Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Work with M. Becker, E. Copello, J. Lang, Y. Xu, arXiv:2306.17238

Julia Harz

November 13th 2023 Long-lived Particles Bethe Forum Bonn

Motivation.

Why dark matter?

Bullet Cluster

Different qualitative and quantitative evidence for the existence of Dark Matter!

 $\Omega_{\rm CDM} h^2 = 0.120 \pm 0.001$

PLANCK 2018

What is dark matter?

- *Minimal* WIMP models are currently under tension due to no observations at the LHC, direct or indirect detection
- Many possible reasons such as

IGU

(a) a more complex WIMP model that can evade bounds

(b) "exception" or effect that have been overlooked (co-scattering, early kinetic decoupling, bound states, etc.)

(c) freeze-in instead of freeze-out

(d) completely different DM candidate (PBHs, wavy DM etc.)

What is dark matter?

- *Minimal* WIMP models are currently under tension due to no observations at the LHC, direct or indirect detection
- Many possible reasons such as

IGU

(a) a more complex WIMP model that can evade bounds

(b) "exception" or effect that have been overlooked (co-scattering, early kinetic decoupling, bound states, etc.)

(c) freeze-in instead of freeze-out

(d) completely different DM candidate (PBHs, wavy DM etc.)

Freeze-in vs Freeze-out

(1) Thermal equilibrium regime (T >> m)

annihilation and production of DM in thermal equilibrium $Y \approx {\rm const.}$

(2) Annihilation regime (T ~ m/10)

SM particles not energetic enough to create DM particles $Y\approx \exp(-m_{DM}/T)$

(3) Freeze-out (T ~ m/30)

Annihilation rate falls behind expansion rate → DM abundance

$$\Omega_{\chi} h^2 = \frac{n_{\chi} m_{\chi}}{\rho_{\rm crit}} \propto \frac{1}{<\sigma_{\rm eff} v>}$$

Freeze-in vs Freeze-out

(1) DM not in thermal equilibrium with SM bath

DM is feebly interacting with the SM bath; $\lambda \sim \mathcal{O}(10^{-7})$ abundance negligible

(2) DM production

DM gets produced via decay of a heavier particle Y that is in equilibrium with the SM bath $Y \to SM \chi$

(3) Freeze-in

when T falls below mass of parent particle Y, production gets Boltzmann suppressed $n_Y \approx \exp(-m_Y/T)$

$$\Omega_{\chi}h^2 \sim 4.48 \times 10^8 \frac{g_Y}{g_*^S \sqrt{g_*}} \frac{m_{\chi}}{\text{GeV}} \frac{M_{\text{Pl}}\Gamma_Y}{m_Y^2}$$

Why Inflation?

• Horizon problem:

At recombination photons could have had causal contact only up to $\theta \sim 3.5^\circ$

 \rightarrow why so homogeneous?

• Flatness problem:

$$\frac{d}{dt}(\Omega_k) = -2\frac{\ddot{a}}{\dot{a}}\Omega_k$$

for radiation or matter domination $\ddot{a} < 0$ \rightarrow unstable fixed point

→ why is the Universe so flat? Extreme fine-tuning would have been required!

Introduce accelerated expansion $\ddot{a} > 0$ before radiation domination

Inflation and reheating

Introduce scalar inflaton field

$$\frac{1}{2}\dot{\varPhi}^2+V(\varPhi)=3H^2$$

with

$$\rho_{\Phi} = \frac{1}{2}\dot{\Phi}^2 + V(\Phi) \qquad p_{\Phi} = \frac{1}{2}\dot{\Phi}^2 - V(\Phi) \qquad \omega =$$

Such that the flatness and horizon problem is solved:

$$H^{2} + \dot{H} = \frac{\ddot{a}}{a} = -\frac{1}{6} \left(\rho + 3p \right) > 0$$

 $\underline{p_{\Phi}}$

 ρ_{Φ}

Inflation and reheating

Slow-roll parameters define the end of inflation:

$$\epsilon_V \equiv \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 < 1 \qquad \qquad \eta_V \equiv M_{\rm Pl}^2 \left(\frac{V''}{V}\right) < 1$$

Length of inflation measured by numbers of efolds:

$$N(\Phi) = \int_{t_i}^{t_{\rm end}} H dt$$

At end of inflation, inflaton oscillates and transmits energy to SM particles = reheating

$$\Gamma_{\Phi \to F\bar{F}} = \frac{y^2}{8\pi} m_{\Phi} \qquad \qquad \Gamma_{\Phi \to XX^{\dagger}} = \frac{g^2}{8\pi m_{\Phi}}$$

The reheating temperature ${\sf T}_{\sf rh}$ is defined as $ho_{arPsi}(a_{
m rh})=
ho_R(a_{
m rh})$

Evolution of the Universe

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Dark Matter production during reheating.

The model set-up

Heavier parent particle P carries SM gauge charges, with DM (SM) odd (even) under Z, symmetry

	I	Majorana DM model	Scalar Singlet DM model
$y_{ m DM}P\chif_{ m SM}$	 Interaction	$y_{\rm DM} X \overline{\chi} f_R$	$y_s s \overline{F} f_R$
	Spin DM χ	1/2	0
	 Spin parent P	0	1/2

Relevant for reheating

$$\mathcal{L}_{\Phi X} \supset -\mu_X \Phi |X|^2 \quad \mathcal{L}_{\Phi F} = -y_F \Phi \bar{F} F$$

For this work, we neglect non-thermal production of DM via the inflaton

$$\mathcal{L}_{\text{Yuk.}} \supset -y_{\chi} \Phi \bar{\chi} \chi \qquad \mathcal{L}_{\Phi s} = -\mu_{s} s \Phi^{2} - \frac{\sigma_{s}}{2} s^{2} \Phi^{2}$$

Aton potential, stability of EW vacuum)
$$\begin{array}{l} \text{Upcoming work includes a} \\ \text{Upcoming work in$$

And neglect Higgs interactions (\rightarrow flatness inflaton potential, stability of EW vacuum)

$$\mathcal{L}_{XH} = -\lambda_{XH} |H|^2 |X|^2$$
$$\mathcal{L}_{\Phi X} \supset -\frac{\sigma_X}{2} \Phi^2 |X|^2$$
$$\mathcal{L}_{\Phi H} = -\mu_H \Phi |H|^2 - \frac{\lambda_{\Phi H}}{2} \Phi^2 |H|^2$$

Confronting Dark Matter Freeze-In during Reheating with **Constraints from Inflation**

possibilities!

$\dot{n}_{\rm DM} + 3Hn_{\rm DM} = \frac{g_P}{2\pi^2} \Gamma_P m_P^2 T K_1 \left(\frac{m_P}{T}\right)$

Freeze-in Dark Matter Production

Standard case, $T_{rh} > T_{fi}$

$$Y_{\rm DM}^{\rm RD}(T) \sim \frac{\Gamma(T)}{H(T)} \sim \Gamma_P \frac{m_P M_{\rm Pl}}{T^3}$$
$$Y_{\rm DM}^{\rm RD}(z_{\rm fi}) \sim z_{\rm fi}^3 \frac{\Gamma_P M_{\rm Pl}}{m_P^2}$$

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Evolution of the Universe

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Julia Harz

15

Evolution of the Universe

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Pre-thermalization effects

Requiring fast thermalization, we find the following condition for k=2:

$$z_{\rm th} \equiv \frac{m_P}{T_{\rm th}} = 3 \times 10^{-3} \left(\frac{g_s(T_{\rm rh})}{106.75}\right)^{\frac{1}{20}} \left(\frac{m_P}{1 \text{ TeV}}\right)^{\frac{1}{5}} \left(\frac{m_P}{T_{\rm rh}}\right)^{\frac{4}{5}} \left(\frac{\lambda}{10^{-12}}\right)^{\frac{1}{10}} \left(\frac{\alpha_g}{10^{-2}}\right)^{-\frac{4}{5}} \ll 1$$

such that

$$\frac{m_p}{T_{\rm rh}} \lesssim 10^3 \left(\frac{1 \text{ TeV}}{m_P}\right)^{1/5}$$

We assume that gauge charged parent particle P thermalizes rapidly and is in equilibrium with SM bath, as long as m_P/T_{rh} not to huge.

Reheating phase

Starting from a generic reheating potential at the end of inflation

$$V(\varPhi) = \lambda \frac{|\varPhi|^k}{M^{k-4}}$$

$$\ddot{\varPhi} + (3H + \Gamma_{\varPhi}) \dot{\varPhi} + V'(\varPhi) = 0$$

One can derive the evolution of the energy density of the inflaton and radiation

$$\langle \rho_{\Phi} \rangle = \left(\frac{k}{2} + 1\right) \lambda \frac{\langle \Phi^k \rangle}{M_{\rm Pl}^{k-4}} , \qquad \dot{\rho}_{\Phi} + \frac{6k}{k+2} H \rho_{\Phi} = -\frac{2k}{k+2} \Gamma_{\Phi} \rho_{\Phi}$$

$$\langle P_{\Phi} \rangle = \left(\frac{k}{2} - 1\right) \lambda \frac{\langle \Phi^k \rangle}{M_{\rm Pl}^{k-4}} , \qquad \dot{\rho}_R + 4H \rho_R = \frac{2k}{k+2} \Gamma_{\Phi} \rho_{\Phi}$$

$$\langle w_{\Phi} \rangle = \frac{\langle \rho_{\Phi} \rangle}{\langle P_{\phi} \rangle} = \frac{k-2}{k+2} \qquad H^2 = \frac{\rho_{\Phi} + \rho_R}{3M_{\rm Pl}^2}$$

And identify the reheating temperature by $ho_{arPsi}(a_{
m rh}) =
ho_R(a_{
m rh})$

Reheating phase

Starting from a generic reheating potential at the end of inflation

$$V(\varPhi) = \lambda \frac{|\varPhi|^k}{M^{k-4}}$$

$$\ddot{\varPhi} + (3H + \Gamma_{\varPhi}) \dot{\varPhi} + V'(\varPhi) = 0$$

One can derive the evolution of the energy density of the inflaton and radiation

$$\langle \rho_{\Phi} \rangle = \left(\frac{k}{2} + 1\right) \lambda \frac{\langle \Phi^k \rangle}{M_{\mathrm{Pl}}^{k-4}}, \qquad \dot{\rho}_{\Phi} + \frac{6k}{k+2} H \rho_{\Phi} = -\frac{2k}{k+2} \Gamma_{\Phi} \rho_{\Phi} \qquad \text{approximated:}$$

$$\langle P_{\Phi} \rangle = \left(\frac{k}{2} - 1\right) \lambda \frac{\langle \Phi^k \rangle}{M_{\mathrm{Pl}}^{k-4}}, \qquad \dot{\rho}_{R} + 4H \rho_{R} = \frac{2k}{k+2} \Gamma_{\Phi} \rho_{\Phi} \qquad \dot{\rho}_{R}(a) \simeq \frac{2\sqrt{3} k}{k+2} \frac{M_{\mathrm{Pl}}}{a^{4}} \int_{a_{\mathrm{end}}}^{a} a' \Gamma_{\Phi}(a') \rho_{\Phi}^{1/2}(a') (a')^{3}$$

$$\langle w_{\Phi} \rangle = \frac{\langle \rho_{\Phi} \rangle}{\langle P_{\phi} \rangle} = \frac{k-2}{k+2} \qquad H^{2} = \frac{\rho_{\Phi} + \rho_{R}}{3M_{\mathrm{Pl}}^{2}} \qquad \text{(for intuition, we solved it numerically)}$$

And identify the reheating temperature by $ho_{arPsi}(a_{
m rh}) =
ho_R(a_{
m rh})$

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

19

Bosonic and Fermionic Reheating

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Bosonic and Fermionic Reheating

 $\mu_X \Phi |X|^2$

Bosonic reheating

$$\Gamma_{\varPhi \to XX^\dagger}(t) = \frac{\mu_{\rm eff}^2(k)}{8\pi m_\varPhi(t)}$$

$$y\Phiar{F}F$$

Fermionic reheating

$$\Gamma_{\Phi \to F\bar{F}}(t) = \frac{y_{\text{eff}}^2(k)}{8\pi} m_{\Phi}(t)$$

$$T_{\max,b}^{4} = \frac{15}{4\pi^{3}g_{s}} \frac{k}{\sqrt{3k(k-1)}} \frac{M_{P}^{\frac{2k-4}{k}}}{\lambda^{\frac{1}{k}}} \mu_{\text{eff}}^{2} \rho_{\text{end}}^{\frac{1}{k}} \left(\frac{3}{2k+4}\right)^{\frac{2k+4}{2k+1}}$$
$$T_{\text{rh},b}^{4} = \frac{30}{\pi^{2}g_{s}} \left[\frac{\sqrt{3}}{8\pi(1+2k)} \sqrt{\frac{k}{k-1}} \lambda^{-\frac{1}{k}} \frac{\mu_{\text{eff}}^{2}}{M_{\text{Pl}}^{2}}\right]^{\frac{k}{k-1}} M_{\text{Pl}}^{4}$$

$$T_{\max,f}^{4} = \frac{15}{4\pi^{3}g_{s}} \frac{k^{2}}{\sqrt{3k(k-1)}} \lambda^{\frac{1}{k}} M_{\mathrm{Pl}}^{\frac{4}{k}} y_{\mathrm{eff}}^{2} \rho_{\mathrm{end}}^{\frac{k-1}{k}} \left(\frac{3k-3}{2k+4}\right)^{\frac{2k+4}{7-k}}$$
$$T_{\mathrm{rh},f}^{4} = \frac{30}{\pi^{2}g_{s}} \left[\frac{k\sqrt{3k(k-1)}}{7-k} \lambda^{\frac{1}{k}} \frac{y_{\mathrm{eff}}^{2}}{8\pi}\right]^{k} M_{\mathrm{Pl}}^{4}$$

Evolution of energy densities and temperature

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Julia Harz

22

Freeze-in Dark Matter Production

$$\dot{n}_{\rm DM} + 3Hn_{\rm DM} = \frac{g_P}{2\pi^2} \Gamma_P m_P^2 T K_1 \left(\frac{m_P}{T}\right)$$

Non-standard case, T_{ri} > T_{rh}

- Production of entropy during reheating
- Altered expansion rate

$$\begin{split} Y_{\rm DM}^{\rm RH}(T) &\sim \frac{\Gamma\left(T\right)}{H\left(T\right)} D(T) \\ Y_{\rm DM}^{\rm RH}\left(\frac{m_P}{z_{\rm fi}}\right) &\sim z_{\rm fi}^3 \frac{\Gamma_P \, M_{\rm Pl}}{m_P^2} \times \begin{cases} \left(\frac{z_{\rm fi} T_{\rm rh}}{m_P}\right)^{4k-1} & {\rm BR} \\ \left(\frac{z_{\rm fi} T_{\rm rh}}{m_P}\right)^{\frac{9-k}{k-1}} & {\rm FR} \end{cases} \end{split}$$

$$D(T) \simeq \frac{S(T)}{S(T_{\rm rh})} = \frac{s(T)a(T)^3}{s(T_{\rm rh})a(T_{\rm rh})^3}$$
$$\simeq \begin{cases} \left(\frac{T_{\rm rh}}{T}\right)^{1+2k} BR\\ \left(\frac{T_{\rm rh}}{T}\right)^{\frac{7-k}{k-1}} FR \end{cases}$$

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Freeze-in Dark Matter Production

$$\dot{n}_{\rm DM} + 3Hn_{\rm DM} = \frac{g_P}{2\pi^2} \Gamma_P m_P^2 T K_1 \left(\frac{m_P}{T}\right)$$

Non-standard case, T_{fi} > T_{rh}

- Production of entropy during reheating
- Altered expansion rate

$$\frac{\Omega_{\rm DM}h^2}{0.12} \simeq \left(\frac{1.5\,\mathrm{m}}{c\tau}\right) \left(\frac{106.75}{g_s}\right)^{3/2} \left(\frac{m_{\rm DM}}{100\,\mathrm{keV}}\right) \left(\frac{200\,\mathrm{GeV}}{m_P}\right)^2 \\ \times \begin{cases} \frac{2k+4}{3} \left(\frac{T_{\rm rh}}{m_P}\right)^{4k-1} \mathcal{I}_{\rm rh,b} + \mathcal{I}_{\rm RD}^0 & \text{in BR} \\ \frac{2k+4}{3k-3} \left(\frac{T_{\rm rh}}{m_P}\right)^{\frac{9-k}{k-1}} \mathcal{I}_{\rm rh,f} + \mathcal{I}_{\rm RD}^0 & \text{in FR} \end{cases},$$

$$H(a) = \frac{\sqrt{\rho_{\Phi}(a) + \rho_{\rm R}(a)}}{\sqrt{3} M_{\rm Pl}}$$

$$\begin{aligned} \mathcal{I}_{\rm rh,b} &= \int_{z_{\rm end}}^{z_{\rm rh}} z' z'^{2+4k} K_1(z') \,, \\ \mathcal{I}_{\rm rh,f} &= \int_{z_{\rm end}}^{z_{\rm rh}} z' z'^{\frac{2k+6}{k-1}} K_1(z') \,, \\ \mathcal{I}_{\rm RD}^0 &= \int_{z_{\rm rh}}^{z_0} z' z'^3 K_1(z') \,. \end{aligned}$$

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Julia Harz

24

- $\rightarrow\,$ recovery of classical freeze-in during RD
- $\rightarrow\,$ no impact of reheating phase

T_{rh} > m_P

- $\rightarrow\,$ recovery of classical freeze-in during RD
- $\rightarrow\,$ no impact of reheating phase

$T_{rh} < m_{p}$

→ k=2 and k=4 bosonic and fermionic reheating impacts evolution differently

- T_{rh} > m_P
 - $\rightarrow\,$ recovery of classical freeze-in during RD
 - $\rightarrow\,$ no impact of reheating phase

$T_{rh} < m_p$

- → k=2 and k=4 bosonic and fermionic reheating impacts evolution differently
- → DM production peaks at later times for bosonic reheating

$$(z_{\rm fi})_{{\rm BR},\,k=4} > (z_{\rm fi})_{k=2} \gtrsim (z_{\rm fi})_{{\rm FR},\,k=4}$$

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

- T_{rh} > m_P
 - $\rightarrow\,$ recovery of classical freeze-in during RD
 - $\rightarrow\,$ no impact of reheating phase

$T_{rh} < m_p$

- → k=2 and k=4 bosonic and fermionic reheating impacts evolution differently
- → DM production peaks at later times for bosonic reheating

 $(z_{\rm fi})_{{\rm BR},\,k=4} > (z_{\rm fi})_{k=2} \gtrsim (z_{\rm fi})_{{\rm FR},\,k=4}$

→ dilution factor decreases for

 $D^{\mathrm{BR},k=4}(T_{\mathrm{fi}}) > D^{\mathrm{k}=2; \mathrm{FR},\mathrm{k}=4}(T_{\mathrm{fi}})$

- T_{rh} > m_P
 - $\rightarrow\,$ recovery of classical freeze-in during RD
 - $\rightarrow\,$ no impact of reheating phase

 $T_{rh} < m_p$

- → k=2 and k=4 bosonic and fermionic reheating impacts evolution differently
- → DM production peaks at later times for bosonic reheating

 $(z_{\rm fi})_{{\rm BR},\,k=4} > (z_{\rm fi})_{k=2} \gtrsim (z_{\rm fi})_{{\rm FR},\,k=4}$

→ dilution factor decreases for

 $D^{\mathrm{BR},k=4}(T_{\mathrm{fi}}) > D^{\mathrm{k}=2; \mathrm{FR},\mathrm{k}=4}(T_{\mathrm{fi}})$

Constraints on decay length from relic abundance

 $\frac{\varOmega_{\rm DM}h^2}{0.12}\simeq$

JOHANNES GUTENBERG UNIVERSITÄT MAINZ \times

JGU

		Type	$T_{\rm rh} \; [{\rm GeV}]$	$c\tau$ [m]
$(100.75)^{3/2}$		k = 2 $k = 4 BR$ $k = 4 FR$	$10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c} 2.2 \times 10^{-7} \\ 2.2 \times 10^{-11} \\ 2.0 \times 10^{-3} \end{array}$
$\frac{35 \text{ m}}{c\tau} \left(\frac{106.75}{g_s} \right)^{4} \left(\frac{m_{\rm DM}}{100 \text{ keV}} \right) \left(\frac{200 \text{ GeV}}{m_P} \right)$ $\frac{2k+4}{3} \left(\frac{T_{\rm rh}}{m_P} \right)^{4k-1} \mathcal{I}_{\rm rh,b} + \mathcal{I}_{\rm RD}^0 \text{ in BR}$	-	k = 2 $k = 4 BR$ $k = 4 FR$	20 20 20	2.6×10^{-5} 4.3×10^{-7} 5.6×10^{-3}
$\frac{2k+4}{3k-3} \left(\frac{T_{\rm rh}}{m_P}\right)^{\frac{9-k}{k-1}} \mathcal{I}_{\rm rh,f} + \mathcal{I}_{\rm RD}^0 \text{in FR} ,$		k = 2 $k = 4 BR$ $k = 4 FR$	$100 \\ 100 \\ 100$	3.9×10^{-2} 4.1×10^{-2} 4.9×10^{-2}
		k = 2 $k = 4 BR$ $k = 4 FR$	${10^4} \\ {10^4} \\ {10^4} \\ {10^4}$	$\begin{array}{c} 0.15 \\ 0.15 \\ 0.15 \end{array}$

 $m_{DM} = 12 keV, m_{P} = 500 GeV$

Collider Constraints.

Confronting Dark Matter Freeze-In during Reheating with **Constraints from Inflation**

Long lived particle searches at the LHC

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Heavy Stable Charged Particles (HSCP)

Recast for Majorana DM model (Calibbi, Lopez Honorez et al. 2021)

Recast for scalar singlet DM model (Belanger, JH et al. 2019)

- parent particle is sufficiently long lived such that it decays outside the detector
 → ionizing tracks
- higher ionization energy loss / larger time-of-flight (TOF) than SM particles (as heavier)
- decay outside the tracker → *tracker-only analysis*
- decay outside the muon chamber \rightarrow tracker + TOF analysis (ct > 10m)
- comparison with upper limits obtained by production of **staus** in a gauge mediated SUSY breaking model
- F has smallish life time → re-scale the efficiency of particles that surpasse the tracker (L = 3m) / detector (L = 11 m)

$$\sigma_{eff} = \sigma \times f_{LLP}(L,\tau)$$

CMS Coll., Searches for long-lived charged particles in pp collisions at $\sqrt{s}=7$ and 8 TeV, JHEP 07 (2013) 122 CMS Coll., Search for heavy stable charged particles with 12.9 fb-1 of 2016 data, CMS-PAS-EXO-16-036 (2016).

HSCP

Heavy Stable Charged Particles (HSCP)

CMS Coll., Searches for long-lived charged particles in pp collisions at $\sqrt{s}=7$ and 8 TeV, JHEP 07 (2013) 122 CMS Coll., Search for heavy stable charged particles with 12.9 fb-1 of 2016 data, CMS-PAS-EXO-16-036 (2016).

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Displaced Leptons (DL)

Recast for Majorana DM model (Calibbi, Lopez Honorez et al. 2021)

Recast for scalar singlet DM model (Belanger, JH et al. 2019)

- F can decay into **both muon and electron**
- CMS search for non-prompt RPV violating SUSY decays into e/µ final state

 $\tilde{t}_1 \to b\ell$

 search optimized for lifetimes longer than prompt searches, but shorter than long-lived BSM signatures

CMS Coll., Search for Displaced Supersymmetry in events with an electron and a muon with large impact parameters, Phys. Rev. 1240 Lett. 114 (2015), no. 6 061801

CMS Coll., Search for displaced leptons in the e-mu channel, CMS-PAS-EXO-16-022 (2016).

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Displaced Leptons (DL)

Disappearing Tracks (DT)

Recast for Majorana DM model (Calibbi, Lopez Honorez et al. 2021)

Recast for scalar singlet DM model (Belanger, JH et al. 2019)

- **isolated track** reconstructed in the pixel and strip detectors without any hit in the outer tracker (CMS) or a track with only pixel hits (ATLAS)
- ATLAS can reconstruct tracks down to 12 cm, CMS 25-30 cm
- CMS has better coverage for longer life times cτ > 1m
- AMSB motivated scenario with mass degenerate lightest chargino and neutralino
- **Recasting** of two analyses of ATLAS and CMS

$$\mathcal{N} = \sigma_{\mathrm{pp} \to \mathrm{F}\bar{\mathrm{F}}} \times \varepsilon(m,\tau) \times \mathcal{L}$$

ATLAS Coll., Search for long-lived charginos based on a disappearing-track signature in pp collisions at \sqrt{s} = 13TeV with the ATLAS detector, JHEP06 (2018) 022

CMS Coll., Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at √s=13 TeV, arXiv:1804.07321

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Julia Harz

disappearing track

Disappearing Tracks (DT)

Constraints from LLP searches at the LHC

Leptophilic scalar singlet DM model

Constraints from LLP searches at the LHC

Muonphilic Majorana DM model

Constraints from Inflation.

Linking to inflationary models

$$V(\Phi) = \lambda \frac{|\Phi|^k}{M^{k-4}}$$

Reheating potential can be obtained ($\Phi < M_{Pl}$), e.g. from

E-model:

T-model:

$$V(\Phi) = \Lambda^4 \left[\tanh\left(\frac{\Phi}{\sqrt{6\alpha}M_{\rm Pl}}\right) \right]^{2n}$$

$$V(\Phi) \simeq \Lambda^4 \left(\frac{2}{3\alpha}\right)^n \left(\frac{\Phi}{M_{\rm Pl}}\right)^{2n} \equiv \frac{\lambda}{M_{\rm Pl}^{k-4}} \Phi^k$$

 $V(\Phi) = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}}\frac{\Phi}{M_{\rm Pl}}} \right)^{2n}$

$$V(\Phi) \simeq \frac{\lambda}{M_{\rm Pl}^{k-4}} \Phi^k \qquad \qquad k = 2n$$

 $\lambda = \left(\frac{\Lambda}{M_{\rm Pl}}\right)^4 \left(\frac{1}{6\alpha}\right)^n$

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Linking to inflationary models

End of inflation if slow roll conditions are fulfilled:

$$\epsilon_V \equiv \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 < 1 \qquad \qquad \eta_V \equiv M_{\rm Pl}^2 \left(\frac{V''}{V}\right) < 1$$

Experimental constraints can be evaluated by

$$r = 16\epsilon_V \qquad \qquad n_s = 1 - 6\epsilon_V + 2\eta_V$$

$$A_{s,\star} = \frac{V}{24\pi^2 \epsilon_V M_{\rm Pl}^4}$$

and compared with

$$A_{s,\star} = (2.1 \pm 0.1) \times 10^{-9}$$
 $n_s = 0.9659 \pm 0.0040$ $r_{0.05} < 0.035, \quad 95\% \,\mathrm{C.L.}$

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

$$n = 1$$

Julia Harz

43

Experimental status: PLANCK+BICEP/Keck Array

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Reheating temperature from inflation

From slow roll conditions, field value at the end of inflation can be evaluated

 $\rho_{\Phi,\mathrm{end}} = rac{3}{2}V(\Phi_{\mathrm{end}})$

Derive expression for T_{rh} by relating different epochs and cross-link to observables

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Constraints on reheating temperature from inflation

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Constraints on reheating temperature from inflation

Confronting Dark Matter Freeze-In during Reheating with Constraints from Inflation

Combining results.

Combining results

Muonphilic Majorana DM model

Combining results

Leptophilic scalar singlet DM model

Future prospects.

Confronting Dark Matter Freeze-In during Reheating with **Constraints from Inflation**

Future prospects: CMB-S4

- CMB-S4 has potential to rule out α =2
- E- and T-model for α=1 give similar results
- Kink due to change in scaling moves to larger m_p
- Constraints from inflation reach high m_p

For $m_p > T_{rh}$

- $\rightarrow\,$ lower reheating temperatures imply smaller decay lengths
- $\rightarrow\,$ minimal decay length from Lyman- α moved to smaller values

Conclusions

- Freeze-in during reheating leads to smaller parent particle decay lengths required for not overproducing DM
- Constraints from inflation in particular relevant for large parent particle masses
- reheating potential, nature of inflaton-matter coupling, as well as magnitude of reheating temperature can have significant impact on FIMP DM production and interpretation of collider limits
- Long-lived DM parent particle can shed light on reheating dynamics
- Too small T_{rh} could rule out many popular high-scale baryogenesis/leptogenesis models

→ Complementary insights from early Universe and laboratory experiments!

Thank you for your attention!

Confronting Dark Matter Freeze-In during Reheating with **Constraints from Inflation**

Comparison

