ionizing tracks

CMS Coll., Searches for long-lived charged particles in pp collisions at √s=7 and 8 TeV, JHEP 07 (2013) 122
CMS Coll., Search for heavy stable charged particles with 12.9 fb−1 of 2016 data, CMS-PAS-EXO-16-036 (2016).

• decay outside the tracker  → tracker-only analysis
• decay outside the muon chamber → tracker + TOF analysis (cτ > 10m) 

• higher ionization energy loss / larger time-of-flight (TOF) than SM particles (as heavier)

• comparison with upper limits obtained by production of staus in a gauge mediated SUSY breaking model

Recast for scalar singlet DM model (Belanger, JH et al. 2019)

Recast for Majorana DM model (Calibbi, Lopez Honorez et al. 2021)

• F has smallish life time  → re-scale the efficiency of particles that surpasse the tracker (L = 3m) / detector 
(L = 11 m)   
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Heavy Stable Charged Particles (HSCP)
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Displaced Leptons (DL)

• F can decay into both muon and electron

CMS Coll.,  Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters, Phys. Rev. 1240 Lett. 114 
(2015), no. 6 061801
CMS Coll., Search for displaced leptons in the e-mu channel, CMS-PAS-EXO-16-022 (2016).

• CMS search for non-prompt RPV violating SUSY 
decays into e/μ final state

• search optimized for lifetimes longer than prompt 
searches, but shorter than long-lived BSM signatures

Recast for scalar singlet DM model (Belanger, JH et al. 2019)

Recast for Majorana DM model (Calibbi, Lopez Honorez et al. 2021)
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Displaced Leptons (DL)
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Disappearing Tracks (DT)

• isolated track reconstructed in the pixel and strip detectors without any hit in 
the outer tracker (CMS) or a track with only pixel hits (ATLAS) 

• ATLAS can reconstruct tracks down to 12 cm, CMS 25-30 cm
• CMS has better coverage for longer life times cτ > 1m 

• AMSB motivated scenario with mass degenerate lightest chargino and neutralino

ATLAS Coll., Search for long-lived charginos based on a disappearing-track signature in pp collisions at √s= 13TeV with the ATLAS detector, 
JHEP06 (2018) 022
CMS Coll., Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at √s=13 TeV, arXiv:1804.07321

• Recasting of two analyses of ATLAS and CMS

Recast for scalar singlet DM model (Belanger, JH et al. 2019)

Recast for Majorana DM model (Calibbi, Lopez Honorez et al. 2021)
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Disappearing Tracks (DT)



Confronting Dark Matter Freeze-In during Reheating with 
Constraints from Inflation 

Julia Harz 39

Constraints from LLP searches at the LHC
Leptophilic scalar singlet DM model 
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Constraints from LLP searches at the LHC
Muonphilic Majorana DM model 
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Constraints from Inflation.
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Linking to inflationary models

Reheating potential can be obtained (Φ<M
Pl

), e.g. from

E-model: T-model:

E. Copello
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Linking to inflationary models

End of inflation if slow roll conditions are fulfilled:

Experimental constraints can be evaluated by

and compared with
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Experimental status: PLANCK+BICEP/Keck Array



Confronting Dark Matter Freeze-In during Reheating with 
Constraints from Inflation 

Julia Harz 45

Reheating temperature from inflation

From slow roll conditions, field value at the end of inflation can be evaluated

Derive expression for T
rh

 by relating different epochs and cross-link to observables

For ω
rh

=1/3, k=4, not defined.
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Constraints on reheating temperature from inflation

 → spectral index sets lower limit on T
rh
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Constraints on reheating temperature from inflation

 → spectral index sets lower limit on T
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Combining results.
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Combining results

 → bound on spectral index
 → lower bound on T

rh

 → lower bound on cτ

Muonphilic Majorana DM model 

 → higher m
DM

→more stringent constraints 
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Combining results
Leptophilic scalar singlet DM model 

 → bound on spectral index
 → lower bound on T

rh

 → lower bound on cτ

 → higher m
DM

→more stringent constraints 
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Future prospects.
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Future prospects: CMB-S4

● CMB-S4 has potential to rule out α=2 

● E- and T-model for α=1 give similar results

● Kink due to change in scaling moves to larger m
P

● Constraints from inflation reach high m
P

 → lower reheating temperatures imply smaller decay lengths 

 →minimal decay length from Lyman-α moved to smaller values

For m
P
 > T

rh
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Conclusions

 → Complementary insights from early Universe and laboratory experiments!

● Freeze-in during reheating leads to smaller parent particle decay lengths required for not 
overproducing DM

● reheating potential, nature of inflaton-matter coupling, as well as magnitude of reheating 
temperature can have significant impact on FIMP DM production and interpretation of collider limits

● Long-lived DM parent particle can shed light on reheating dynamics

● Constraints from inflation in particular relevant for large parent particle masses

● Too small T
rh

 could rule out many popular high-scale baryogenesis/leptogenesis models
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Thank you for your attention!
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Comparison 
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