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Why dark matter?

Rotation Curves of Spiral Galaxies Bullet Cluster

Different qualitative and quantitative evidence for the existence of Dark Matter!

Qcpmh® = 0.120 £ 0.001 PLANCK 2018
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Gradient of Xe discovery limit, # = —(dIno/dIn MT) -1

What is dark matter? e

WIMP miracle?
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*  Minimal WIMP models are currently under tension due to no

. . . s ) Xe neutrino fog
observations at the LHC, direct or indirect detection
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Dark matter mass [GeV/c?]

®*  Many possible reasons such as

(@) a more complex WIMP model that can evade bounds

(b) “exception” or effect that have been overlooked (co-scattering, early kinetic decoupling, bound states, etc.)
(c) freeze-in instead of freeze-out

(d) completely different DM candidate (PBHs, wavy DM etc.)
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Gradient of Xe discovery limit, # = —(dIno/dIn MT) -1

WIMP miracle?
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*  Minimal WIMP models are currently under tension due to no
observations at the LHC, direct or indirect detection

Dark matter mass [GeV/c?]

®*  Many possible reasons such as

(@) a more complex WIMP model that can evade bounds

(b) “exception” or effect that have been overlooked (co-scattering, early kinetic decoupling, bound states, etc.)
(c) freeze-in instead of freeze-out

(d) completely different DM candidate (PBHs, wavy DM etc.)
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Freeze-in vs Freeze-out

(1) Thermal equilibrium regime (T >> m)

annihilation and production of DM
in thermal equilibrium Y = const.

(2) Annihilation regime (T ~ m/10)

SM particles not energetic enough to create DM
particles Y ~ exp(—mpns/T)

(3) Freeze-out (T ~ m/30)

Annihilation rate falls behind expansion rate
- DM abundance

cooling down

>
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Freeze-in vs Freeze-out

"""" -~ (1) DM not in thermal equilibrium with SM bath
. _ DM is feebly interacting with the SM bath; A ~ O(10™7)
' ] abundance negligible

(2) DM production
DM gets produced via decay of a heavier particle Y
that is in equilibrium with the SM bath Y — SM x

log1oY

(3) Freeze-in
when T Falls below mass of parent particle Y,
production gets Boltzmann suppressed ny ~ exp(—my /T)

log1px

cooling down>

Julia Harz
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Why Inflation?

* Horizon problem:

At recombination photons could have had
causal contact only up to 6 ~ 3.5°

- why so homogeneous?

* Flatness problem:

i((z ) = 2% For radiation or matter domination & < 0
* g — unstable fixed point

dt

- why is the Universe so flat? Extreme fine-tuning would have been required!

Introduce accelerated expansion @ > 0 before radiation domination
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Inflation and reheating

Introduce scalar inflaton field

1.
5452 +V(®) = 3H?

1. 1.
with pe = =P +V(®) pg= 5452 — V(P) w=Pre

2
Such that the flatness and horizon problem is solved:

. d 1
H2+H:a:—6(p+3p)>0

1.0

0.0 L

0.8

Slow-roll
inflation

Oscillations

(]

If potential energy dominates over kinetic energy V(¥) > & , the field is slowly rolling down the potential.
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1 : 1.0
Inflation and reheating |
0.8.—
Slow-roll parameters define the end of inflation:
2 e Oscillations Sl?lw-.roll
Mg, (V' a2 (V7 ?§ - inflation
w2 () < ()<
Length of inflation measured by numbers of efolds: 02
tend _ [ | | E‘. C(?pe!lo .
N(@) = Hdt -2 0 2 4 6
b o/ Mp)

At end of inflation, inflaton oscillates and transmits energy to SM particles = reheating

(ps) +3H (pp) = —I's (ps)

y? g2
Foorr = Ry Looxxi = 8TMe

The reheating temperature T is definedas  pg(a,n) = pr(am)
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Evolution of the Universe
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Dark Matter production during reheating.
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The model set-up

Heavier parent particle P carries SM gauge charges, with DM (SM) odd (even) under Z, symmetry

Majorana DM Scalar Singlet

model DM model
Interaction yoMXXfr  YssF fr
ypom P x fsm Spin DM x 1/2 0
Spin parent P 0 1/2
Relevant For reheating Lox O —puxP|X|? Lop =-—yr®FF

For this work, we neglect non-thermal production of DM via the inflaton

— O' a
Lyuk. O —YxPXX  Lps = —ps5P> — 3882@2 c\c'\“"\“?f\\
comi®S w\?. geudy 0
. . . . . ops up Ste\“a" .b"\\\':\es'
And neglect Higgs interactions (—~ flatness inflaton potential, stability of EW vacuum) sy gs\
Lxg = —Mxg|H|?IX|? .
OH
Lax 2 =5 X[ Lon = —pu®|H|* — ==& H|’
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Freeze-in Dark Matter Production

1 1143
mocaz(""") &‘7

[¢77 Qend ap

a(;q dg Ina
Standard case, T, > T,
I (T) mp M
RD p Mpi]
Ypum (T) ~ W ™~ FPT
I'p M,
RD 34 p Mpl
Youm (26) ~ 25— —
mp
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Evolution of the Universe

S
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T,>m,
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Evolution of the Universe

S
3
N—"
S
Ina
m>T,
JG|U Confronting Dark Matter Freeze-In during Reheating with

Constraints from Inflation

Julia Harz

16



Pre-thermalization effects

Requiring Fast thermalization, we find the Following condition For k=2:

L

= P 3 9s(Tn) \ *° ( mp )% mp\® [ A\ ( g )-%
=_r _3x1 )

I

such that

my _ 4 (1TeV)"?
P <10
Trh mp

We assume that gauge charged parent particle P thermalizes rapidly and is in equilibrium with SM bath,
as long as m /T, not to huge.
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Reheating phase
Starting from a generic reheating potential at the end of inflation

2[*

V(@) =5

S+ (3H+Ig)d+ V' (®) =0

One can derive the evolution of the energy density of the inflaton and radiation

(pa) = (k*’l))\(@Tkla +ﬂH - _ 2k I
MPI pe ko PPT Tt ere
2k
A , ; AHpr = I
( > M§14 mmmm)  Or+AHpR = e po
(po) k=2 2 _ P»+ PR
w H* =
(we) = (Py)  k+2 3M2,

And identify the reheating temperature by  po(aw) = pr(arm)
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Reheating phase

Starting from a generic reheating potential at the end of inflation

S+ (3H+Ig)d+ V' (®) =0

One can derive the evolution of the energy density of the inflaton and radiation

k () 6k 2k
(pa) = ( T 1) )‘Ml;l 4 pa + k—HHpqs =i 2Fqs JF approximated:
(— - 1) r + AHpp, = ﬂ.
M]1§14’ ) (R PR= 775 po w—p
? ( ¢> k+ 2 3M3, (For intuition, we solved it numerically)

And identify the reheating temperature by  ps(a:m) = pr(am)
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Bosonic and Fermionic Reheating

px P X|? yOFF
Bosonic reheating Fermionic reheating
2 k 2 k
T xxi(t) = Hen(k) Iy pp(l) = yeff—()m@(t)
8mmg(t) /3 S
2 3 k MPI a / ’ 1/2 / N3
~ YT T
prta) = 205 T | o Tl o) @)
k=2 k=4 =2 k=
a-3/2 a-1 a-3/2 a-3
a3/8 a1/4 a3/8 a3/4
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Bosonic and Fermionic Reheating

Bosonic reheating Fermionic reheating
2 k 62) k
Fan () = et Focarr(t) = 1% g 1)
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Evolution of energy densities and temperature

1010 k=4, Bosonzic 106 ; k=4, Fermio-nic Lot
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Freeze-in Dark Matter Production =

Lo q3(1439)

@9

77
Non-standard case, T,>T_ @
ag Qend Qrh Ina
* Production of entropy during reheating
* Altered expansion rate D(T) = S(T)  s(T)a(T)?
( ) B S(Trh) s(Trh)a(Trh)3
(T 142k
RH T
4k—1 ~ 7k
2 Tvn T\ BT
BR rh
Ru (TP 5 I'p Mpi <mp ) (T) FR
Ypum ~EET o X 9k
mp (ZﬁTrh> Rt FR
mp
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Freeze-in Dark Matter Production

1
% xX az2 (1+3w) @Q

77
Non-standard case, T.>T @
fi rh ag Qend  Qph aeq Qo Ina
* Production of entropy during reheating
. vV pa(a) + pr(a)
° H(a) =
Altered expansion rate (a) 3 Mo
OQpmh?  (1.5m) [106.75\%? ( mom ) 200 GeV )’ .
0.12 — \ er Js 100 keV mp Iinp = / 22PN (),
( 4k—1 Zend
2% +4 (T . 2o
3 <mP) Irh,b + IRD in BR Irh7f _ / ZIZI 2kk—+16 Kl (Z/) ,
X < 9—k 9 Zend
2k + 4 Trh k=1 . zZ0
| 3523 (mp> Ims+I3p inFR o = /Zrh 2P ().
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Time evolution of DM Yield

10-2 mpym = 12 keV T, >m,
—_— k2,4 . . .
- recovery of classical freeze-in during RD
-3 :
10 - no impact of reheating phase
—4 |
e F Qph? = 0.12
= g
iﬁ 10 e
Al
1075 ?
10774 T, = 104 GeV
: mp = 500 GeV
1078 ¥ II?""I ¥ TR ELEEE T LESES i L L S | ¥ LR S 2
1072 107! 10Y 10 102 103
z=mp/T
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Time evolution of DM Yield

mpy = 12keV

1072 Sh : T,>m,

| — k=2 :
-3 | ToT ks Bosonie ~ recovery of classical freeze-in during RD

5 - no impact of reheating phase
il

] Sowh® =002 ol T,<m,

5 1079 — k=2 and k=4 bosonic and fermionic reheating
impacts evolution differently

1076 o
107 T,, = 100 GeV

] | mp = 500 GeV
10_8 L L S TR R I'l“"”'l " L 'E""I 2 E & X SN 2 % K EXLS

102 161 10° 10! 102 103
z=mp/T
JG|U Confronting Dark Matter Freeze-In during Reheating with Julia Harz 26

Constraints from Inflation



Time evolution of DM Yield

mpM — 12 keV

10725 T,>m,
] —— k=2 H
] . <+ . . .
1o ‘;:j EOSOI_“C_ E ~ recovery of classical freeze-in during RD
10* 4 —— = ermionic . H
E ' - no impact of reheating phase
1074?
L ek S 5 S T,<m,
z 107 4 ¢ — k=2 and k=4 bosonic and fermionic reheating
>~ ? impacts evolution differently
1079 — DM production peaks at later times for bosonic
: reheating
1077_§ [l T, = 20 GeV (Zﬁ)BR, k=4 = (Zﬁ)kzz Z (Zﬁ)FR, k=4
f ; I ‘mp = 500 GeV]
1078 J R L ¢ 'l' “""Il J SRS ‘:' IR L SR X LSk
1072 107t 10° 10! 102 103
z=mp/T
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Time evolution of DM Yield

mpmM — 12 keV

07— Ty>m,
\ =" ‘;:j EOSOIFC_ — recovery of classical freeze-in during RD
10* £ — = €ermionic
] - no impact of reheating phase
1074?
L ek S 5 S Ty<m,
z 1075+ I — k=2 and k=4 bosonic and fermionic reheating
>~ ? impacts evolution differently
1079 — DM production peaks at later times for bosonic
: reheating
1077_§ [l T, = 20 GeV (Zﬁ)BR, k=4 = (Zﬁ)kzz Z (Zﬁ)FR, k=4
10-8 : /| ," e = 500 el — dilution Factor decreases for
1072 1071 10V 10 102 103 DBRA=1(Ty) > Dk=2i FRE=1 (1)
z=mp/T
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Time evolution of DM Yield

mpnm = 12 keV

100 E Trh > IlnP

] — k=2 7\
ot ] —.= % — 4 Bosonic P - recovery of classical freeze-in during RD

3 === k =4 Fermionic

E - no impact of reheating phase
1072@

] Trh < IlnP
1073+ . .. .

Z - k=2 and k=4 bosonic and fermionic reheating
~ impacts evolution differently
107" 4 OQpwh? = 0.12
............................ ’Il...- . DM production peaks at later times For bosonic

1077 4 /Ii ) reheating

] ; 3

6 /, ! = (Zﬁ)BR, kea > (BR)p—o 2 (Zﬁ)FR, k=4

1077 5 | T =10 GeV

] ’! mp = 500 GeV' — dilution Factor decreases for
10 7+ _ o PRI

102 107 100 10! 102 103 DBRF=1(Ty) > DR=2 PR ()
z=mp/T
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Constraints on decay length from relic abundance

Type Tin [GeV]
k=2 10
k=4 BR 10
k=4FR 10
k=2 20
k=4 BR 20
k=4FR 20
k=2 100

k=4 BR 100
k=4FR 100

k=2 104
k=4 BR 104
k=4 FR 104

m,, = 12keV, m_= 500 GeV
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Collider Constraints.
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Long lived particle searches at the LHC

===== neutral displaced W BSM
= charged ERE dilepton M lepton
=~ any charge W quark
/ photon
X W anything )\ ~ 0(10_7
disappearing P displaced
track 7 lepton
displaced K displaced
dijet . photon
displaced ¥ splaced Not pictured:
vertex S out of time decays
jonannes GUTENBERG i - i i i .
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Heavy Stable Charged Particles (HSCP)

HSCP

Recast for Majorana DM model (Calibbi, Lopez Honorez et al. 2021)

Recast for scalar singlet DM model (Belanger, JH et al. 2019)

parent particle is sufficiently long lived such that it decays outside the detector
- ionizing tracks

higher ionization energy loss / larger time-of-flight (TOF) than SM particles (as heavier)

decay outside the tracker — tracker-only analysis
decay outside the muon chamber - tracker + TOF analysis (ct > 10m)

comparison with upper limits obtained by production of staus in a gauge mediated SUSY breaking model
F has smallish life time — re-scale the efficiency of particles that surpasse the tracker (L = 3m) / detector

(L=11m)
Oefr =0 X frrp(L,T)

CMS Coll., Searches for long-lived charged particles in pp collisions at vs=7 and 8 TeV, JHEP 07 (2013) 122
CMS Coll., Search for heavy stable charged particles with 12.9 fb-1 of 2016 data, CMS-PAS-EXO-16-036 (2016).
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Heavy Stable Charged Particles (HSCP)

102
HSCP limits (leptonic model) '1' 3

101 ]

E
— 100
~
Q
10-1 4 ~==~ 8TeV (TOF)
= 13TeV (TOF)
=== 8TeV (track.)
— 13TeV (track.)
10_2 T T v T ¥ v T ) 3 v T v T T — T T T T T T T T g
200 300 400 500 600 700
Mg [GeV]

CMS Coll., Searches for long-lived charged particles in pp collisions at vs=7 and 8 TeV, JHEP 07 (2013) 122
CMS Coll., Search for heavy stable charged particles with 12.9 fb-1 of 2016 data, CMS-PAS-EXO-16-036 (2016).
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Displaced Leptons (DL)

Recast for Majorana DM model (Calibbi, Lopez Honorez et al. 2021)

Recast for scalar singlet DM model (Belanger, JH et al. 2019)

®*  Fcandecayinto both muon and electron

®* CMSsearch for non-prompt RPV violating SUSY
decays into e/p final state

51 — bl

search optimized for lifetimes longer than prompt
searches, but shorter than long-lived BSM signatures

top squark ct [cm]

2.6 (13 TeV)
IIIIIIII |J\II|\III|\IE

s
o
™

FTrrrryres
- CMS

" Preliminary

—_
o
T

+2 std. deviation
| - +1 std. deviation
------- Expected

= Observed

107E

-2 \\l|\\l\‘ll\l‘ll\\|1\|||\||||\|
10°500 300 400 500 600 700 800 900

top squark mass [GeV]

CMS Coll.,, Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters, Phys. Rev. 1240 Lett. 114

(2015), no. 6 061801

CMS Coll., Search for displaced leptons in the e-mu channel, CMS-PAS-EXO-16-022 (2016).
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Displaced Leptons (DL)

CT [m]

—— DLS@8TeV, Bre=0.5 |
=== DLS@8TeV, Bro=0.1

100 4 —— DLS@I3TeV, Bro=0.5
' === DLS@I3TeV, Bre=0.1

DLS limits (leptonic model)

1071

[ = -

10_2 T T T T T
200 250 300 350 400 450
Me [GeV]

Confronting Dark Matter Freeze-In during Reheating with
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Disappearing Tracks (DT)

disappearing
track

Recast For Majorana DM model (Calibbi, Lopez Honorez et al. 2021) , CETTPe C\

Recast for scalar singlet DM model (Belanger, JH et al. 2019)

J
* isolated track reconstructed in the pixel and strip detectors without any hit in P
the outer tracker (CMS) or a track with only pixel hits (ATLAS) 79
®*  ATLAS can reconstruct tracks down to 12 cm, CMS 25-30 cm I 0
®  CMS has better coverage for longer life times ct > 1m p X N !
*  AMSB motivated scenario with mass degenerate lightest chargino and neutralino 7t

®* Recasting of two analyses of ATLAS and CMS

N =0, spp X (m,7) X L

JHEPO6 (2018) 022
CMS Coll., Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at vs=13 TeV, arXiv:1804.07321
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Disappearing Tracks (DT)

102 DT limits (leptonic model) ~—— ATLAS (Bre=1)
— CMS

10!
g
I 10°
)

107t

].0_2 T " T T T v T T T I PR T T T T T T T ¥ T T T T T

175 200 225 250 275 300 325 350
me [GeV]
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Constraints from LLP searches at the LHC

Leptophilic scalar singlet DM model

- mpym = 12keV T mpym = 1 GeV
1 QQ 104 \\\\
102 E Q&% \\\\ ~~~~~~~~
] 103 .\‘ N~~\~~\~ \.\ ~~~~~~~~~
] * k=27 T, =20 GeV \‘ OQ \\\\\ .\.\.
. 101_: === k = 4 Fermionic - 9 \ Q&) "‘~~,~~:'\_\
= ] —+= k =4 Bosonic g 10 \‘ s~
— — k=2, Ty =102 GeV — \
- 1 === k =4 Fermionic - 1 \
= 0 . O 10 .
10 —-= k =4 Bosonic \ DT \‘
: k=24,Ty = 10 GeV \
10° .
] \
1014 %
] -1 \
- 10 \
I\ Tsel 0 TS T~ DLS \,
0-2 — 1024 >
200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000
mp [GeV] mp [GeV]
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Constraints from LLP searches at the LHC

Muonphilic Majorana DM model

102 mpmy = 12 ke\/ mpM = 1GeV
—— k=2, Ty, = 20 GeV N\
Q === k = 4 Fermionic 4 | \\\
101 Q‘% —-+= k =4 Bosonic 10 A Sse | Ss=sa.
— k=2, T, =102 GeV R\ IS N D
DT === k = 4 Fermionic ‘\ ~~~~~~ S~
100 —-= k = 4 Bosonic 102 | '\‘ ~~~~~~~~ ;\.\.\
] N —— k=2,4,T,, = 104 GeV Q‘Q ~~~~~
S B >
] \ .
1071 \\Z% A N T \’\
S ] \ N z«ﬂg\\ — S 100 - 7 '\‘
1 \ Sr \\~‘~ 5
1024 A A 64}& N
] '\ \\\N\ '\.\ =~ 4& \\
3] %\ R 1074 N
1077 5 AN T '~ \ \
5 \)(\} \ ] C %
I\ \ o b
10_4 T T ‘\ i ! ! ) ' ' 10_4 T T T T T I\. T T
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
mp [GeV] mp [GeV]
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Constraints from Inflation.
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1.0

Linking to inflationary models £ Copel

0.8

0.6 Oscillations Slow-roll
= inflation
=
04
02} a=1
Reheating potential can be obtained (®<M,), e.g. from ‘. B=2
T 2 PR s
@/ Mp|
E-model: T-model:
2n
_Jz2 \" V@:A‘*[t h(iﬂ
V(@) = A* (1 _ e Vi Mm) (@) T Voo,
Y k=2n
2\" [ & \*" A V(P) ~ ———&F
P) ~ N[ = — = ik k—4
Vi) (3a> (MPI) ME My 5 — AN /1"
() (o)
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Linking to inflationary models

End of inflation if slow roll conditions are Fulfilled:

M2, /V'\? \%e
GVETH<7> <1 nVEMI%1<7)<1

Experimental constraints can be evaluated by

r = 16ey ng =1 — 6ey + 2y

v

Ay = ————
o 24m2ey Mp,

and compared with

=1
1014
1 —— E-modela = 1(Starobinsky)
11— T-modelaw = 1
------ E-model o« = 2
----- T-model o = 2
1072 < /‘9 N\
3 ] = e O
S 1 C_E ......... . .‘..
00
—
R
m
+
=
3
10731 ES
] ol
0.95 0.96 0.97 0.98

sonannes GUTENBERG ]G\u Confronting Dark Matter Freeze-In during Reheating with

AR AR Constraints Ffrom Inflation

Julia Harz 43



Experimental status: PLANCK+BICEP/Keck Array

Tensor-to-scalar ratio (rp.go2)
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Ti Evolution of Comoving Hubble Horizon

Reheating temperature from inflation < et N

b= _lnlf:l _______ - - - -
From slow roll conditions, field value at the end of inflation can be evaluated 7
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Derive expression for T by relating different epochs and cross-link to observables
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Constraints on reheating temperature from inflation
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Constraints on reheating temperature from inflation

Constraints from Inflation
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Combining results.
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Combining results

Muonphilic Majorana DM model
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Combining results

Leptophilic scalar singlet DM model
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Future prospects.
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e n=1

Future prospects: CMB-54 i
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Conclusions

* Freeze-in during reheating leads to smaller parent particle decay lengths required for not
overproducing DM

* Constraints from inflation in particular relevant for large parent particle masses

* reheating potential, nature of inflaton-matter coupling, as well as magnitude of reheating
temperature can have significant impact on FIMP DM production and interpretation of collider limits

* Long-lived DM parent particle can shed light on reheating dynamics

« Toosmall T, could rule out many popular high-scale baryogenesis/leptogenesis models

— Complementary insights from early Universe and laboratory experiments!
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Thank you For your attention!
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Comparison
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