HERBI DREINER AND THE LONG-LIVED SEARCH FOR LONG-LIVED PARTICLES

Jordy de Vries University of Amsterdam & Nikhef

- Compared to most here, I've only known Herbi for a relatively short time
- From 2013-2015 I was a postdoc at the FZ-Julich/HISKP in Bonn in the group of Ulf
- I worked on boundary of hadronic/nuclear and particle physics (electric dipole moments, hadronic parity violation)

- Compared to most here, I've only known Herbi for a relatively short time
- From 2013-2015 I was a postdoc at the FZ-Julich/HISKP in Bonn in the group of Ulf
- I worked on boundary of hadronic/nuclear and particle physics (electric dipole moments, hadronic parity violation)

- ITA'ed for 'Theoretischen Mechanik I' taught by Christoph Hanhart and Herbi (I supervised the TA's and made the problem sets and solutions).
- Kinda **scared** of Herbi in the beginning...

- Wanted to work more on particle physics -> started working on Higgs physics and Standard Model EFT but all with remote collaborators
- Reached out to Herbi to ask if we could collaborate on something

PHYSICAL REVIEW D 94, 035006 (2016)

R-parity violation and light neutralinos at SHiP and the LHC

Jordy de Vries,^{1,*} Herbi K. Dreiner,^{2,†} and Daniel Schmeier^{2,‡}

• Kinda interesting since I knew next-to-nothing about SUSY, RPV, nor SHiP

- Wanted to work more on particle physics -> started working on Higgs physics and Standard Model EFT but all with remote collaborators
- Reached out to Herbi to ask if we could collaborate on something

PHYSICAL REVIEW D **94,** 035006 (2016)

R-parity violation and light neutralinos at SHiP and the LHC

Jordy de Vries,^{1,*} Herbi K. Dreiner,^{2,†} and Daniel Schmeier^{2,‡}

- Kinda interesting since I knew next-to-nothing about SUSY, RPV, nor SHiP
- This work is closely connected to our current efforts which I'll talk about here
- We've been collaborating since (also through Herbi's excellent students)
- I almost worked in Herbi's goup by accepting his postdoc offer but then deciding to go to Nikhef in Amsterdam once I got a fellowship in 2016. Sorry....

PANDA'S

- We took a trip to China together in 2015 (Weihai)
- With a memorable visit to see Chinese panda's

PANDA'S

- We took a trip to China together in 2015 (Weihai)
- With a memorable visit to see Chinese panda's

PANDA'S

- We took a trip to China together in 2015 (Weihai)
- With a memorable visit to see Chinese panda's

- After Julich I moved to the Netherlands for a postdoc at Nikhef
- Started working with Simon Zeren Wang and still ongoing
- Herbi visited us at Utrecht a few times (also for the Physik show here at Utrecht)

- After Julich I moved to the Netherlands for a postdoc at Nikhef
- Started working with Simon Zeren Wang and still ongoing
- Herbi visited us at Utrecht a few times (also for the Physik show here at Utrecht)
- I got an offer to join faculty at UMass Amherst. Discussed a lot with Herbi.

- After Julich I moved to the Netherlands for a postdoc at Nikhef
- Started working with Simon Zeren Wang and still ongoing
- Herbi visited us at Utrecht a few times (also for the Physik show here at Utrecht)
- I got an offer to join faculty at UMass Amherst. Discussed a lot with Herbi.

- After Julich I moved to the Netherlands for a postdoc at Nikhef
- Started working with Simon Zeren Wang and still ongoing
- Herbi visited us at Utrecht a few times (also for the Physik show here at Utrecht)
- I got an offer to join faculty at UMass Amherst. Discussed a lot with Herbi.

- Neutrinos are formally massless in the SM → **but neutrino oscillations**
- Easy fix: Insert gauge-singlet right-handed neutrino $v_{\rm R}$ (or several)

$$\mathscr{L} = -y_{\nu} \bar{L} \tilde{H} \nu_R \qquad \qquad y_{\nu} \sim 10^{-12} \rightarrow m_{\nu} \sim 0.1 \,\mathrm{eV}$$

• Nothing really wrong with this.... I can stop the talk now....

- Neutrinos are formally massless in the SM → **but neutrino oscillations**
- Easy fix: Insert gauge-singlet right-handed neutrino $v_{\rm R}$ (or several)

$$\mathscr{L} = -y_{\nu} \bar{L} \tilde{H} \nu_R \qquad \qquad y_{\nu} \sim 10^{-12} \rightarrow m_{\nu} \sim 0.1 \,\mathrm{eV}$$

• Nothing really wrong with this.... But nothing forbids a Majorana Mass term

$$\mathscr{L} = -y_{\nu} \, \bar{L} \tilde{H} \nu_R - M_R \, \nu_R^T C \nu_R$$

'Everything that is not forbidden is compulsary'

- M_R is not connected to electroweak scale: could be a completely new scale
- Does this term exist in nature? How can we find out ?
- Note: this is not the only way to generate neutrino masses !

$$\mathscr{L} = -y_{\nu} \bar{L}\tilde{H}\nu_R - M_R \nu_R^T C \nu_R$$

Minkowski '77

• |+| case: diagonalization leads to Majorana mass eigenstates

$$\mathscr{L} = -\frac{1}{2} \left(\bar{\nu}_L \, \bar{\nu}_R^c \right) \begin{pmatrix} 0 & \nu y_\nu \\ \nu y_\nu & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \quad \rightarrow -\frac{1}{2} \left(\bar{\nu}_1 \, \bar{\nu}_2 \right) \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \qquad \nu_i^c = \nu_i$$

$$\mathscr{L} = -y_{\nu} \bar{L}\tilde{H}\nu_R - M_R \nu_R^T C \nu_R$$

Minkowski '77

I+I case: diagonalization leads to Majorana mass eigenstates

$$\mathscr{L} = -\frac{1}{2} \left(\bar{\nu}_L \, \bar{\nu}_R^c \right) \begin{pmatrix} 0 & \nu y_\nu \\ \nu y_\nu & M_R \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix} \quad \rightarrow -\frac{1}{2} \left(\bar{\nu}_1 \, \bar{\nu}_2 \right) \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \qquad \nu_i^c = \nu_i$$

• If M_R is significantly larger (>> eV) than active neutrino masses: **see-saw mechanism**

$$m_1 \simeq \left| \frac{y_{\nu}^2 v^2}{m_R} \right| \qquad m_2 \simeq m_R \qquad \begin{array}{c} \nu_1 \simeq \nu_L + \nu_L^c - \theta \nu_R^c - \theta^* \nu_R \\ \nu_2 \simeq \nu_R + \nu_R^c + \theta \nu_L^c + \theta^* \nu_L \end{array} \qquad \qquad |\theta| \simeq \sqrt{\frac{m_1}{m_2}}$$

- Much larger mixing angles are possible in 3+n models (linear or inverse seesaw)
- n must be 2 or larger to get 2 nonzero active neutrino masses

Attractive mass ranges

• See-saw (variants) can work for essentially any right-handed scale

Attractive mass ranges

• See-saw (variants) can work for essentially any right-handed scale

See e.g. Shaposhnikov et al (many works)

Dodelson, Widrow '97

Shaposhnikov et al '05

Drewes et al '2

- And even in the MeV-GeV range
- KeV sterile neutrino could be Dark Matter (but getting more difficult) and essentially decoupled from neutrino mass generation
- eV sterile neutrinos potentially related to short base-line anomalies

Clear motivation to look for a broad range of sterile neutrino masses

Attractive mass ranges

• See-saw (variants) can work for essentially any right-handed scale

Hernandez, Lopez-Pavon, Rius, Sandner '22

A zoo of searches !

- Beta decay, beam dumps, colliders, EWPD,
- Cosmological constraints (e.g. BBN and CMB)

Interesting prospects at LHC and DUNE etc

- Current limits will improve significantly with new experiments
- A renewed focus on searches for long-lived particles (LLP) (such as sterile neutrinos)

Interesting prospects at LHC and DUNE etc

- Current limits will improve significantly with new experiments
- A renewed focus on searches for long-lived particles (LLP) (such as sterile neutrinos)

• + ANUBIS, MoEDAL-MAPP 1&2, AL3X, DUNE, etc

Basic idea

- Focus on finding sterile neutrinos in mass range < B-meson mass
- B, D, K mesons copiously produced in experiments and can produce GeV sterile neutrinos

I stole this beautiful illustration from Herbi. It shows his artistic side.

Basic idea

- Focus on finding sterile neutrinos in mass range < B-meson mass
- B, D, K mesons copiously produced in experiments and can produce GeV sterile neutrinos

I stole this beautiful illustration from Herbi. It shows his artistic side.

- Different experiments sensitive to different lifetimes depending on distance of the detector
- Backgrounds from long-lived hadrons, muons, cosmic rays etc
- All detectors are 10-500 m away from IP —> space to install veto and shielding segments
- Directional cuts for cosmic ray background
- We will look at 3-event isocurves (assume no background)

Theoretical framework

• In mass basis, charged weak currents couple to 'sterile' states as well.

$$\mathscr{L} \sim U_{e4} \, \bar{e}_L \gamma^\mu \nu_4 \, W_\mu$$

• Interactions suppressed by small mixing angles

$$U_{e4} \sim \sqrt{\frac{m_{\nu}}{m_4}}$$
 (but could be larger)

Theoretical framework

• In mass basis, charged weak currents couple to 'sterile' states as well.

$$\mathscr{L} \sim U_{e4} \bar{e}_L \gamma^\mu \nu_4 W_\mu$$

• Interactions suppressed by small mixing angles

 $U_{e4} \sim \sqrt{\frac{m_{\nu}}{m_{\Lambda}}}$ (but could be larger)

- Right-handed neutrinos could only appear sterile at low energies
- Example: left-right symmetry: right-handed neutrinos are charged under SU(2)_R

Theoretical framework

• In mass basis, charged weak currents couple to 'sterile' states as well.

 $\mathscr{L} \sim U_{e4} \bar{e}_L \gamma^\mu \nu_4 W_\mu$

• Interactions suppressed by small mixing angles
$$U_{e4} \sim \sqrt{\frac{m_{\nu}}{m_4}}$$
 (but could be larger)

- **Right-handed neutrinos could only appear sterile at low energies**
- Example: left-right symmetry: right-handed neutrinos are charged under SU(2)_R

• For GeV sterile states, non-standard interactions relevant up to

$$M_{W_R} \sim M_{W_L} \left(\frac{m_4}{m_\nu}\right)^{1/4} \sim 50 \,\mathrm{TeV}$$

• This also happens in for instance Leptoquark scenarios and can be used in solutions to anomalies such as muon g-2 or flavor anomalies (not today)

• Assume that non-standard interactions from decoupled sector

• Assume that non-standard interactions from decoupled sector

• Extend Standard Model EFT to include right-handed singlets: **nu**SMEFT

Class 1	$\psi^2 H^3$	Class 4	ψ^4
$\mathcal{O}_{L\nu H}^{(6)}$	$(\bar{L}\nu_R)\tilde{H}(H^{\dagger}H)$	$\mathcal{O}^{(6)}_{du u e}$	$(ar{d}\gamma^{\mu}u)(ar{ u_R}\gamma_{\mu}e)$
Class 2	$\psi^2 H^2 D$	${\cal O}^{(6)}_{Qu u L}$	$(\bar{Q}u)(\bar{\nu}_R L)$
$\mathcal{O}_{H u e}^{(6)}$	$(ar{ u}_{ extsf{R}}\gamma^{\mu}e)(ilde{H}^{\dagger}iD_{\mu}H)$	$\mathcal{O}^{(6)}_{L u Qd}$	$(\bar{L} u_R)\epsilon(\bar{Q}d))$
Class 3	$\psi^2 H^3 D$	$\mathcal{O}_{LdQ u}^{(6)}$	$(\bar{L}d)\epsilon(\bar{Q} u_R)$
$\mathcal{O}_{\nu W}^{(6)}$	$(\bar{L}\sigma_{\mu\nu}\nu_R)\tau^I\tilde{H}W^{I\mu\nu}$		

- We are interested in low-energy decays of mesons and GeV neutrinos
- Evolve operators down and **match** nuSMEFT ->>> nuLEFT
- After rotating to the neutrino mass basis

$$\mathcal{L}_{\mathrm{mass}}^{(6,7)} = \frac{2G_F}{\sqrt{2}} \left\{ \bar{u}_L \gamma^\mu d_L \left[\bar{e}_L \gamma_\mu C_{\mathrm{VLL}}^{(6)} \nu + \bar{e}_R \gamma_\mu C_{\mathrm{VLR}}^{(6)} \nu \right] + \bar{u}_R \gamma^\mu d_R \bar{e}_R \gamma_\mu C_{\mathrm{VRR}}^{(6)} \right. \\ \left. \bar{u}_L d_R \bar{e}_L C_{\mathrm{SRR}}^{(6)} \nu + \bar{u}_R d_L \bar{e}_L C_{\mathrm{SLR}}^{(6)} \nu + \bar{u}_L \sigma^{\mu\nu} d_R \bar{e}_L \sigma_{\mu\nu} C_{\mathrm{TRR}}^{(6)} \nu \right. \\ \left. + \frac{1}{\nu} \bar{u}_L \gamma^\mu d_L \bar{e}_L C_{\mathrm{VLR}}^{(7)} i \overleftrightarrow{D}_\mu \nu \right\} + \mathrm{h.c.} \,,$$

- These are all charged currents (neutral currents included but not shown)
- The neutrinos are now described by 3+n mass eigenstates $\,
 u$
- In minimal model, production of '4th' neutrino through $C_{VLL}^{(6)} \sim G_F V_{ud} U_{e4}$

- We are interested in low-energy decays of mesons and GeV neutrinos
- Evolve operators down and **match** nuSMEFT ->>> nuLEFT
- After rotating to the neutrino mass basis

$$\mathcal{L}_{\mathrm{mass}}^{(6,7)} = \frac{2G_F}{\sqrt{2}} \left\{ \bar{u}_L \gamma^\mu d_L \left[\bar{e}_L \gamma_\mu C_{\mathrm{VLL}}^{(6)} \nu + \bar{e}_R \gamma_\mu C_{\mathrm{VLR}}^{(6)} \nu \right] + \bar{u}_R \gamma^\mu d_R \bar{e}_R \gamma_\mu C_{\mathrm{VRR}}^{(6)} \right. \\ \left. \bar{u}_L d_R \bar{e}_L C_{\mathrm{SRR}}^{(6)} \nu + \bar{u}_R d_L \bar{e}_L C_{\mathrm{SLR}}^{(6)} \nu + \bar{u}_L \sigma^{\mu\nu} d_R \bar{e}_L \sigma_{\mu\nu} C_{\mathrm{TRR}}^{(6)} \nu \right. \\ \left. + \frac{1}{\nu} \bar{u}_L \gamma^\mu d_L \bar{e}_L C_{\mathrm{VLR}}^{(7)} i \overleftrightarrow{D}_\mu \nu \right\} + \mathrm{h.c.} \,,$$

- These are all charged currents (neutral currents included but not shown)
- The neutrinos are now described by 3+n mass eigenstates $\,
 u$
- In minimal model, production of '4th' neutrino through $C_{VLL}^{(6)} \sim G_F V_{ud} U_{e4}$
- Other operators induced by higher-dim operators and scale as ~ v^2/Λ^2
- Left-right models: $C_{VLR}^{(6)}, C_{VRR}^{(6)}$ Leptoquarks: $C_{SRR}^{(6)}, C_{SLR}^{(6)}, C_{TRR}^{(6)}$
- Can also be used to describe light neutralinos (interpret nu as neutralino)

D. Dercks et al '15, Julian Guenther et al, in prep

Production of sterile states

• We focus on production through meson decays (by far dominant for M ~ GeV)

• In minimal scenarios (only vector currents), 2-body decays helicity suppressed

- Similar plots for B mesons
- Hadronic input are D and B meson decay constants and form factors
- Known well for Vector currents, but less known for BSM currents. Some uncertainties.

Sterile Neutrino decays

- Two-body decays to meson + lepton, and (semi-)leptonic three-body decays
- Computation from same Lagrangian: focus on final states with 2 charged particles

Sterile Neutrino decays

- Two-body decays to meson + lepton, and (semi-)leptonic three-body decays
- Computation from same Lagrangian: focus on final states with 2 charged particles

• Similar for higher-dimensional operators, but long-lived above meson threshold

 $C_{i} = 1$

Simulations

• Compute meson production at experiments with Pythia 8 (Simulation started by Daniel)

$$N_N^{\text{prod}} = \sum N_{M_i} \cdot Br(M_i \rightarrow N + X)$$

• Simulate around 10⁶ events and rescale to total number of producers mesons with 3 ab-1

$N_{D^{\pm}}^{\text{HL-LHC}} = 2.04 \times 10^{16},$	$N_{D^0}^{\rm HL-LHC} = 3.89 \times 10^{16},$	$N_{D_s}^{\text{HL-LHC}} = 6.62 \times 10^{15},$
$N_{B^{\pm}}^{\mathrm{HL-LHC}} = 1.46 \times 10^{15},$	$N_{B^0}^{\rm HL-LHC} = 1.46 \times 10^{15},$	$N_{B_s}^{\text{HL-LHC}} = 2.53 \times 10^{14}.$

- For each proposed experiment then determine Probability of decay in detector
- For now, not a detector simulations and just use whole volume

$$N_N^{dec} = N_N^{prod} \cdot \langle P[N \text{ in f.v.}] \rangle \cdot Br(N o signal)$$

In a visit to Utrecht, Herbi almost got himself killed in a very Dutch way. **But how ?**

In a visit to Utrecht, Herbi almost got himself killed in a very Dutch way. **But how ?**

A. He slipped and fell while climbing the Dom tower (500 steps)

In a visit to Utrecht, Herbi almost got himself killed in a very Dutch way. **But how ?**

A. He slipped and fell while climbing the Dom tower (500 steps)

B. He fell into a Utrecht canal while focusing on his cheese sandwich

In a visit to Utrecht, Herbi almost got himself killed in a very Dutch way. **But how ?**

A. He slipped and fell while climbing the Dom tower (500 steps)

B. He fell into a Utrecht canal while focusing on his cheese sandwich

C. He got overrun by a Dutch cyclist (and then yelled at)

Back to Physics

• All ingredients to determine parameter space with 3 visible decays in detector

Minimal scenarios

Current limits will improve significantly with new experiments

See also many other works: Bondarenko et al, Shaposhnikov et al, Drewes et al, Pascoli et al

- Proposed experiments can come pretty close to naive seesaw band
- Very good tests of low-scale leptogenesis scenarios
- Our results are not reliable for masses below kaon threshold

Minimal scenarios

Dreiner et al, in prep

Dreiner et al, 202 l

See also many other works: Bondarenko et al, Shaposhnikov et al, Drewes et al, Pascoli et al Similar bounds from BECB as CHARM (Barouki et al)

- DUNE will be very sensitive for sterile masses below 2 GeV
- Belle-II sensitive to couplings to third-generation (marginally compared to CHARM/BECB)

Non-Minimal scenarios

- A bit hard to do a general study (many operators)
- We work with Benchmark scenarios where we turn on one 'production operator' and one 'decay operator'
- Example: a LeptoQuark (R2) inspired model

$$\mathcal{L}_{\mathrm{LQ}} = -y_{jk}^{RL} \bar{d}_{Rj} \tilde{R}^{a} \epsilon^{ab} L_{Lk}^{b} + y_{il}^{\overline{LR}} \bar{Q}_{Li}^{a} \tilde{R}^{a} \nu_{Rl} + \mathrm{h.c.}$$

Non-Minimal scenarios

- A bit hard to do a general study (many operators)
- We work with Benchmark scenarios where we turn on one 'production operator' and one 'decay operator'
- Example: a LeptoQuark (R2) inspired model

$$\mathcal{L}_{\mathrm{LQ}} = -y_{jk}^{RL} \bar{d}_{Rj} \tilde{R}^{a} \epsilon^{ab} L_{Lk}^{b} + y_{il}^{\overline{LR}} \bar{Q}_{Li}^{a} \tilde{R}^{a} \nu_{Rl} + \mathrm{h.c.}$$

• Integrate out leptoquarks, match and run, and rotate to mass basis

$$\begin{pmatrix} C_{\text{VLL}}^{(6)} \end{pmatrix}_{ije4} = -2V_{ij}U_{e4}$$

$$\begin{pmatrix} C_{\text{SRR}}^{(6)} \end{pmatrix}_{ije4} = 4\left(C_{\text{TRR}}^{(6)}\right)_{ije4} = \left(\frac{v^2}{2}\frac{1}{m_{\text{LQ}}^2}y_{i1}^{\overline{LR}}y_{je}^{RL*}\right)_{ije1}U_{44}^*$$

• Then pick flavor assignment and add minimal coupling

$$U_{e4}\simeq \sqrt{rac{m_
u}{m_N}}\,,\qquad U_{44}=1$$

LeptoQuark inspired scenarios

Production coupling (D -> N + X)

- Fixed sterile neutrino mass: minimal mixing can be relevant in parts of the space
- Sensitive to couplings at the 10-4,-5 level (MATHUSLA) to 10-2,-3 level (FASER)

 $C \sim v^2 / M_{LQ}^2 \rightarrow M_{LQ} \sim v / \sqrt{C}$ 5-10 TeV (FASER) to 50-100 TeV (MATHUSLA)

LeptoQuark inspired scenarios

Production coupling (D -> N + X)

Production coupling (B -> N + X)

- LHC experiments do better for larger mass neutrinos (since more B production)
- Work in progress to match to `realistic models' (e.g. mLRSM)
- Not today, but for mB > m > mpi, other experiments cannot reach these bound
- Except perhaps for

Neutrinoless double beta decay (0vbb)

• If sterile states are Majorana there can be large 0vbb rates

- But of course these bounds are avoided if Dirac or suppressed if Pseudo-Dirac
- Or for couplings to muons !

Neutrinoless double beta decay (0vbb)

- With non-standard interactions, future experiments can beat 0vbb bounds even for Majorana neutrinos Dreiner et al, 2020
- Work in progress: combine low-scale leptogenesis + 0vbb + long-lived searches

Summary and outlook

- A lot of motivation for sterile neutrinos (neutrino masses, leptogenesis, neutrino portal) but mass range unclear
- Renewed focus on long-lived particles is pretty exciting

Summary and outlook

- A lot of motivation for sterile neutrinos (neutrino masses, leptogenesis, neutrino portal) but mass range unclear
- Renewed focus on long-lived particles is pretty exciting
- Herbi has always been extremely supportive and a great friend and collaborator
- Hope to continue working together! And of course Happy Birthday !

	NOS Teletekst 830						
	Keuk.kamp.d	div:	isie	e,s1	tand	per	26/03
1.	PEC Zwolle +	30	22	3	5	69	81-32
2.	Heracles +	30	21	3	6	66	86-35
3.	Almere City	29	16	4	9	52	42-32
4.	VVV-Venlo	30	15	7	8	52	48-39
5.	Willem II	30	14	8	8	50	51-34
6.	FC Eindhoven	30	13	8	9	47	44-42
7.	MVV Maastr.	30	13	5	12	44	53-54
8.	NAC Breda	30	13	4	13	43	49-54
9.	Telstar	30	11	10	9	43	31-41
10.	Roda JC	30	12	5	13	41	41-40
11.	Jong AZ	30	11	8	11	41	49-49
12.	Graafschap	30	11	6	13	39	47-41
13.	ADO Den Haag	30	10	9	11	39	36-44
14.	Jong PSV	30	10	8	12	38	46-49
15.	Helmond Sp.	30	9	7	14	34	28-45
16.	Jong Ajax	30	7	10	13	31	51-58
17.	TOP Oss	30	9	3	18	30	34-55
18.	FC Den Bosch	30	9	3	18	30	42-73
19.	FC Dordrecht	30	7	6	17	27	32-51
20.	Jong Utrecht	29	5	5	19	20	27-50

AL3X

 A Laboratory for Long-Lived eXotics: a cylindrical detector at IP2 (ALICE) of the LHC [1810.03636]

Extracted from [1811.01995]

L_d (m)	L_h (m)	L_v (m)	<i>H</i> (m)	$\phi/2\pi$	\mathcal{L} (fb $^{-1}$)
12	5.25	0.85	4.15	1	100/250

Comparison to other works

- [1905.11375, 2007.00673]: Pion decays ($\Lambda \gtrsim 36$ TeV), tau decays, and $I + \not{E}_T$ ($\Lambda \gtrsim 2 - 5$ TeV)
- [2005.01543, 2007.15408]:

The most stringent bounds are on the operators $C_{L\nu Qd}^{(6)}$, $C_{LdQ\nu}^{(6)}$, and $C_{Qu\nu L}^{(6)}$ involving an up quark, a down (strange) quark and an electron using LFU constraints: $\Lambda \gtrsim 74$ (110) TeV for massless NOther operators and flavor combindations: $\Lambda \gtrsim 0.5 - 8$ TeV

- [2004.06726]:
 - $b \to c au \overline{
 u}$ including light $N \ (m_N \lesssim 100 \text{ MeV})$: $\Lambda \gtrsim \mathcal{O}(1) \text{ TeV}$
- [2005.01543, 2004.13869, 1905.08699]: Limits from EC ν NS based on the COHERENT experiment: $m_N \lesssim 0.5$ MeV, $\Lambda \gtrsim 1$ TeV
- We conclude that the sensitivities of the experiments considered here are competitive with and complementary to existing constraints