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The early years:    
1993—2008
(before the iPhone)

























The modern era: 
2009—2023

(after the iPhone)



Boston 2009 at the
SUSY conference



Maroon Lake, CO
Summer 2009



Pine Creek Cookhouse
Summer 2009



Sabbatical in Santa Cruz
with the Re-Entry softball 
team in May 2010



Giants vs. Red Sox
in May, 2010 with the 
debut of Madison 
Bumgarner



Herbi’s last week 
on sabbatical in 
Santa Cruz, 
August 2010





Bamburg 2011 
courtesy of the 
Humboldt 
foundation



Top of the Ute Trail 
in Aspen, CO 2011



At Herbi’s house
October 2011



Berlin in June, 2012, 
courtesy of the Humboldt 
Foundation



On his way to 
Maroon Lake near 
Aspen, CO in 2012



Hard at work on the 
book outside of 
Paradise bakery in 
Aspen, Co in 2012



Another Ph.D. 
granted to one of 
Herbi’s students in 
September 2012.



Santa Cruz visit 
in March 2015



Florence, summer of 2015



Super Bowl Sunday 
2018 in Santa Cruz



Followed by a 
triumphant visit 
to Canada



Christmas Market in 
Bonn, December 2018



Munich workshop in 
summer of 2019



Updating Simon Capelin of 
Cambridge University Press on 
progress on the book (while 
attending the 2019 Cambridge 
Folk Festival)



Herbo’s last visit to
Santa Cruz in 
January, 2020



My last visit
to Bonn 
before the 
pandemic



My last evening 
in Bonn on 
March 8, 2020.





Puzzling over a famous result of Weisskopf

In QED, the (unrenormalized) inverse propagator to all orders is

given by

S−1(p) = /p
(

1− Σ(p2)
)

−m− ΣD(p
2) ,

where −i
[

/pΣ(p2) + ΣD(p2)
]

is the sum of all 1PI diagrams

contributing to the electron two-point function. The pole mass,

denoted by mp, corresponds to a zero of S−1(p). Thus setting

/p = m and p2 = m2, where m is the bare mass, it follows that

at one-loop order,

mp = m+mΣ(m2) + ΣD(m
2) .



The electron mass counterterm is defined by δm ≡ mp −m. In
a modern calculation, one obtains the gauge invariant one-loop
result in QED,

δm = mΣ(m2) + ΣD(m
2) =

αm

2π

[

B0(m
2; 0,m2)− (1− ε)B1(m

2; 0,m2)

]

,

where ε ≡ 2− 1

2
d and

B0(p
2;m2

a,m
2
b) = −16π2iµ2ε

∫

ddq

(2π)d
1

(q2 −m2
a + iε)[(q + p)2 −m2

b + iε]
,

pµB1(p
2;m2

a,m
2
b) = −16π2iµ2ε

∫

ddq

(2π)d
qµ

(q2 −m2
a + iε)[(q + p)2 −m2

b + iε]
,

are Passarino-Veltman loop functions and µ is an arbitrary mass

scale.



If δm is evaluated in d = 4 spacetime dimensions with an

ultraviolet cutoff Λ, then one can derive a result first obtained

by Weisskopf in 1934 (thanks to a subsequent erratum),1

δm =
3αm

2π
ln

(

Λ

m

)

+ finite terms.

Weisskopf’s breakthrough was to realize that potentially linear

and quadratic divergences canceled exactly, a result we

understand today as being a consequence of chiral symmetry

in the limit of m → 0. Thus, the hierarchy problem of QED

was resolved, only to reappear in the Standard Model in the

computation of the mass counterterms for the W , Z and Higgs

boson.
1This is Exercise 7.1 of DHM.



English translation provided in Arthur I. Miller, Early Quantum Electrodynamics: 
a source book  (Cambridge University Press, 1994).





1939: Scalar fields portend an energy scale associated 
with new phenomena that is close at hand.





If one employs dimensional regularization to evaluate the

Passarino-Veltman loop functions, then one obtains

δm =
3αm

4π

[

1

ε
− ln

(

m2

Q2

)

+
4

3
+O(ε)

]

,

where the regularization scale Q is defined by Q2 ≡ 4πe−γµ2,

and γ is Euler’s constant.

The puzzle: The mass shift δm is defined in an on-mass shell

(OS) renormalization scheme. How can δm possibly depend on

the regularization scale Q which is arbitrary? Indeed, one had

better find that
∂

∂Q2
δm = 0 .



Returning to

δm =
3αm

4π

[

1

ε
− ln

(

m2

Q2

)

+
4

3
+O(ε)

]

,

note that m is the pole mass (which is physical). On the other

hand, we have not yet formally defined α. One should view

α = α(Q), with implicit Q dependence. One could formally

provide a physical definition of α " 1/137 (e.g., the Thomson

limit of QED). However, surely

α(Q) = α+O(α2),

and the problem of the Q dependence of δm remains.



Defining α in QED—a closer look

In QED, the unrenormalized photon self-energy function has the

form

Πµν(p) =
(

pµpν − p2gµν
)

Π(p2) ,

where

Π(p2) = −
2α

π

[

B1(p
2;m2,m2) +B21(p

2;m2,m2)
]

=
2α

π

{

1

6ε
−

∫ 1

0

x(1− x) ln

(

m2 − p2x(1− x)

Q2

)

dx+O(ε)

}

,

Π(p2), α, and m should be understood to be bare quantities

(prior to renormalization).



The quantity Π(p2) enters the expression for the exact

propagator,

〈0|TAµ(x)Aν(y) |0〉FT =
−i

p2[1 + Π(p2)]

(

gµν −
pµpν

p2

)

−
iξpµpν

p4
,

The renormalized fields and parameters in some renormalization

scheme (denoted by the subscript R) are given by

Aµ
B = Z1/2

3 Aµ
R , αB = Zαµ

2εαR , mp = mB + δm.

where the subscript B indicates a bare parameter and mp is the

(physical) pole mass. In fact, Zα = Z−1

3 , which is a consequence

of the QED Ward identity, Z1 = Z2.1
1Recall that Z1 and Z2 are the renormalization constants of the eeγ vertex and the electron field,

respectively, and Z
1/2
α ≡ Z1Z

−1

2
Z

−1/2
3

.



It then follows that

αB

1 +ΠB(p2)
=

αR

1 + ΠR(p2)
.

Consider two different renormalization schemes for defining α. In
theMS renormalization scheme at one loop, one simply subtracts
off the term proportional to ε−1. That is,

Π
MS

(p2) ≡ Π(p2)−
α

3πε
= −

2α

π

∫ 1

0

x(1− x) ln

(

m2 − p2x(1− x)

Q2

)

dx .

Alternatively, in the on-shell (OS) renormalization scheme where
ΠOS(0) = 0,

ΠOS(p
2) ≡ Π(p2)−Π(0) = −

2α

π

∫ 1

0

x(1− x) ln

(

m2 − p2x(1− x)

m2

)

dx

In this renormalization scheme, αOS # 1/137.



Plugging in the MS and OS scheme results into

α
MS

(Q)

1 + Π
MS

(p2)
=

αOS

1 +ΠOS(p2)
.

one can derive the one-loop relation,

α
MS

(Q) = αOS

{

1−
αOS

3π
ln

(

m2

Q2

)

+O
(

α2
OS

)

}

.

Note that, in the one-loop approximation, αOS = α
MS

(Q = m).

To reiterate,

α(Q) = α+O(α2),

and the problem of the Q dependence of δm remains.



Back to Basics—deriving the RGEs

In renormalization by minimal subtraction, coupling constants

are redefined in order to remove all ultraviolet divergence poles

in ε from expressions for amplitudes and masses. This means

that each Lagrangian parameter X corresponding to an N -field

coupling is written as an expansion in the number of loops ",

containing counterterms cX!,n with only (hence “minimal”) poles

in ε:

XB = µερX

(

X +
∞
∑

!=1

1

(16π2)!

!
∑

n=1

cX!,n
εn

)

,

where the XB cannot depend on our choice of Q, the X are the

corresponding MS parameters (which do depend on Q, and are

finite as ε → 0), and ρX = N − 2.



The counterterm coefficients cX!,n are polynomials in the MS

parameters (collectively called Y below), with no explicit

dependence on Q and satisfy the following identity:3

(

−ρX +
∑

Y

ρY Y
∂

∂Y

)

cX!,n = 2#cX!,n ,

where the sums over Y (which can include X itself) are taken

over all MS parameters that appear in the polynomials cX!,n.

The counterterms are chosen in such a way that all observable

quantities, when written in terms of the MS parameters, do not

contain any poles in ε.

3This is Exercise 11.5 of DHM.



Since bare quantities cannot depend on the arbitrary choice of
renormalization scale Q, it follows that QdXB/dQ = 0, which
yields the renormalization group equation (RGE). That is,

Q
dX

dQ
+ερX

(

X+
∞
∑

!=1

1

(16π2)!

!
∑

n=1

cX!,n
εn

)

+
∞
∑

!=1

1

(16π2)!

!
∑

n=1

1

εn

∑

Y

Q
dY

dQ

∂cX!,n
∂Y

= 0.

Matching powers of ε in the above expansions and noting that
X is finite as ε → 0, it follows that QdX/dQ contributes only
to the terms of the ε expansions with ε1 and ε0. Hence,

Q
dX

dQ
= −ερXX +

∞
∑

!=1

1

(16π2)!

(

−ρX +
∑

Y

ρY Y
∂

∂Y

)

cX!,1,

where we have self-consistently used QdY/dQ = −ερY Y + · · ·

to obtain the last term above.



The beta functions are defined to be the ε-independent parts of

QdX/dQ,

βX ≡ Q
dX

dQ

∣

∣

∣

∣

∣

ε=0

= Q
dX

dQ
+ ερXX .

More explicitly,

βX =
∞
∑

"=1

1

(16π2)"

(

−ρX +
∑

Y

ρY Y
∂

∂Y

)

cX",1.

Note that QdX/dQ, unlike βX, crucially contains a “zero-loop”

term, −ερXX if ρX #= 0.



Example: The electromagnetic coupling in QED in the MS

scheme satisfies:

Q
dα

dQ
= −2εα+

2α2

3π
+O(α3) .

Solving this equation to one-loop accuracy,

α
MS

(Q) = αOS

{

1− ε ln

(

Q2

m2

)

+O(ε2)

}

+O
(

α2
OS

)

,

thereby confirming that an O(ε) term has been missed in the

previous derivation of α
MS

(Q).



Returning again to

δm =
3α

MS
(Q)m

4π

[

1

ε
− ln

(

m2

Q2

)

+
4

3
+O(ε)

]

,

where we put α = α
MS

(Q) in our previous expression, we can

now re-express the result in terms of αOS, thereby obtaining3

δm =
3mαOS

4π

[

1

ε
+

4

3
+O(ε)

]

.

Indeed, in terms of on-shell parameters, δm is explicitly

independent of the MS renormalization scale Q, as originally

expected.

3This is Exercise 19.3 of DHM.



Equivalently, we can return to

δm =
3αm

4π

[

1

ε
− ln

(

m2

Q2

)

+
4

3
+O(ε)

]

,

and

Q
dα

dQ
= −2εα+

2α2

3π
+O(α3) .

Then,

d

dQ
δm =

3m

4π

[

1

ε
− ln

(

m2

Q2

)

+
4

3
+O(ε)

]

dα

dQ
+

3αm

2πQ

= −
3αm

2πQ
+

3αm

2πQ
+O(εα) +O(α2) = 0.

at one-loop accuracy in the ε → 0 limit.4

4This is Exercsie 19.2 of DHM.



Ten years ago, Herbi
came to Santa Cruz to 
help me celebrate my 
60th birthday.  He also 
had a milestone 
birthdays to celebrate 
as well.  With much joy 
for our many years of 
friendship and 
collaboration, I am most 
happy to return the 
favor!

Happy 60th birthday, 
Herbi !!


