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Theorem (Brown-D.-Fresan-Tapuskovic)
The space of Laurent expansions of Feynman integrals in dimensional

regularization is closed under the action of the motivic Galois group /
closed under the motivic coaction.

“Cosmic Galois theory” (Cartier).

Conjectured and checked by Abreu-Britto-Duhr-Gardi-Matthew.

Is an application of a general theorem for algebraic Mellin transforms.

Main tool: a new view on twisted cohomology.



Algebraic Mellin transforms

The classical Mellin transform (Mellin, 1897)

P 02T = (MAE) = [ xS

Algebraic Mellin transforms (Aomoto, 1974)

I(s) = /U fouw.

» X an (affine, smooth) algebraic variety over a field k C C.
» f: X — Gp an invertible function on X.

» w an algebraic differential form on X, o a topological cycle on X.

More generally, for f = (fi,...,fn) : X = GJ, consider multivariate versions:

1(51,...,SN):/]€151~~~ ASINw.



Examples of algebraic Mellin transforms

» Any function z° x (period).

» The beta function

T "o ¢ dx
BSY = s+ _/0 XO-X0—x

» String theory amplitudes in genus zero
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» The classical hypergeometric function
N\~ (@n(b)n 2" _
2Fi(a,b,c;z) = ZE RGN where (t)h = t(t+1)---(t+n—1).

B(b,c —b):Fi(a,bic;2) = /01Xb(1 -0 —zx)“’% :



Feynman integrals in dimensional regularization

» Dimensional regularization: work in space-time dimension D = Do — 2e.

yn—(h+1p/2 yh+ ©
Ir(e) = / e 2= / 5 | wr
PP=(Ry)  =p PP=1(Ry) \ =T

» Itis an algebraic Mellin transform for

v
X=P""\{WrZr=0} and f=-L—:X— Gn.

Example: the massless triangle graph (Do = 4)
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Structure of algebraic Mellin transforms

(Not in this talk) Systems of finite difference equations

I,‘(S < 1) = Z f,‘J(S) Ij(S) with f,‘J(S) € k(S)

=

» Example: B(s+1,t) = ;% B(s,t), B(s,t+1) = ;5 B(s,1).

(Not in this talk) Systems of differential equations

N
d :
&Ii(s;z) = E gij(s:2) Ii(s;z)  with g;;(s; 2) € R(s, 2).

j=1
» Example: differential equation for F(z) = 2Fi(a, b, c; z)
z(1—=2)F"(z2)+ (c— (a+ b+ 1)z)F(z) —abF(z) = 0.

Algebraic structure
They are both controlled by twisted cohomology groups.



Periods from algebraic Mellin transforms

(Not in this talk) Values ats € Q
Fors € Q, I(s) is a period of a cyclic cover of X.

» Example: B(%, 1) is a period of an open Fermat curve {x" +y" = 1}.

(In this talk) Laurent expansion at s = 0

> ans”"  where the oy are periods.
n>—oo

» Example: B(s,t)_sH< > (=s)"(-1)"¢(, ..,1,m+1)>.
H,_/

m,n>1 o1

What this talk is about...
» We are interested in the motivic Galois theory / coaction of the ap.
» Itis also controlled by a twisted cohomology group!



Galois theory for periods (André)

Slogan

Galois theory of algebraic numbers should extend to a Galois theory for
periods, where the Galois groups are algebraic groups over Q.

» Periods arise as coefficients of the perfect pairing
/ tHE(X) x Hig(X) — C , (o,w) — / w

for algebraic varieties X, or pairs (X, Y), defined over Q.

» Assuming Grothendieck’s period conjecture, the motivic Galois group G
acts on the algebra of periods:

forg € G, g./w::/g.w

» Unconditional: Galois theory for motivic periods.
» Computable: (motivic) coaction
p (period) = Z(period) ® (function on G).

» The “symbol” of a hyperlogarithm is a byproduct of the coaction.



The key example: the beta function

B(s,t) = S:tt exp (i (_,J)n Cn)(s" +1"—(s+ t)”)) :

» Galois theory for zeta values: for g € G,
g.c(n)=¢(n+d"” with o’ Q.
Or equivalently, for the motivic coaction:
pC(M) = ¢(m®1+1@a".
» Gives rise to a Galois theory for the beta function:
g.B(s,t) = Ag(s,t) B(s, 1)  with  Ag(s,t) € Q(s,t)*.
Or equivalently, for the motivic coaction:

p(B(s,t)) = B(s,t) ® A(s, t).



The main theorem

Theorem (Brown-D.—Fresan-Tapuskovic)
The motivic Galois group acts on Taylor expansions of algebraic Mellin
transforms via power series, i.e., for g in the motivic Galois group G:

. [ Fu= Z w6 [ £

where the Ag)(s) are in R((s)). Equivalently, for the motivic coaction:

([ £ (fre) oo

This is a finite formula which computes the Galois theory of infinitely
many periods.



Proof of concept

» Atwo-term example:

1 T, zdx >
L(S;Z)=g(zF1(S,'|,S+1;Z)—1):/O T go )" Lins1(2).
Motivic coaction for classical polylogarithms:
p(Linsa(2)) = Z Lint1_£(2) ® ( ) +1® bn(2)

k=0

Gives rise to a two-term formula (already noticed by Goncharov):
p(L(s;2)) = L(s;2) ®A(S;2) + 1® B(s; 2).

» Afamily of examples (Brown-D. '23): Lauricella hypergeometric
functions

“f _ - dx
X1 =x07 ) - (1= X0y ')°
0 — 0j



Twisted cohomology, traditional version

On this slide, s is a fixed complex number.

Twisted (de Rham) cohomology, traditional version

i . uirae _ ker(Vs : Q'(X) — QX))
Har(%,1) = HIR(X), V) = Im(Vs : Q=1(X) — Qi(X))

where Vs :w i dw+ sd—f Aw (sothat d(f*w) = f°Vs(w)).

f

v

This is where the integrands of algebraic Mellin transforms live.
The relations Vs(w) = 0 are the “IBP relations”.

Hix(X,f) is a finite dimensional k-vector space, whose dimension
depends on s.

vy

» The case when s is generic is easier: generic vanishing, intersection
pairing.
Basis for s generic : “master integrands”.

v



Twisted cohomology, local version

How motivic is twisted cohomology?

» H°(X,f) is not motivic (does not come from geometry) if s ¢ Q.
» A formal generic version of H*(X, f) is motivic (comes from geometry).

Twisted (de Rham) cohomology, local version
Mir(X,f) := H(Q(X)(s), V)
df

where V:wr—dw+S—= Aw.

f

» Itis a finite dimensional k((s))-vector space, whose dimension is the
generic dimension of “traditional” twisted cohomology.

Key remark: H'(Q°*(X)[s]/(s"*"), V) can be interpreted in terms of the
motivic fundamental group of Gp,.
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Back to Feynman integrals

Theorem (Brown-D.—Fresan-Tapuskovic)

The space of Laurent expansions of Feynman integrals in dimensional
regularization is closed under the action of the motivic Galois group:

N
g.Ir(e) = ZAS)(E) Ir.(e
i=1

Or equivalently, for the motivic coaction:

p(Ir(e)) = er ) ® A (e)

» Still difficult to make explicit. Problem: how to make sense of the
functions A0 (¢)?

» No “diagrammatic coaction” yet (Abreu-Britto-Duhr-Gardi-Matthew).
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