Symmetries and twisted cohomology

Stefan Weinzierl
in collaboration with Federico Gasparotto and Xiaofeng Xu

March 24, 2023

Section 1

Introduction

Motivation

- We are interested in a countable set of integrals $\left(v_{j} \in \mathbb{Z}\right)$

$$
I_{v_{1} \ldots v_{N}}
$$

- For Feynman integral reductions, computer programs like Reduze, Fire, Kira are widely used.
- These programs take into account two concepts:
- Integration-by-parts identities
- Symmetries
- The mathematical setting for integration-by-parts is twisted cohomology.
- We want to study how twisted cohomology interacts with symmetries.

View integrals $I=\langle\alpha \mid \mathcal{C}\rangle$ as pairings between differential forms α and chains \mathcal{C}.
Study equivalence classes modulo Stokes' formula and changes of variables, which do not change the class of integrals.

Motivation

We carefully distinguish between master integrands and master integrals:

- If we take only integration-by-parts into account (i.e. if we look at twisted cohomology) the dimension of the relevant vector space is given by the number of master integrands.
- If we take integration-by-parts and symmetries into account (i.e. by running Reduze, Fire, Kira) the dimension of the relevant vector space is the number of master integrals.
In general:

$$
N_{\text {master integrals }} \leq N_{\text {master integrands }}
$$

Example

A simple example is given by the one-loop two-point function with equal masses:

- There are 3 master integrands, which
 can be taken as the integrands of

$$
I_{11}, I_{10}, I_{01}
$$

- There are 2 master integrals, for example

$$
I_{11}, I_{10}
$$

I_{11}, l_{10}
as we have the symmetry $I_{v_{1} v_{2}}=l_{v_{2} v_{1}}$.

Example

An even simpler example: Let

$$
\begin{aligned}
& \omega_{1}=z_{1} d z_{1} \wedge d z_{2} \\
& \omega_{2}=z_{2} d z_{1} \wedge d z_{2}
\end{aligned}
$$

- At the level of integrands

$$
\omega_{1} \neq \omega_{2}
$$

- At the level of integrals

$$
\int_{[0,1]^{2}} \omega_{1}=\int_{[0,1]^{2}} \omega_{2}
$$

Integrals

Examples of integrals we are interested in $\left(v_{j} \in \mathbb{Z}\right.$ or $\left.v_{j} \in \mathbb{N}_{0}\right)$:

- Feynman integrals

$$
I_{v_{1} v_{2} \ldots v_{N}}=\int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \ldots \frac{d^{D} k_{1}}{(2 \pi)^{D}} \prod_{j=1}^{N} \frac{1}{\left(q_{j}^{2}-m_{j}^{2}\right)^{v_{1}}}
$$

- Lattice integrals

$$
\mathrm{I}_{\mathrm{v}_{1} v_{2} \ldots v_{\mathrm{N}}}=\int \mathrm{d}^{\mathrm{N}} \phi\left(\prod_{\mathrm{k}=1}^{\mathrm{N}} \phi_{\mathrm{x}_{\mathrm{k}}}^{v_{\mathrm{k}}}\right) \exp (-\mathbf{S})
$$

Section 2

Quantum field theory on a lattice

Lattice field theory

Our main interest are scattering amplitudes and correlation functions in (continuum) quantum field theory.

- At small coupling we may use perturbation theory and compute Feynman integrals.
- At finite (non-small) coupling lattice field theory is the method of choice:
- Space-time is discretised by a lattice.
- Correlation functions are (usually) computed numerically with Monte Carlo methods.
To avoid oscillatory integrands one works with Euclidean signature.
- We may also consider lattice correlation functions analytically. S.W. '20, Gasparotto, Rapakoulias, S.W., '22

Lattice field theory

- Consider a lattice Λ with lattice spacing a in $D \in \mathbb{N}$ space-time dimensions.
For simplicity we assume that the lattice consists of L points in any
direction, hence the lattice has $N=L^{D}$ points.
- We assume periodic boundary conditions.
- Notation:
- We label the lattice points by x_{1}, \ldots, x_{N}.
- We denote by b_{j} the unit vector in the j-th space-time direction.
- We denote the field at a lattice point x by ϕ_{x} and the field at the next lattice point in the (positive) j-direction modulo L by $\phi_{x+a b_{j}}$.

Lattice field theory

As an example consider ϕ^{4}-theory.

- The continuum Lagrange density reads

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{4!} \lambda \phi^{4}
$$

- On a lattice with Euclidean metric the action reads

$$
S_{E}=\sum_{x \in \Lambda}\left[-\sum_{j=0}^{D-1} \phi_{x} \phi_{x+a b_{j}}+\left(D+\frac{m^{2}}{2}\right) \phi_{x}^{2}+\frac{1}{4!} \lambda \phi_{x}^{4}\right]
$$

- On a lattice with Minkowskian metric the action reads

$$
S_{M}=i \sum_{x \in \Lambda}\left[\phi_{x} \phi_{x+a b_{0}}-\sum_{j=1}^{D-1} \phi_{x} \phi_{x+a b_{j}}+\left(D+\frac{m^{2}}{2}-2\right) \phi_{x}^{2}+\frac{1}{4!} \lambda \phi_{x}^{4}\right]
$$

Lattice field theory

We are interested in the lattice integrals

$$
l_{v_{1} v_{2} \ldots v_{N}}=\int_{\mathbb{R}^{N}} d^{N} \phi\left(\prod_{k=1}^{N} \phi_{x_{k}}^{v_{k}}\right) \exp (-S)
$$

The correlation functions are then given by

$$
G_{v_{1} v_{2} \ldots v_{N}}=\frac{l_{v_{1} v_{2} \ldots v_{N}}}{l_{00 \ldots 0}}
$$

Section 3

Twisted cohomology

Stokes' theorem

Let M be a N-dimensional complex manifold and C an N-chain.
The starting point for integration-by-parts identities is Stokes' theorem:

$$
\int_{C} d \eta=\int_{\partial C} \eta
$$

If η vanishes on ∂C :

$$
\int_{\mathcal{C}} d \eta=0
$$

and hence

$$
\int_{\mathcal{C}}(\alpha+d \eta)=\int_{\mathcal{C}} \alpha
$$

Cohomology

We are interested in the case, where α is a ($N, 0$)-form, depending only on the holomorphic coordinates z_{1}, \ldots, z_{N}, but not on the anti-holomorphic coordinates $\bar{z}_{1}, \ldots, \bar{z}_{N}$.

In this case

$$
d \alpha=0
$$

and since we may always add an exact form, α represents a cohomology class $[\alpha]$.

Twisted cohomology

- In mathematics, the case where α is a rational N-form is well studied.

Example: A numerical period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of rational functions with rational coefficients, over domains in \mathbb{R}^{n} given by polynomial inequalities with rational coefficients.
(Kontsevich, Zagier)

- In physics, we often are in the situation where

Examples

Example (Feynman integrals in the Lee-Pomeransky representation)

$$
\begin{aligned}
u & =\mathcal{G}^{-\frac{D}{2}} \\
\Phi & =\left(\prod_{k=1}^{N} z_{k}^{v_{k}-1}\right) d^{N_{z}}
\end{aligned}
$$

Example (Lattice integrals)

$$
\begin{aligned}
u & =\exp (-S) \\
\Phi & =\left(\prod_{k=1}^{N} \phi_{x_{k}}^{v_{k}}\right) d^{N} \phi
\end{aligned}
$$

Twisted cohomology

Question:

How do integration-by-parts identities look in terms of Φ instead of α ?

- Set

$$
\omega=d \ln u \quad \nabla_{\omega}=d+\omega
$$

- If u 三 vanishes on $\partial \mathcal{C}$

$$
\int_{\mathcal{C}} u\left(\Phi+\nabla_{\omega} \equiv\right)=\int_{\mathcal{C}} u \Phi
$$

- The function u is called the twist and determines the connection ω and the covariant derivative ∇_{ω}.

Twisted cohomology

Two N-forms Φ^{\prime} and Φ are called equivalent, if

$$
\Phi^{\prime} \sim \Phi \Leftrightarrow \Phi^{\prime}=\Phi+\nabla_{\omega} \overline{=}
$$

Denote equivalence classes by $\langle\Phi|$. Each Φ is trivially closed:

$$
\nabla_{\omega} \Phi=0
$$

The equivalence classes define the twisted cohomology group H_{ω}^{N} :

$$
\langle\Phi| \in H_{\omega}^{N}=\frac{\nabla_{\omega}-\operatorname{closed} N-\text { forms }}{\nabla_{\omega}-\operatorname{exact} N-\text { forms }}
$$

Dual twisted cohomology

We may also consider the dual twisted cohomology group. Equivalence classes are now defined by

$$
\left|\Phi^{\prime}\right\rangle=|\Phi\rangle \Leftrightarrow \Phi^{\prime}=\Phi+\nabla_{-\omega} \bar{\equiv}
$$

Equivalence classes $|\Phi\rangle$ are elements of the dual twisted cohomology group

$$
\left(H_{\omega}^{N}\right)^{*}=H_{-\omega}^{N} .
$$

Key properties

With (mild) assumptions:
(1) The cohomology groups H_{ω}^{N} and $\left(H_{\omega}^{N}\right)^{*}$ are finite-dimensional.
(2) There is a non-degenerate inner product between H_{ω}^{N} and $\left(H_{\omega}^{N}\right)^{*}$, called the intersection number and denoted by

$$
\left\langle\Phi_{L} \mid \Phi_{R}\right\rangle, \quad\left\langle\Phi_{L}\right| \in H_{\omega}^{n}, \quad\left|\Phi_{R}\right\rangle \in\left(H_{\omega}^{n}\right)^{*}
$$

Aomoto '75, Matsumoto '94, Cho, Matsumoto, '95, Aomoto, Kita, '94 (jap.), '11 (engl.), Yoshida '97

Application 1: Finiteness

A priori we have countable many integrals $\left(v_{j} \in \mathbb{Z}\right.$ or $\left.v_{j} \in \mathbb{N}_{0}\right)$

$$
I_{v_{1} \ldots v_{N}} .
$$

As H_{ω}^{N} is finite-dimensional we may express any integral as a linear combination of a finite set of them.

Aomoto, Kita, '94 (jap.), '11 (engl.), Smirnov and Petukhov, '10

Application 2: Reduction

Let $\left\langle e_{1}\right|,\left\langle e_{2}\right|, \ldots$ be a basis of H_{ω}^{N} and $\left|d_{1}\right\rangle,\left|d_{2}\right\rangle, \ldots$ the dual basis of $\left(H_{\omega}^{N}\right)^{*}$ such that

$$
\left\langle e_{i} \mid d_{j}\right\rangle=\delta_{i j} .
$$

Consider an arbitrary element $\langle\Phi| \in H_{\omega}^{N}$. We may express $\langle\Phi|$ in terms of the basis:

$$
\langle\Phi|=c_{1}\left\langle e_{1}\right|+c_{2}\left\langle e_{2}\right|+\ldots
$$

The coefficients are given by the intersection numbers

$$
c_{j}=\left\langle\Phi \mid d_{j}\right\rangle
$$

This is exactly what we need for integral reduction!
Mastrolia, Mizera, '18

Application 3: Differential equations

Set $N_{F}=\operatorname{dim} H_{\omega}^{N}$ and let $\vec{l}=\left(I_{1}, I_{2}, \ldots, I_{N_{F}}\right)^{T}$ a vector of integrals such that the integrands form a basis of H_{ω}^{N}.
Let x be a parameter these integrals depend on.
We then get the differential equation

$$
\frac{d}{d x} \vec{l}=\overrightarrow{A l}
$$

with an $\left(N_{F} \times N_{F}\right)$-matrix A.

Section 4

Symmetries

Motivation

Let's consider the lattice integrals for ϕ^{4}-theory. We take $L=2$ lattice points in each direction.
What is the size of the system of differential equations as a function of the space-time dimension?

D	1	2	3	4
N_{F}	9	81	6561	43046721

The size of the system grows exponentially with the number of lattice points:

$$
N_{F}=3^{L^{D}}
$$

Symmetries

Assume for simplicity $\mathcal{C}=\mathbb{R}^{N}$. Let $\vec{z}=\left(z_{1}, \ldots, z_{N}\right)^{T}$ and $g \in \operatorname{SL}_{N}(\mathbb{R})$. Set

$$
\vec{z}^{\prime}=g \cdot \vec{z}
$$

Note that due to the requirement $g \in \operatorname{SL}_{N}(\mathbb{R})$ the Jacobian of the transformation is equal to one and therefore

$$
d^{N} z^{\prime}=d^{N} z
$$

Let $G \subseteq \operatorname{SL}_{N}(\mathbb{R})$ be the subgroup, which leaves the twist invariant:

$$
u(g \cdot \vec{z})=u(\vec{z}) \quad \forall g \in G
$$

Symmetries

We write

$$
I=\int_{\mathcal{C}} u \Phi=\langle\Phi \mid C\rangle \quad \text { and } \quad \Phi^{\prime}(\vec{z})=g \cdot \Phi(\vec{z})=\Phi\left(g^{-1} \cdot \vec{z}\right)
$$

Let $g \in G$ and let $\langle\Phi|$ be an integrand on which g acts non-trivially:

$$
\left\langle\Phi^{\prime}\right| \neq\langle\Phi|
$$

We then have

$$
\left\langle\Phi^{\prime} \mid \mathcal{C}\right\rangle=\langle\Phi \mid \mathcal{C}\rangle
$$

We call this a symmetry relation.

Proof

Change of variables and invariance of the twist function:

$$
\begin{aligned}
\left\langle\Phi^{\prime} \mid C\right\rangle & =\int_{\mathcal{C}} \Phi^{\prime}\left(\vec{z}^{\prime}\right) u\left(\vec{z}^{\prime}\right)=\int_{\mathcal{C}} \Phi\left(g^{-1} \cdot \vec{z}^{\prime}\right) u\left(\vec{z}^{\prime}\right) \\
& \stackrel{\text { change of variables }}{=} \\
& \int_{\mathcal{C}} \Phi(\vec{z}) u(g \cdot \vec{z}) \\
& \stackrel{\text { invariance }}{=} \\
& \int_{\mathcal{C}} \Phi(\vec{z}) u(\vec{z}) \\
& \langle\Phi \mid C\rangle
\end{aligned}
$$

Symmetries

Example

$$
\begin{gathered}
\binom{z_{1}^{\prime}}{z_{2}^{\prime}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{z_{1}}{z_{2}} \\
\Phi=z_{1}^{2} d^{2} z, \quad \phi^{\prime}=z_{2}^{2} d^{2} z, \quad u=e^{-z_{1}^{4}-z_{2}^{4}}
\end{gathered}
$$

Then

$$
\left\langle\Phi^{\prime}\right| \neq\langle\Phi| \text { but } \int_{\mathbb{R}^{2}} u \Phi^{\prime}=\int_{\mathbb{R}^{2}} u \Phi
$$

Symmetries

Symmetry relations allow us to reduce the number of elements in the spanning set of integrals.

- Suppose that $\langle\Phi \mid \mathcal{C}\rangle$ and $\left\langle\Phi^{\prime} \mid \mathcal{C}\right\rangle$ are in the spanning set. Then it is sufficient to just keep one element, say

$$
\frac{1}{2}\left\langle\left(\Phi+\Phi^{\prime}\right) \mid C\right\rangle
$$

as $\left(\Phi-\Phi^{\prime}\right)$ integrates to zero.

- Suppose $\langle\Phi \mid \mathcal{C}\rangle$ is in the spanning set and $\Phi^{\prime}=c \Phi$ with $c \neq 1$. Then Φ integrates to zero and we may eliminate this integral from the spanning set.

Symmetries

Theorem

Let $e_{1}, e_{2}, \ldots, e_{N_{F}}$ be a basis of H_{ω}^{N} and consider the orbits

$$
o_{j}=\frac{1}{|G|} \sum_{g \in G} g \cdot e_{j}
$$

Suppose that there are N_{O} non-zero orbits and suppose we label $e_{1}, e_{2}, \ldots, e_{N_{O}}, \ldots, e_{N_{F}}$ sucht that the first N_{O} elements are in distinct non-zero orbits. Then we may replace the spanning set of integrals by the smaller set

$$
\left\langle o_{1} \mid C\right\rangle, \ldots,\left\langle o_{N_{o}} \mid C\right\rangle
$$

Remark: This also works for a subgroup $G^{\prime} \subset G$.

Symmetries of lattice integrals

The lattice integrals of ϕ^{4}-theory with L lattice points in each direction have the symmetries:

- A global \mathbb{Z}_{2}-symmetry $\phi_{x}^{\prime}=-\phi_{x}$.
- The remnants of Poincaré symmetry on a discrete lattice:
- Translations by one lattice spacing
- Spatial rotations by 90° in the $i j$-pane
- Boosts (rotations by 90° in the $0 j$-plane for the Euclidean action, for the Minkowskian action with some additional sign flips)
- Time reversal and spatial reversal

The order of the symmetry group as a function of the space-time dimension for $L=2$:

D	1	2	3	4
$\left\|G^{\prime}\right\|$	4	16	96	768

Symmetries

We may now compare the dimension $N_{F}=\operatorname{dim} H_{\omega}^{N}$ of the twisted cohomology group to the number of non-zero orbits N_{O} for a lattice with $L=2$ points in each direction:

D	1	2	3	4
N_{F}	9	81	6561	43046721
N_{O}	4	13	147	66524

This reduces the size of the system of differential equations from $\left(N_{F} \times N_{F}\right)$ to $\left(N_{O} \times N_{O}\right)$.

Remark 1

Premature optimization is the root of all evil.

The connection in the differential equation

$$
\overrightarrow{d l}=\overrightarrow{A l}
$$

is flat:

$$
d A=A \wedge A
$$

Keeping the size system at size $\left(N_{F} \times N_{F}\right)$, but using some of the symmetries may destroy the integrability condition.

Remark 2

- Very often we are actually not interested in specific integrals, but in equivalence classes of integrals modulo relations induced by linearity in α and \mathcal{C}, changes of variables and Stokes' formula.

Example: Is the period map from effective periods to numerical periods injective?

- For the integrals of the type "twist times rational N-form":
- Twisted cohomology takes care of Stokes' formula.
- Symmetries correspond to a change of variables.

Results

Euclidean vacuum-to-vacuum integral I_{00} for $D=1$ space-time dimensions and $L=2$ lattice points as a function of the coupling λ :

Conclusions

- Integrands in physics are often of the type "twist times rational N-form".
- Integration-by-parts reduces integrands to linear combinations of a basis of H_{ω}^{N}.
- The method of differential equations allows us to compute these integrals.
- Symmetries of the twist function allow us to reduces the size of the system from $\operatorname{dim} H_{\omega}^{N}$ to the number of non-zero orbits.

