

UNIVERSITÄT BONN

Studying Collider Neutrinos and Search for LLPs with FASER

Bethe Forum on Long-Lived-Particles Bonn

Florian Bernlochner (florian.bernlochner@uni-bonn.de)

CERN

Swiss National Science Foundation

Neutrinos and the long-lifetime frontier

The LHC is the highest energy collider in the world

- → Its large-scale experiments were designed to search for heavy and strongly produced new particles
- → Their design **optimal** to search for **heavy BSM** and probe **SM physics**

W, Z, top, Higgs

Neutrinos and the long-lifetime frontier

The LHC is the highest energy collider in the world

- → Its large-scale experiments were designed to search for heavy and strongly produced new particles
- → Their design **optimal** to search for **heavy BSM** and probe **SM physics**

Neutrinos and the long-lifetime frontier

The LHC is the highest energy collider in the world

- → Its large-scale experiments were designed to search for heavy and strongly produced new particles
- → Their design optimal to search for heavy BSM and probe SM physics

→ small detector in this region would have impressive sensitivity

articles

FASER: the ForwArd Search ExpeRiment

Inside TI-12 tunnel, FASER situated ca. 500 m downstream from the ATLAS collision point

→ Shielded by ca. 100 m rock ; LHC magnets deflect charged particles, creates low bkg. environment

FASER aligned with ATLAS line-of-sight (LOS) maximizes neutrino flux

LHC "Magnetic Shielding"

The FASER Detector

From front to back:

Neutrino-nucleon cross section increases with energy \rightarrow even small (1.1 ton) target produces **large number of interactions**

Front Scintillator veto \rightarrow FASER $\nu \rightarrow$ Interface tracker \rightarrow Scintillator veto system

The FASER Detector

See "The FASER Detector" https://arxiv.org/abs/2207.11427

From front to back:

... Decay Volume in magnetic field \rightarrow 3 Tracking stations \rightarrow Electromagnetic cal.

Science Foundation KAKENH

to ATLAS IP

FASE

CERN

decay volume

FASERv

tracker

CMU 2t

calorimeter pre-shower

FASER Operations

Continuous and largely automatic data taking in 2022 and 202

SIMO

FOUNDATI

-TEISIN

1. vLLPs Searches :-)

Prior FASER, **not a single neutrino** produced in a beam-beam collision has **ever** been **directly detected** SUSY, WIMPs, ...

pp-collisions copiously produce neutrinos & anti-neutrinos & at very high energies for which **neutrino interactions are not well studied.**

- → Energies in the range of TeV, highest human-made energies
- → Neutrino interaction cross section : $\sigma \sim E_{\nu}$
- \rightarrow All flavors are produced : $K \rightarrow \nu_e$, $\pi \rightarrow \nu_\mu$, $D_{(s)} \rightarrow \nu_\tau$

Every time we discover neutrinos from a new source (reactors, the Sun, supernovae, the atmosphere, ...) we learnt something very exciting about not just particle physics, but also cosmology and the Universe.

Forward direction very relevant for the simulation and understanding of extensive air showers (EAS)

1. Cross sections of different neutrino flavors at TeV energies **unexplored**

Neutrino CC interactions with charm $\nu s \rightarrow \ell c$; Nuclear PDFs

How can FASER study collider Neutrinos?

How can FASER study collider Neutrinos?

Two measurement strategies:

- 1. Use FASER ν as target and electronic components of FASER to detect CC μ
 - + : High sensitivity ; can separate ν and $\overline{\nu}$; fast turn-around time
 - : Can only study u_{μ}

"Neutrino detection without neutrino detectors: Discovering collider neutrinos at FASER with electronic signals only" by J. Arakawa, J. L. Feng, A. I, F. Kling, M. Waterbury, *Phys.Rev.D* 106 (2022) 5, 052011

How can FASER study collider Neutrinos?

1. First Direct Observation of Collider Neutrinos

1. First Direct Observation of Collider Neutrinos

Reconstruct track and **extrapolate back** to the veto station, only select tracks that fall within 120 mm of the center of the station and have $p_{\mu} > 100 \,\text{GeV}$

3 Background types :

Observation:

$$n_{\nu} = 153^{+12}_{-13} \text{ (stat.) } ^{+2}_{-2} \text{ (bkg.)} = 153^{+12}_{-13} \text{ (tot.)}$$

with more than **16 sigma significance**

Observation:

FASER

$$n_{\nu} = 153^{+12}_{-13} \text{ (stat.) } ^{+2}_{-2} \text{ (bkg.)} = 153^{+12}_{-13} \text{ (tot.)}$$

with more than 16 sigma significance

 $\mathcal{L} = 35.4 \text{ fb}^{-1}$

FASER

uncertainties are included on the simulated sample (e.g. assume perfect alignment, no errors on efficiencies, etc.)

2. First Observation of Collider **Electron**-Neutrinos

26

. First Observation of Collider Electron-Neutrinos

J) Even classification:

- ν_{μ} : long track, no secondary particles
- $\nu_e\,$: short track that produces electromagnetic shower with identifiable maximum

 $\nu_{e}: \sim 23 \%$

Lepton and CC remnants typically have large $\Delta \phi$ separation (require $\Delta \phi > \frac{\pi}{2}$)

Selection efficiencies:

(simulated)		U				
Selection	$\nu_e \ CC$	ν NC	K_L	n	Λ	
	1.000	1.000	1.000	1.000	1.000	-
Vertex reconstruction	0.516	0.336	0.813	0.803	0.753	
E>200 GeV	0.340	0.001	0.000	0.000	0.000	
$E>$ 200 GeV, tan $\theta>$ 0.005	0.270	0.001	0.000	0.000	0.000	
$E>\!\!200$ GeV, $\tan\!\theta>\!\!0.005.~\Delta\phi\!\!>\!\!90\mathrm{deg}$	0.226	0.000	0.000	0.000	0.000	

Selection	$ u_{\mu}$ CC	ν NC	K_L	n	Λ	
	1.000	1.000	1.000	1.000	1.000	00
Vertex reconstruction	0.446	0.336	0.813	0.803	0.753	75
p>200 GeV	0.284	0.071	0.028	0.026	0.018	01
p>200 GeV, tan $ heta>$ 0.005	0.236	0.051	0.007	0.013	0.007	00
$p>\!\!200$ GeV, $\tan\!\theta>\!\!0.005.~\Delta\phi\!\!>\!\!90\mathrm{deg}$	0.192	0.004	0.002	0.006	0.004	00

 $\nu_{\mu}: \sim 19\%$

2. First Observation of Collider Electron-Neutrin

2. First Observation of Collider Electron-Neutrin

δx

2. First Observation of Collider Electron-Neutrinos

Dominant background: neutral hadrons $K_S, K_L, n, \bar{n}, \Lambda, \bar{\Lambda}$

2. First Observation of Collider Electron-Neutrinos

2. LLPs Searches

Dark Photons at FASER

Dark Photons neat candidate for "hidden sector" extension of SM:

$$\mathscr{L} = \frac{1}{2} m_{A'}^2 A'^2 - \varepsilon e \sum_{f} q_f A'_{\mu} \bar{f} \gamma^{\mu} f$$

$$\uparrow f$$
Weakly coupled to SM with strength determined by kinetic mixing ε

→ FASER sensitive to parameter space of $m_{A'} \sim 10 - 100 \,\text{GeV} \& \epsilon \sim 10^{-5} - 10^{-4}$

Dark Photon decay length:

$$L = c \beta \gamma \tau \approx (80 \text{ m}) \left[\frac{10^{-5}}{\varepsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \left[\frac{100 \text{ MeV}}{m_{A'}}\right]^2$$

 $\pi^0 \to A' \gamma$ dominant production mechanism If $m_{A'} < 2m_{\mu} \to \mathscr{B}(A' \to e^+e^-) \approx 100 \%$

Dark photon signal events modeled using FORESEE [arXiv:2105.07077]

EPOS-LHC used to model **very forward** π^0 and η production and also include sub-dominant **dark-bremstrahlung** contribution ; Drell-Yan and other production modes are negligible.

2. Exactly 2 good fiducial tracks

p > 20 GeV, radius < 95 mm

Require additionally LHC collision events with good quality data ; Analysis cuts optimized fully blinded

Illustration from Jack C. MacDonald

→ results in ca. 40% signal efficiency in FASER $m_{A'}$: ϵ param. space
Simulated dark photon decay in **FASER** :

Various Backgrounds to consider :

1) Veto station inefficiency

Measured layer-by-layer with muon tracks pointing to veto layers

→ Layer efficiency > 99.9997%

With 5 layers, reduced expected 10^8 muons to negligible level and expect

 \rightarrow 0 background events due to this.

Various Backgrounds to consider :

2) Non-collision backgrounds

Cosmics measured in runs without beam

Nearby beam debris measured in non-colliding bunches

No events observed with 1 or more tracks and $E_{calo} > 500 \,\text{GeV}$

 \rightarrow 0 background events due to this.

Various Backgrounds to consider :

3) Collider Neutrinos (main background)

We just found them, so time to treat them as a background ;-)

Mostly from interactions in the timing layer ; Estimate their contribution using GENIE simulation and incorporate uncertainties from flux and interaction modeling

 \rightarrow 1.5 x 10⁻³ background events due to this.

Backgrounds

Various Backgrounds to consider :

Use sidebands with 2 or 3 tracks and different veto conditions

 \rightarrow 0.84 x 10⁻³ background events due to this.

Background Summary:					
Background	Central Value	Error (%)			
Background due to veto inefficiency	-	_			
Background from neutral hadrons or muons missing veto	0.22×10^{-3}	$0.31 \times 10^{-3} (141\%)$			
Neutrino background	1.8×10^{-3}	$2.4 \times 10^{-3} (133\%)$			
Non-collision background	-	-			
Total	$2.02 imes 10^{-3}$	$2.4 imes 10^{-3} \ (119\%)$			

Time to unblind

Time to unblind

Exactly 2 good fiducial tracks
 p > 20 GeV, radius < 95 mm

Limit Setting

No events observed in signal region → set 90% CL limit

Exclude new region relevant for dark matter thermal relic target

Summary and Outlook

FASER directly observed collider neutrinos (ν_{μ}) for the first time (16 σ)

"First Direct Observation of Collider Neutrinos with FASER at the LHC" Phys. Rev. Lett. 131, 031801

FASER ν observed collider ν_e for the first time (5 σ)

Conference Note: https://cds.cern.ch/record/2868284/files/ConferenceNote.pdf

Observations are just the beginning; more studies underway

- VIEWPOINT

The Dawn of Collider Neutrino Physics

Elizabeth Worcester Brookhaven National Laboratory, Upton, New York, US July 19, 2023 • *Physics* 16, 113

The first observation of neutrinos produced at a particle collider opens a new field of study and offers ways to test the limits of the standard model.

Google Earth, imagery (c)2023 Maxar Technologies, map data (c)2023; CERN; adapted by APS/Alan Stoneb

Figure 1: The Forward Search Experiment (FASER) is installed in a service tunnel that connects the Large Hadron Collider (LHC) and the Super Proton Synchrotron (SPS). Proton collisions at the ATLAS experiment's interaction point (red star) generate beams of ne... Show more https://physics.aps.org/articles/v16/113

Viewpoint on: Henso Abreu *et al.* (FASER Collaboration) Phys. Rev. Lett. **131**, 031801 (2023)

R. Albanese *et al.* (SND@LHC Collaboration) Phys. Rev. Lett. **131**, 031802 (2023)

The future is forward ;-)

Proposed facility at CERN to host suite of experiments

FPF white-paper https://arxiv.org/abs/2203.05090

First FASER limits on dark photon production

"First Results from the Search for Dark Photons with the FASER Detector at the LHC", https://arxiv.org/abs/2308.05587

We probes **new regions**

We have 40 fb⁻¹ more on disk

Other searches for e.g. ALPs and multiphoton signatures in preparation

Looking Forward to the FPF

Preferred Location: ca. 620 m west of the ATLAS IP Cavern dimensions: 65 m long x 8.5 m wide

Looking Forward to Neutrinos

Looking Forward to Neutrinos

v**2**

https://indicol.cenn.ch/event/1275380/contributions/5379619/attachments/2662969/4613853/rojo-FPF6-WG1.pdf

Kinematic coverage in (x, Q) for *D*-meson prod. in pp collisions

Looking Forward to Dark Photons

Looking Forward to other LLPs

The FASER Collaboration

3Blue1Brown — Grant Sanderson

Colloquium starts at **13:15** in Wolfgang-Paul-Lecture Hall

More Information

Air showers

Extensive Air Showers (EAS):

- Particle prod. in the far-forward region
- Low momentum transfer
- Non-pert. regime
- Complex particle composition
- Energies range over many orders of magnitudes

Modeling of particle interactions based on phenomenological models for EAS simulations

FASER & FPF provide unique laboratory to test and tune hadronic interaction models

Auger FD+SD EPOS-LHC QGSJet-II.04 SIBYLL-2.3d SIBYLL-2.1 Auger UMD+SD Telescope Array Status: Large discrepancies IceCube [Preliminary] N Yakutsk [Preliminary] observed between data & MC ---- NEVOD-DECOR -SUGAR → KASCADE-Grande^a \rightarrow EAS-MSU^a "Muon puzzle" QGSJet-II.03 SIBYLL-2.3 SIBYLL-2.3c ---- AGASA [Preliminary] QGSJet01 HiRes-MIA^a Expected from X_{max} ---- GSF N ---- GST ----- Н4а Strangeness enhancement? a not energy-scale corrected $10^{15} 10^{16} 10^{17} 10^{18} 10^{19} 10^{15} 10^{16} 10^{17} 10^{18} 10^{19} 10^{17} 10^{18} 10^{19} 10^{15} 10^{16} 10^{17} 10^{18} 10^{19} 10^{15} 10^{16} 10^{17} 10^{18} 10^{19}$ D. Soldin et al., PoS ICRC2021 (2021) 349 E/eV E/eV E/eV E/eV

Observation:

FASER

= Two hits in the front

scintillator

Neutrino-like Events

10

 θ

μ

15

20

25

Muon-like Events

GENIE

5

 10^{0}

 10^{-1}

 10^{-2}

arb. units 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

0

$$n_{\nu} = 153^{+12}_{-13} \text{ (stat.) } ^{+2}_{-2} \text{ (bkg.)} = 153^{+12}_{-13} \text{ (tot.)}$$

with more than 16 sigma significance

 $\mathcal{L} = 35.4 \text{ fb}^{-1}$

FASER

 10^{0}

arb. 10^{-1}

 10^{-2}

0

20

40

of interface tracker (IFT) clusters

Neutrino flux as a function of beam axis displacement

Neutrino Energy Spectrum

Pseudorapidity Coverage of FASER and FFP experiments

Expected Sensitivity after Run 3

Signal Extraction

Likelihood

$$\mathcal{L} = \prod_{i} \mathcal{P}(N_i | n_i) \cdot \prod_{j} \mathcal{G}_j.$$
$$q_0 = \begin{cases} -2 \ln \lambda (n_\nu = 0) & \widehat{n}_\nu \ge 0\\ 0 & \widehat{n}_\nu < 0 \end{cases}$$

Test statistics

Geometric sideband

Expected number of neutrino events

Volume	Type	$0 < E_{\nu} < 500 \mathrm{GeV}$	$500 < E_{\nu} < 1000 {\rm GeV}$	$E_{\nu} > 1000 \mathrm{GeV}$	\sum	\overline{E}_{ν} [GeV]
$FASER\nu$	ν_{μ}	359 / 379	239 / 273	291 / 790	890 / 1442	880 / 1376
$FASER\nu$	$\overline{ u}_{\mu}$	116 / 130	62 / 85	49 / 151	227 / 367	$657 \ / \ 1028$
$r < 95\mathrm{mm}$	ν_{μ}	147 / 154	105 / 118	141 / 375	$394 \ / \ 647$	943 / 1477
$r < 95\mathrm{mm}$	$\overline{\nu}_{\mu}$	48 / 53	28 / 37	23 / 67	$99 \ / \ 157$	$687 \ / \ 1057$

Alignment

Data-driven alignment corrections are applied to the positions and orientations of the modules of the tracking spectrometer stations using a sample of reconstructed muons. In the case of perfect alignment of the FASER tracking detectors, we expect a momentum resolution of 2.1% at 100 GeV, 4.7% at 300 GeV, and 16.4% at 1 TeV. The accuracy of the alignment is validated using a photon conversion sample for momenta up to 250 GeV.

		Efficiency Genie [%]	Efficiency data [%]
Timing	colliding BCID	_	100.0
	good time range		
Trigger	triggered by veto, trigger or pre-shower scintillator	—	100.0
$\mathrm{FASER}\nu$ veto station	charge in both layers $< 40 \mathrm{pC}$	72.5	_
Veto station	charge in both downstream layers $> 40 \mathrm{pC}$	100.0	98.9
Trigger station	total charge of modules hit by track $> 20 \mathrm{pC}$	100.0	99.9
Pre-shower station	charge in both layers $> 2.5 \mathrm{pC}$	99.3	99.9
Calorimeter	charge $> 0.1 \mathrm{pC}$ for runs without optical filters or	—	96.1
	with high gain configuration		
Tracker	exactly one long track	95.1	99.9
	≥ 12 hits on track	93.7	97.0
	$\chi^2/\text{nDoF} < 15$	91.9	94.3
	$p > 100 \mathrm{GeV}$	75.8	54.9
	$r < 95 \mathrm{mm}$ in all tracking stations (extrapolation to IFT)	46.5	56.8
	$r < 120 \mathrm{mm}$ at FASER ν veto scintillator	50.7	62.8
	$\theta < 25\mathrm{mrad}$	86.1	95.7
Combined		28.7	34.2

FPF Experiments

FPF Experiments

FASER NC Sensitivity

Feasibility explored in https://arxiv.org/pdf/2012.10500.pdf

$$\mathcal{L} \supset -\sqrt{2}G_F \sum_{f,\alpha,\beta} [\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta}] [\epsilon^{f,V}_{\alpha\beta}\bar{f}\gamma_{\mu}f + \epsilon^{f,A}_{\alpha\beta}\bar{f}\gamma_{\mu}\gamma^5 f]$$

FASER_{*v*} Detector Performance

10000 N tracks N tracks **FASER***v* FASERv 9000 9000 preliminary preliminary 8000 8000 $\sigma = 0.18 \, \mu m$ $\sigma = 0.19 \ \mu m$ 7000 7000 6000 6000 5000 5000 4000 4000 3000 3000F 2000 2000F 1000 1000 -1 -0.5 0 0.5 -1 -0.5 0 0.5 -1.51.5 -1.51.5 $\Delta x (\mu m)$ $\Delta y (\mu m)$ 1st **FASER** ν detector installed for first 4 weeks of data taking, recording about 0.5/fb of data

Used to commission the assembly, development and scanning reconstruction, analysis chain.

Measured track multiplicity: ca. 10⁴ cm⁻² / fb⁻¹

Very good tracking performance.

Two other FASER ν detectors collected ca. 10 and 30/fb of data with about 2000 neutrino interactions \rightarrow Analysis in progress

Can **distinguish flavors** using the emulsion films excellent position / angular resolution for charged particles.

Detector needs to be replaced every ca. 30/fb to keep track multiplicity

$\textbf{FASER} \nu \text{ Workflow}$

FASER Detector : Global Timeline

From proposal to data taking in five exciting years :

TI12: August 2018

Line of sight (LOS) to ATLAS IP

Needed 50 cm deep trench to allow 5 m long detector to be aligned with LOS

TI12: April 2020

0

Needed 50 cm deep trench to allow 5 m long detector to be aligned with LOS

-

LOS

21

RI

TI12: November 2020

18

CMU 2t

1

2t

munt

and the second s

TI12: November 2020

11

To the second se

Tracker station installation begins (built from ATLAS SCT barrel modules)

u HU

TI12: March 2021

TI12: April 2021

2

EP

FASER

PA-1811

PA-1812

60

BERRIALD BERRETTEP

3

First Collision Muon Event

Zoom in 1st August 23, 2022 1st collision muon traverses tracking station @ 01:46 : FASER with momentum of 21.6 GeV \rightarrow Signal consistent with MIP seen in all scintillators and calorimeter Run 8336 Event 1477982 2022-08-23 01:46:15 To ATLAS IP Tracking spectrometer Trigger Magnets Interface Veto stations FASERv Pre-shower station FASERv Tracker (IFT) station Decay volume veto station station emulsion detector Calorimeter FASERv veto station, layer 1 Veto station, layer 3 ation, top laver, PMT righ /eto station, layer 2 Pre-shower station, layer eter, top row, right module Mean: 848.8 ns Peak: 17.5 mV Mean: 827.3 ns Peak: 187.0 mV Integral: 71.9 pC Mean: 828.0 ns Peak: 272.5 mV Mean: 796.1 ns Peak: 378.9 mV Integral: 186.4 pC E 500 n] 350 njiduv 400 ₽ 250 200 150 100 875 900 Time [ns] 875 900 Time (ns 875 875 Time Ins tation. laver 4 bottom layer, PMT lef ottom layer, PMT righ Pre-shower statio , right module Mean: 825.9 ns Peak: 2.3 mV tegral: 0.7 pC Mean: 828.6 ns Peak: 525.2 mV egral: 185.8 pC Mean: 828.1 ns Peak: 100.3 mV tegral: 27.6 pC Mean: 829.0 ns Peak: 96.0 mV egral: 31.3 pC Mean: 797.8 ns Peak: 346.2 mV tegral: 184.7 pC Mean: 850.0 ns Peak: 13.5 mV 200 plitude ₩ 250 200 150 100 800 875 900 Time [ns] 800 825 875 875 900 875 825 800 825 850 90 Time Ing Time Ing

FASER LLP Physics Program :

FASER is sensitive to unprobed coupling / mass regions for **dark photons**, **ALPs**, **Neutral Heavy Leptons**

→ With just 10/fb of data FASER can explore new coupling / mass ranges

FASER LLP Physics Program :

FASER is sensitive to unprobed coupling / mass regions for dark photons, ALPs, Neutral Heavy Leptons

→ With just 10/fb of data FASER can explore new coupling / mass ranges