Nik hef

Flavia de Almeida Dias

Bethe Forum - Long-Lived Particles

13 November 2023

Unconventional signatures in ATLAS Challenges, detector considerations and **HL-LHC** prospects

Searching the "lifetime" dimension

- Long-lived particles (LLPs): promising direction to expand searches @ LHC
 - Without dedicated searches, we could be missing new physics!
 - Impressive progress in recent years, but plenty of room for creativity!
 - Theoretically well motivated!
 - Ask the theorists in this room :)

Why do we need so many searches?

• Even particles with a short proper li distance:

From H. Russell

Even particles with a short proper lifetime can decay with a large lab-frame

Why do we need so many searches?

different search strategy!

From H. Russell

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

But if we want to consider particles with a longer lifetime, need a dramatically

Nikhef

LLPs at LHC

Credit (all images): <u>cds.cern.ch</u>

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Credit (all images): <u>cds.cern.ch</u>

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Credit (all images): <u>cds.cern.ch</u>

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Credit (all images): <u>cds.cern.ch</u>

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Credit (all images): <u>cds.cern.ch</u>

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Credit (all images): <u>cds.cern.ch</u>

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

General-Purpose Particle Detectors

Unconventional Signatures - ATLAS & CMS-Style

displaced multitrack vertices

displaced leptons, lepton-jets, or lepton pairs

> multitrack vertices in the muon spectrometer

Figure from H. Russell

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Unconventional Signatures - ATLAS & CMS-Style

displaced multitrack vertices

ATLAS & CMS were not designed for LLP searches: custom reconstruction and techniques needed for these unusual signatures!

multitrack vertices in the muon spectrometer

Figure from H. Russell

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Nik hef

Ŵ

UvA

Decays in the Inner Tracker

Displaced Decays in the Inner Tracker

- Particles leave *some* hits in the inner tracking layers
 - One or multiple secondary vertices
- Challenges:
 - Dedicated triggers for such topologies
 - Dedicated reconstruction algorithms for tracks and vertices

Different reconstruction challenges for **ATLAS vs CMS**

ATLAS Large-Radius Tracking

- Algorithm for LLPs in ATLAS
 - Large Radius Tracking (LRT): additional iteration on ID track hits, executed after standard track reconstruction
 - Runs exclusively on leftovers hits
 - Extend the sensitivity to a larger particle lifetime range

Selection Criteria	Primary	LRT
$\max. d_0 [mm]$	5	300
max. $ z_0 $ [mm]	200	500
min. p_T [GeV]	0.5	1

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Search for Displaced Heavy Neutral Leptons

- Experimental dHNL signature:
 - Prompt lepton (trigger)
 - Displaced vertex with two opposite charge leptons

6 signal regions: μ - $\mu\mu$, μ - μ e, μ -ee, e-ee, e-e μ , e- $\mu\mu$

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Figure from D. Trischuk

Dominant background

- Data-driven object shuffling method is used to estimate the background from random lepton crossings
- Dedicated selections to remove non-random backgrounds
 - e.g. invariant mass of the displaced vertex to reject heavy-flavour decays

dHNLs: Backgrounds

Non-random backgrounds

ATLAS Results: dHNL

Energy-momentum conservation is used to reconstruct the HNL mass: $m_{HNL^2} = (P_{1\beta} + P_{1\gamma} + P_{\nu\gamma})^2$

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

ATLAS Results: dHNL

• No excess observed 😕

Mixing: Electron-only

Multi-flavour

Muon-only

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

ATLAS Results: dHNL

• No excess observed 😕

Multi-flavour

Muon-only

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

INSTITUTE OF PHYSICS

15

Decays in the Calorimeters

Decays in the Calorimeters

- No tracking information, info from calorimeters (and muon system)
 - Signatures: trackless jets, collimated lepton-jets
 - Can also look at non-pointing/non-prompt photons
 - Special triggers needed
 - Dedicated jet reconstruction needed

- Decay Higgs (like) to exotic scalars *s*
 - Differences to a regular SM jet:
 - Narrow
 - Trackless
 - Low fraction of energy in the ECAL; Calorimeter Ratio (CalRatio): E_{HCAL}/E_{ECAL}

<u>JHEP 06 (2022) 005</u>

- Decay Higgs (like) to exotic scalars *s*
 - Differences to a regular SM jet:
 - Narrow
 - Trackless
 - Low fraction of energy in the ECAL; Calorimeter Ratio (CalRatio): E_{HCAL}/E_{ECAL}

<u>JHEP 06 (2022) 005</u>

- Decay Higgs (like) to exotic scalars *s*
 - Differences to a regular SM jet:
 - Narrow
 - Trackless
 - Low fraction of energy in the ECAL; Calorimeter Ratio (CalRatio): E_{HCAL}/E_{ECAL}

JHEP 06 (2022) 005

- Decay Higgs (like) to exotic scalars s
 - Differences to a regular SM jet:
 - Narrow
 - Trackless
 - Low fraction of energy in the ECAL; Calorimeter Ratio (CalRatio): E_{HCAL}/E_{ECAL}

<u>JHEP 06 (2022) 005</u>

- Main sources of background:
 - QCD jets
 - Beam-induced background (BIB)
 - Cosmic rays

INSTITUTE OF PHYSICS

CalRatio: Backgrounds

- Main sources of background:
 - QCD jets
 - Beam-induced background (BIB)
 - Cosmic rays
- Machine learning to help s/b ratio
 - Jet level NN for signal vs BIB/QCD
 - Low-level inputs: tracks, jet constituents, muon _ segments
 - Event level BDT selections
 - Data-driven ABCD allowing signal contamination

CalRatio: Backgrounds

ATLAS Results: CalRatio

- No excess observed
 - Strong results for high mediator mass searches!
 - Here, only results with
 m_H=125 GeV
 - Other models and mass combinations in the paper

Decays in the Muon System

Decays in the Muon System

- Tracking in the muon spectrometer (MS): hadronic track-finding in individual chambers
 - Multitrack vertices without inner detector tracks or calorimeter jets
 - Dedicated triggers (large bunches of MS activity)
 - Dedicated vertexing algorithms

Decays in the Muon System

- CMS: Muon detectors used as a sampling calorimeter to identify particle showers from LLP decays
 - New CMS search for displaced muons already using Run-3 data and new triggers can be found at: <u>CMS-PAS-</u> EXO-23-014

ATLAS: Search for Displaced Vertices in the MS

- Pairs of displaced vertices (DVs) in MS
 - From LLPs decaying into hadronic jets
 - Main background: QCD punch-through
 - Very low expected events: 0.32 ± 0.05 (statistical errors), zero observed

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

UvA
ATLAS Hidden Sector Summary

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

ATLAS Hidden Sector Summary

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

(Meta) Stable Charged Particles

Simulated 1000GeV, 1gD magnetic monopole event in ATLAS

Highly Ionising Particles / Magnetic Monopoles

- Dirac magnetic monopoles or High Electric Charge Objects (Q-balls, micro black hole remnants)
 - Striking experimental signature: ~5000x more ionisation loss in detector than MIP
 - TRT High Threshold hits (delta rays) used for dedicated trigger
 - Concentrated ECAL high energy deposition, no HCAL deposit
 - Data-driven ABCD method, 0 events observed, background expected 0.15 ± 0.04

20 < |z| < 100 $q_{\rm m} = N g_{\rm D} ec, g_{\rm D} = 68.5$

INSTITUTE OF PHYSICS

Simulated 1000GeV, 1gD magnetic monopole event in ATLAS

Highly Ionising Particles / Magnetic Monopoles

- Dirac magnetic monopoles or High Electric Charge Objects (Q-balls, micro black hole remnants)
 - Striking experimental signature: ~5000x more ionisation loss in detector than MIP
 - TRT High Threshold hits (delta rays) used for dedicated trigger
 - Concentrated ECAL high energy deposition, no HCAL deposit
 - Data-driven ABCD method, 0 events observed, background expected 0.15 ± 0.04

20 < |z| < 100 $q_m = N g_D ec, g_D = 68.5$

dE/dx (for charge 1)

- Massive, charged, LLPs
 - Slowly moving, high ionisation loss (dE/dx)
 - Trajectories in ID, dE/dx in Pixel (using Bethe-Bloch relation)

INSTITUTE OF PHYSICS

Nik hef

dE/dx (for charge 1)

- Massive, charged, LLPs
 - Slowly moving, high ionisation loss (dE/dx)
 - Trajectories in ID, dE/dx in Pixel (using Bethe-Bloch relation)
 - Additional analysis also uses time of flight (ToF) in the calorimeter
 - Excess not confirmed but also slightly different sensitivity

Nikhef

× UvA

Multi-Charged Particles

- Heavy long-lived multi-charged particles: $|q| \le ze, 2 \le z \le 7$
 - Traverses entire detector without decays
 - High-pT muon-like signatures: high dE/dx values in: ID Pixel, TRT, MS
 - Also uses late-muon triggers (in addition to prompt muons and MET)

Search category	$N_{ m data}^{ m A \ observed}$	$N_{\rm data}^{\rm B\ observed}$	$N_{\rm data}^{\rm C \ observed}$
z = 2	41 674	5024	13
z > 2	192 036 934	15 004	441

Long-Lived Particles at ATLAS - Summary

Α	TLAS Long	-lived Partic	le Se	arches	* - 95% C	L Exclu	sion			ATLA	S Preliminar
St	atus: March 2023	}							$\int \mathcal{L} dt =$	(32.8 – 139) fb ⁻¹	<i>√s</i> = 13 Te∨
	Model	Signature	∫£ dt [f	b ⁻¹]	Lifeti	me limit					Reference
SUSY	RPV $ ilde{t} ightarrow \mu q$	displaced vtx + muon	136	\tilde{t} lifetime				0.003-6.	<mark>0 m</mark>	$m(ilde{t}){=}$ 1.4 TeV	2003.11956
	${\sf RPV}{ ilde\chi}_1^0 o eev/e\mu v/\mu\mu$	v displaced lepton pair	32.8	${ ilde \chi}^0_1$ lifetime			0.0	003-1.0 m		$m(ilde{q}){=}$ 1.6 TeV, $m(ilde{\chi}_1^0){=}$ 1.3 TeV	1907.10037
	$RPV { ilde \chi}_1^0 o q q q$	displaced vtx + jets	139	${ ilde \chi}^{0}_{1}$ lifetime				0.0013	5-9.0 m	$m(ilde{\chi}_1^0){=}$ 1.0 TeV	2301.13866
	$\operatorname{GGM} \widetilde{\chi}_1^0 \to Z \widetilde{G}$	displaced dimuon	32.9	${ ilde \chi}^0_1$ lifetime					0.029-18.0 m	$m(ilde{g}){=}$ 1.1 TeV, $m(ilde{\chi}_1^0){=}$ 1.0 TeV	1808.03057
	GMSB	non-pointing or delayed γ	v 139	${ ilde \chi}^{0}_1$ lifetime				0.24-2.4 m		$m(ilde{\chi}_1^0, ilde{G})$ = 60, 20 GeV, $\mathcal{B}_{\mathcal{H}}$ = 2%	2209.01029
	GMSB $\tilde{\ell} \to \ell \tilde{G}$	displaced lepton	139	$ ilde{\ell}$ lifetime			6-7	50 mm		$m(ilde{\ell}){=}$ 600 GeV	2011.07812
	GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$	displaced lepton	139	$ ilde{ au}$ lifetime			9-270 mm			$m(ilde{\ell}){=}200~{ m GeV}$	2011.07812
	AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$	$\tilde{\chi}_1^-$ disappearing track	136	${\widetilde \chi}_1^{\pm}$ lifetime				0.06-3.06 m		$m({ ilde \chi}_1^{\pm}){=}$ 650 GeV	2201.02472
	AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$	$\tilde{\zeta}_1^-$ large pixel dE/dx	139	${\widetilde \chi}_1^{\pm}$ lifetime				0.3-30.0 m	_	$m({ ilde \chi}_1^{\pm}){=}$ 600 GeV	2205.06013
	Stealth SUSY	2 MS vertices	36.1	Š lifetime			0.1-519	m		$\mathcal{B}(\tilde{g} ightarrow \tilde{S}g) = 0.1, m(\tilde{g}) = 500 \mathrm{GeV}$	1811.07370
	Split SUSY	large pixel dE/dx	139	ĝ lifetime				> 0.45 m		$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	2205.06013
	Split SUSY	displaced vtx + $E_{\rm T}^{\rm miss}$	32.8	ĝ lifetime				C).03-13.2 m	$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	1710.04901
	Split SUSY	0 ℓ , 2 – 6 jets + E_T^{miss}	36.1	ğ lifetime		-		0.0-2.1 m		$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	ATLAS-CONF-2018-
Igs BR = 10%	$H \rightarrow s s$	2 MS vertices	139	s lifetime				0.31-72.4 m		<i>m</i> (<i>s</i>)= 35 GeV	2203.00587
	H ightarrow s s	2 low-EMF trackless jets	139	s lifetime				0.19-6.	<mark>94 m</mark>	<i>m</i> (<i>s</i>)=35 GeV	2203.01009
	VH with $H o ss o bb$	<i>bb</i> 2ℓ + 2 displ. vertices	139	s lifetime		4-85	mm			<i>m</i> (<i>s</i>)=35 GeV	2107.06092
	FRVZ $H ightarrow 2\gamma_d + X$	2 μ –jets	139	γ _d lifetime			0.654	-939 mm		$m(\gamma_d) =$ 400 MeV	2206.12181
	FRVZ $H ightarrow 4 \gamma_d + X$	2 μ –jets	139	γ_{d} lifetime			2.7-534	mm		$m(\gamma_d) =$ 400 MeV	2206.12181
	$H \rightarrow Z_d Z_d$	displaced dimuon	32.9	Z _d lifetime		0.009-24.0 m				$m(Z_d)=$ 40 GeV	1808.03057
	$H \rightarrow ZZ_d$	2 e, μ + low-EMF trackless	jet 36.1	Z _d lifetime				0.21-5.2	m	$m(Z_d) = 10 \text{ GeV}$	1811.02542
	$\Phi(200 \text{ GeV}) \rightarrow ss$	low-EMF trk-less jets, MS	vtx 36.1	s lifetime		_		0.41-51.5 m		$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
2	$\Phi(600 \text{ GeV}) \rightarrow ss$	low-EMF trk-less jets, MS v	vtx 36.1	s lifetime			0.04-21.5 m			$\sigma \times \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
	$\Phi(1 \text{ TeV}) \rightarrow ss$	low-EMF trk-less jets, MS v	vtx 36.1	s lifetime			0.06-52.4 m		-	$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 150 GeV	1902.03094
HNL	$W o N\ell, N o \ell\ell\nu$	displaced vtx ($\mu\mu$, μe , ee) +	μ 139	N lifetime		0.74-42 mm	_		_	m(N) = 6 GeV, Dirac	2204.11988
	$W ightarrow N\ell, N ightarrow \ell\ell \nu$	displaced vtx ($\mu\mu$, μe , ee) +	μ 139	N lifetime		3.1-33 mm				m(N) = 6 GeV, Majorana	2204.11988
	$W ightarrow N\ell, N ightarrow \ell\ell v$	displaced vtx ($\mu\mu$, μe , ee) +	e 139	N lifetim <mark>e</mark>		0.49-81	nm			m(N) = 6 GeV, Dirac	2204.11988
	$W o N\ell, N o \ell\ell v$	displaced vtx ($\mu\mu$, μe , ee) +	e 139	N life <mark>time</mark>		0.39-51 mm				m(N) = 6 GeV, Majorana	2204.11988
				0	.001	0.01	0.1	1	10	¹⁰⁰ cτ [m]	
		$\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} = 13 \text{ full d}$	ata	0.001	0.01	<u> </u>	<u></u> 1	10		100	
)n	ly a selection of the a	available lifetime limits	is showi	_{7.} 0.001	0.01	0.1	I	10		τ [ns]	

32

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

LLPs at LHC: Future Prospects

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

More data = Sharper images

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

More data = Sharper images

But only if we can keep/ improve performance in much harsher conditions!

ATLAS Phase-2 Upgrade for HL-LHC

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

From G. Unal

Upgraded Trigger and **Data Acquisition system**

Level-0 Trigger at 1 MHz

Improved High-Level Trigger (150 kHz full-scan tracking)

Electronics Upgrades

LAr Calorimeter **Tile Calorimeter**

Muon system

High Granularity Timing Detector (HGTD)

Forward region (2.4 < $|\eta|$ < 4.0)

Low-Gain Avalanche Detectors (LGAD) with 30 ps track resolution

Additional small upgrades

Luminosity detectors (1% precision goal)

HL-ZDC

ITk and HGTD at Nikhef

ITk endcap mechanical structure

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

ITk flushing setup

FELIX+HGTD readout

CMS Phase-2 Upgrade for HL-LHC

CMS Data Acquisition and High Level Trigger Technical Design Report

L1-Trigger HLT/DAQ

https://cds.cern.ch/record/2714892 https://cds.cern.ch/record/2759072

- Tracks in L1-Trigger at 40 MHz
- PFlow selection 750 kHz L1 output
- HLT output 7.5 kHz
- 40 MHz data scouting

The Phase-2 Upgrade of the CMS Endcap Calorimeter Technical Design Report

Calorimeter Endcap https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to η ≃ 3.8

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/γ at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

- https://cds.cern.ch/record/2283189
- DT & CSC new FE/BE readout
- RPC back-end electronics
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to η = 3

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/2759074

 Bunch-by-bunch luminosity measurement: 1% offline, 2% online

MIP Timing Detector https://cds.cern.ch/record/2667167

Precision timing with:

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

HL-LHC Upgrades and LLPs

TRACKING

CMS: Allow for tracking information in L1 Trigger

ATLAS: All-silicon ITk (>3x current amount of silicon) Extended coverage $|\eta| < 4$

CMS: Offline improvement in transverse impact parameter resolution

ATLAS: Improvements in reconstruction of displaced and disappearing tracks

CALORIMETRY

CMS: Allow for better timing resolution in ECAL

CMS: New high-granularity silicon calorimeters in endcap (3D imaging and timing)

CMS: Allow pointing of photons (already possible in ATLAS)

ATLAS: Readout upgrades, better granularity in triggers

ATLAS: Improving pointing by using HCAL information

J. Phys. G: Nucl. Part. Phys. 47 090501 (2020)

HL-LHC Upgrades and LLPs

MUONS

CMS: Increase coverage, better muon info at trigger level

CMS: Possibility to get Time of Flight in RPC stations

ATLAS: New Small Wheel already at Run-3; Upgrade on TDAQ allowing better algorithms (also at trigger)

TIMING & TRIGGER

CMS: Single layer timing detector in barrel and endcap (improve background rejection)

ATLAS: High-Granularity Timing Detector multiple layers in endcap (track-to-vertex association, identification) improvements)

CMS: New L1 Global trigger, Correlator trigger, scouting/ parking for LLPs

ATLAS: Improvement based on hardware triggers and ML in object identification

J. Phys. G: Nucl. Part. Phys. 47 090501 (2020)

UvA

BSM Searches

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

INSTITUTE OF PHYSICS

INSTITUTE OF PHYSICS

BSM Searches

INSTITUTE OF PHYSICS

BSM Searches

カク

BSM Searches

<u>Analogy adapted from</u> <u>Dr. Dan Hayden from MSU</u>

Disclaimer: biology not scientifically sound!

Leaving no stone unturned

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Leaving no stone unturned

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Nikhef

- Long-lived particles expand the scope of searches at the LHC
- Many innovative searches ongoing in ATLAS and CMS, but also at LHCb, FASER, SND@LHC, NA 62, MoEDAL, MilliQan ...
- Crucial to plan ahead: look towards experiment upgrades and new dedicated detectors such as the Forward Physics Facility, CODEX-b, MATHUSLA...
- Stay tuned for many new exciting things ahead!

Summary and Outlook

UvA

Backup

Search for Displaced Heavy Neutral Leptons

Figure from <u>arXiv:1301.5516</u>

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

- SM extension with 3 HNLs
 - Introduce right-handed states known as heavy neutral leptons
 - Type-I seesaw mechanism explains light neutrino masses

Nik hef

- $|U_{\alpha}|^2 \Rightarrow$ mixing angle between SM ν and HNL
- \Rightarrow HNL mass m_N

$\alpha, \beta, \gamma \Rightarrow$ lepton flavour index

Experimentally Relevant Observables

- HNLs experience "weak-like" interactions controlled by dimensionless mixing angles $(|U_{\alpha}|^2)$
- *m_N* dictates kinematics of decay products HNL lifetime: $\tau_N \propto \frac{1}{m_N^5 |U_{\alpha}|^2}$ Can be LLPs!
- HNL can be Majorana- or Dirac-like particles
 - Dirac \Rightarrow Lepton Number is conserved (LNC)
 - Majorana \Rightarrow Lepton Number is violated (LNV)

Figure 3: Feynman diagrams for the HNL production and decay modes targeted in this analysis. The flavors of the leptons in the diagrams, labeled by α , β , and γ , are either muons or electrons. If the charged leptons in the HNL decay have the same flavor, then both the diagrams with the virtual W (a,c) and virtual Z (b,d) contribute to the process. Lepton number conserving (a,b) and lepton number violating (c,d) processes are shown. Equivalent processes are also valid for an initial state W^- boson.

Experimental Picture

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

INSTITUTE OF PHYSICS

Displaced Heavy Neutral Leptons

- Experimental dHNL signature:
 - Prompt lepton (trigger)
 - Displaced vertex with two opposite charge leptons

6 signal regions: μ - $\mu\mu$, μ - μ e, μ -ee, e-ee, e-e μ , e- $\mu\mu$

TLAS

Dominant background

- Data-driven object shuffling method is used to estimate the background from random lepton crossings
- Dedicated selections to remove non-random backgrounds
 - e.g. invariant mass of the displaced vertex to reject heavy-flavour decays

dHNLs: Backgrounds

Non-random backgrounds

ATLAS Results: dHNL

Energy-momentum conservation is used to reconstruct the HNL mass: $m_{HNL^2} = (P_{1\beta} + P_{1\gamma} + P_{\nu\gamma})^2$

INSTITUTE OF PHYSICS

ATLAS Results: dHNL

No excess observed 😕

F. de Almeida Dias - Bethe Forum LLPs - 13 November 2023

Observed limits in the 2QDH scenario with inverted (IH) and normal (NH) mass hierarchy, and in **1SFH** scenarios where the HNL mixes with only v_{μ} or v_{e} Nik [

ATLAS Results: Cal Ratio

High- $E_{\rm T}$ selection	А	В	С	D
Observed data	22	7	233	131
a priori				
Estimated background	12.4 ± 4.7	7 ± 2.6	233 ± 15	131 ± 11
a posteriori (background-only fit)				
Fitted background	18.8 ± 3.5	10.2 ± 3.2	236 ± 15	128 ± 11
a posteriori (signal-plus-background fit)				
Fitted background	10.0 ± 6.0	5.7 ± 2.4	230 ± 15	131 ± 11
Fitted signal $((m_{\Phi}, m_s) = (600, 150)GeV))$	12.2 ± 8.7	1.4 ± 1.0	3.4 ± 2.5	< 1
Low- $E_{\rm T}$ selection	А	В	С	D
Low- $E_{\rm T}$ selection Observed data	A 23	B 3	C 220	D 61
Low- $E_{\rm T}$ selectionObserved dataa priori	A 23	B 3	C 220	D 61
Low- $E_{\rm T}$ selectionObserved dataa prioriEstimated background	$\begin{array}{c} A\\ 23\\ 10.8\pm6.6 \end{array}$	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & 3 \pm 1.7 \end{array}$	$\begin{array}{c} & \\ & 220 \\ & \\ & 220 \pm 15 \end{array}$	$\begin{array}{c} D\\ 61\\ 61\pm7.8\end{array}$
Low- $E_{\rm T}$ selection Observed data <i>a priori</i> Estimated background <i>a posteriori (background-only fit)</i>	$\begin{array}{c} A\\ 23\\ 10.8\pm6.6\end{array}$	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & 3 \pm 1.7 \end{array}$	$\begin{array}{c} C\\ 220\\ 220\pm15\end{array}$	$\begin{array}{c} D\\ 61\\ 61\pm7.8\end{array}$
Low- $E_{\rm T}$ selectionObserved dataa prioriEstimated backgrounda posteriori (background-only fit)Fitted background	$\begin{array}{c} & \\ & 23 \\ \\ 10.8 \pm 6.6 \\ \\ 20.6 \pm 4.0 \end{array}$	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & 3 \pm 1.7 \\ & & & \\ & & 5.4 \pm 2.3 \end{array}$	$\begin{array}{c} & \\ & 220 \\ & 220 \pm 15 \end{array}$ $\begin{array}{c} & \\ & 222 \pm 15 \end{array}$	$\begin{array}{c} D\\ 61\\ 59\pm7.7\end{array}$
Low- $E_{\rm T}$ selectionObserved dataa prioriEstimated backgrounda posteriori (background-only fit)Fitted backgrounda posteriori (signal-plus-background fit)	$\begin{array}{c} A\\ 23\\ 10.8\pm 6.6\\ 20.6\pm 4.0\end{array}$	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & 5.4 \pm 2.3 \end{array}$	$\begin{array}{c} & \\ & 220 \\ & 220 \pm 15 \end{array}$ $\begin{array}{c} & \\ & 222 \pm 15 \end{array}$	$\begin{array}{c} D\\ 61\\ 61\pm 7.8\\ 59\pm 7.7\end{array}$
Low- $E_{\rm T}$ selectionObserved data $a \ priori$ Estimated background $a \ posteriori \ (background-only \ fit)$ Fitted background $a \ posteriori \ (signal-plus-background \ fit)$ Fitted background	$\begin{array}{c} & \\ & 23 \\ \\ 10.8 \pm 6.6 \\ \\ 20.6 \pm 4.0 \\ \\ \\ 8.4 \pm 7.7 \end{array}$	$\begin{array}{c} & & & \\$	$\begin{array}{c} & \\ & 220\\ & 220\pm15\\ & \\ & 222\pm15\\ & \\ & 217\pm15 \end{array}$	$\begin{array}{c} D\\ 61\\ 59\pm7.8\\ 61\pm7.8\end{array}$

55

ATLAS 2MSVtx: Trigger Efficiencies

Phys. Rev. D 106, (2022) 032005

Nikhef &

ATLAS 2MSVtx: Signal Efficiencies

