Grassmannian Cluster Varieties and Their Symmetries

Dani Kaufman

(University of Copenhagen)

23 March, 2023

For the Bethe Forum "Geometries and Special Functions for Physics and Mathematics"

- 1. What's the point?
- 2. Cluster Varieties and Ensembles
- 3. Grassmannians
- 4. The Cluster Modular Group
- 5. Special foldings of Grassmannian cluster structures

1. What's the point?

- 2. Cluster Varieties and Ensembles
- 3. Grassmannians
- 4. The Cluster Modular Group
- 5. Special foldings of Grassmannian cluster structures

- A Cluster Variety is an algebraic variety along with a toric atlas generated by some extra combinatorial data.
- The cluster structure also encodes many new/unexpected coordinate functions, and automorphisms of the cluster structure encode exotic automorphisms of the variety.

Examples

- The Grassmannian (really some open set in/affine cone of) Gr(k, n) has such a structure, which contains all of the Plücker coordinates as coordinate functions in its cluster atlas.
- The cluster structure gives a convenient way of packaging up all of the Plücker relations, but also gives surprising new symmetries.
- Cluster structure encodes Polylogarithm relations and Scattering amplitude symbol alphabets in interesting ways

1. What's the point?

- 2. Cluster Varieties and Ensembles
- 3. Grassmannians
- 4. The Cluster Modular Group
- 5. Special foldings of Grassmannian cluster structures

Cluster Varieties (in brief)

Following Fock-Goncharov

- A Cluster Variety is an Algebraic variety built out of seed tori glued along birational morphisms called mutations.
- Each seed comes with some extra combinatorial data which encodes all of the mutation maps from that seed.
- Each mutation produces a new seed, so the entire cluster structure is generated by just one seed.

Cluster Varieties of Geometric Type

- We will only consider cluster varieties of Geometric type meaning that we use quivers to track the combinatorial data underlying mutation maps.
- Quivers allowed for seeds cannot contain self loops or 2-cycles.
- Quivers are graphical representations of the exchange matrix $M = [\epsilon_{ij}]$ with entries equal to the number of arrows from node *i* to node *j*.

Examples $Q = \begin{array}{c} 2 \\ 1 \end{array} \longleftrightarrow M = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 2 \\ -1 & -2 & 0 \end{bmatrix}$

Cluster Ensembles of Geometric Type

- Associate variables to the nodes of a quiver to make a Seed; A_S and X_S .
- To Mutate a seed at the (non frozen node/variable) *i* we
 - 1. Mutate the quiver at node i
 - 2. Replace all the variables according to the ${\mathcal A}$ or ${\mathcal X}$ mutation rule

Mutation of quivers/Seeds

- 1. For every pair of arrows $(k \rightarrow i), (i \rightarrow j)$ add a arrow from node k to node j, cancelling any 2-cycles between nodes k and j.
- 2. Reverse every arrow incident to *i*.

The ${\mathcal A}$ and ${\mathcal X}$ Cluster Varieties

$$\mathcal{A}\text{-type mutation rule}$$

$$\mu_i^*(a_j') = \begin{cases} \frac{1}{a_i} (\prod_{\epsilon_{ik}>0} a_k^{\epsilon_{ik}} + \prod_{\epsilon_{ik}<0} a_k^{-\epsilon_{ik}}) & i = j \\ a_j & i \neq j \end{cases}$$

$$\mathcal{X}\text{-type mutation rule}$$

$$\mu_i^*(x_j') = \begin{cases} x_i^{-1} & i = j \\ x_j(1 + x_i^{-\operatorname{sgn} \epsilon_{ji}})^{-\epsilon_{ji}} & i \neq j \end{cases}$$

Definitions

The Cluster Ensemble associated with Q is the pair of cluster varieties $(\mathcal{A}_Q, \mathcal{X}_Q)$ along with the map $\rho : \mathcal{A}_Q \to \mathcal{X}_Q$ defined on coordinates on the same seed by

$$\rho^*(x_i) = \prod_j a_j^{\epsilon_{ij}}$$

There are lots of interesting aspects of these spaces, e.g. Poisson structure, symplectic structure etc. but we wont really need them

1. What's the point?

2. Cluster Varieties and Ensembles

3. Grassmannians

- 4. The Cluster Modular Group
- 5. Special foldings of Grassmannian cluster structures

Grassmannian Cluster Ensembles

$\mathcal{A} ext{-}\mathsf{Space}$

- Open subset of Affine cone over Gr(k, n) where Plücker Corrdinates are non-zero.
- Cluster variables are Plücker Corrdinates + "Exotic" Variables
- Exotics variables are all polynomials in Plückers
- *A*-variables on Gr(4, *n*) give "Symbol Alphabet" for *n* < 8(10?) particle amplitudes *N* = 4 SYM Theory

\mathcal{X} -Space

- Open Subset of Conf_n(P^{k-1}) (Generic configurations)
- Cluster variables are Cross ratios + "Exotic" ratios (e.g. triple ratio)
- *X*-Variables are arguments to "Cluster Polylogarithms" and their relations.

What are the Seeds? What is the combinatorics of these cluster ensembles?

Example: Gr(2,n)

Seed for Gr(2, 6)

Example: Gr(2,n)

- Exchange Relation(A): $a_{13}a_{24} = a_{12}a_{34} + a_{14}a_{23}$
- Exchanges Relation (\mathcal{X}): $x_{1345} = x_{1245}(1 + x_{1234}^{-1})^{-1}$

Exchange Complexes

Exchange Complexes for Gr(2, n) are the Associahedra:

New things happen starting at Gr(3, 6):

- Not all mutations produce Plücker coordinates
- Exchange Relation: $a_{246}A = a_{124}a_{346}a_{256} + a_{126}a_{234}a_{456}$
- $A = det(v_1 \times v_2, v_3 \times v_4, v_5 \times v_6)$
- \mathcal{X} coordinate at center is Goncharov's triple ratio.

Grassmannian Seeds

Seeds for General Gr(k,n)

Mutatble portion of seed for Gr(p, p + q):

Use B. Kellers Mutation applet https: //webusers.imj-prg.fr/~bernhard.keller/quivermutation/ Cluster Type of Gr(p, p + q):

- $(p-2)(q-2) < 4 \rightarrow$ finitely many seeds (Finite type)
- (p − 2)(q − 2) = 4 → infinitely many seeds, but finite quivers (Mutation Finite)
- (p-2)(q-2) > 4 → infinitely many seeds and quivers (Infinite Type)

Finite Type Grassmannians

Finite type Cluster structures are classified by by the ADE Dynkin diagrams

Mutation Finite Grassmannians

- Gr(4,8) and Gr(3,9) are only "Mutation Finite"
- Their Dynkin types are best described by "Elliptic root systems", defined by Satio.
- Have a Dynkin Diagram given by T_{pq2} Quiver

•
$$Gr(4,8) = E_7^{(1,1)} = T_{442},$$

 $Gr(3,9) = E_8^{(1,1)} = T_{632}$

Infinite Type Grassmannians

- Singularity theory of Complex Surface: $x^{p} + y^{q} + (z^{2}) = 0$
- Can be classified by "Modality" (For small *p*, *q*) (V.I Arnold)
- Can be given Dynkin Diagrams; Each is a T_{pq2} plus (p-2)(q-2) 4 extra nodes.
- Connection through "Cluster Categories" (Jensen, King, Su)

Figure: Gr(3, 10), $x^3 + v^7 + z^2 = 0$

Singularity Types:

- Simple
- Elliptic
- Unimodal
- Bimodal

1. What's the point?

- 2. Cluster Varieties and Ensembles
- 3. Grassmannians
- 4. The Cluster Modular Group
- 5. Special foldings of Grassmannian cluster structures

The Cluster Modular Group

The Cluster Modular Group, Γ , is the group of automorphisms of a cluster structure. We can think of it as a generalization of a mapping class group.

- 1. The group of automorphisms of the Exchange Complex of the cluster structure.
- 2. The group consisting of pairs $\{P, \sigma\}$ of mutation sequences and quiver isomorphisms, up to those that do not change the cluster variables.

(a) $Gr(3,6) = D_4, \Gamma = S_3 \times \mathbb{Z}_4$

(b) $Gr(3,8) = E_8, \Gamma = \mathbb{Z}_{16}$

Lets explain this last description.

- *P* is a path of mutations, $P = \{\mu_{P_1}, \mu_{P_2}, \dots, \mu_{P_k}\}$ and σ is a quiver isomorphism $\sigma : Q \to P(Q) = \mu_{P_k} \circ \cdots \circ \mu_{P_1}(Q)$.
- Labeling the nodes of Q by 1 up to n, we can write P as a list of nodes to mutate at and σ as an element of the symmetric group S_n .
- Pairs {P, σ} can be composed by viewing them as elements of the semidirect product (Z/2Z)*ⁿ ⋊ S_n.
- Explicitly, we have

$$\{P_1, \sigma_1\} \cdot \{P_2, \sigma_2\} = \{P_1\sigma_1(P_2), \sigma_1\sigma_2\}$$

• σ gives a map between the cluster variables on S to those on P(S), and pairs for which this map is the identity are the identity in Γ .

Cluster Modular Groups of Grassmannians

- C. Fraser gives action of "Affine Braid Group" on d = gcd(n, k) strands on Gr(n, k) by cluster automorphisms.
- This is not faithfull; if n = 2k this gives an action of the "spherical braid group" on k strands
- In joint work with Z. Greenberg we calculate the cluster modular group of all elliptic cluster algebras (e.g Gr(4,8) and Gr(3,9))
- We show all elliptic cluster modular groups have PSL(2, ℤ) as a quotient by a finite normal subgroup.

 $1 \rightarrow N \rightarrow \Gamma \rightarrow \mathsf{PSL}(2,\mathbb{Z}) \rightarrow 1$

1. What's the point?

- 2. Cluster Varieties and Ensembles
- 3. Grassmannians
- 4. The Cluster Modular Group
- 5. Special foldings of Grassmannian cluster structures

Idea: The usual Folding of Dynkin diagrams can be extended to cluster structures.

How to make a folded seed:

- 1. Put same cluster variable on each node in a group
- 2. Mutate each group together called Group Mutation

What do we need to fold?

Folded seeds:

- 1. Put same cluster variable on each node in a group
- 2. Mutate each group together
- A folding is valid if there is a way to do group mutations e.g if the nodes in each group remain disconnected after mutations
- A folding is Cluster if each seed produced by group mutation is a folded seed.

Cyclic Folding

Folding By a Cyclic quiver automorphism is often valid and cluster

Cyclic folding of Grassmannian seeds

Many Grassmannians admit special cyclic foldings. Folding that minimics Dynkin Folding does not seem to reduce the complexity:

Cyclic folding of Grassmannian seeds

Special Folding can actually reduce! the complexity of the algebra!

Special q - 1 Cyclic foldings of Gr(p, p + q)

Examples of special foldings

Figure: Gr(3,9)

Figure: Gr(3,10)

Examples of special foldings

Figure: $\mathbb{C}[SL_7/N]$

Figure: Gr(4,9)