LEADING SINCULARITES BEYOND MPLS LORENZO TAN CREDI . We concepte Feynmon hutepolo in orden to compute STATTERING AMPLITUDES . Auglitudes in "physooly relavout there " (Gouge therier) have special believiours motovated by general confidenctions in QFT * poles when rough portider go on thell \rightarrow \sim $\frac{1}{\text{S-m}}$ * brach ents when multiple porticles go ou shell $D=2-2\varepsilon$ $\sim \frac{1}{\sqrt{5(5-6m^2)}} \ln \left(\frac{\sqrt{5-6m^2}-\sqrt{5}}{\sqrt{5-6m^2}+\sqrt{5}} \right)$ prolen fr s>4m2 & Cognithunic singularities (IR, etc)

QUESTION 1. Cou we choose integral to
"decompose" these oneplitudes which make these
properties monfeit?
ANSWER 1. 1 acception des con Le Watten au
terms of multiple polylogs (geomotry Remain Sphere We do!
) what we all CANONICAL INTEGRALS
"pure" into of UNIFORM TRANSC. WEIGHT
EXAMPLE (NOT CANONICAL)
$S = \frac{D=4-2\varepsilon}{\varepsilon} = \# \left[\frac{1}{\varepsilon} + 2 - \sqrt{\frac{5-4m^2}{5}} \ln \left(\frac{-\sqrt{5}-\sqrt{5-4m^2}}{\sqrt{5}-\sqrt{5-4m^2}} \right) \right]$
$\frac{1}{2}$ x weight "O" \mathcal{E}^{*} { weight 0 & 1 with dyi-toric with dyi-toric
purperior J 2

EXAMPLE (CANONICAL) $-\frac{1}{\sqrt{S(S-Lim^2)}} lu\left(\frac{-\sqrt{S}-\sqrt{S-Lim^2}}{\sqrt{S-\sqrt{S-Lim^2}}}\right) \neq O(\varepsilon)$ Cubmer L not there E E° 15 just but 0 is a numer of weight "o" o log (weight 1) will one fingle olgebrais propetor by selecting these type of integels we selieve: 1. Into contor " brouch cuts" (moliday square roots) 2. Overall prepetors que the poles (rational functions) -> these integrals are also particularly simple to compare because they salicly simple diff eas in DIN REG

INPORTA Williamt	INTEY	ing to	know h comput	ous to FIND the them !	eur
This		w here	lood mg	fongulor des ceite	A
QUES	TON E w	rte ou	intepol) or -() etc
whol		the 1	mpolest w TEGRAL	oy to know if	· · · · · · · · · · · · · · · · · · ·
ANSWE	R (S)	Loole	ot residu	ies of interved	
\$-0-		$\frac{d^{0}k}{(2\pi)^{0}}$	(k^2-m^2)	$p^2 = 5$ $(h-p)^2 - m^2 = 24$	1×0/
props a	# f	dZ1 d	$\frac{2}{2}$ $\begin{bmatrix} P(s) \\ -s \end{bmatrix}$	$(m_{1}, 2_{1}, 2_{2}) \int_{2}^{\frac{D-2}{2}} \frac{1}{1}$	$\frac{1}{(S, m^2, 2, 21)}$

 $T(S, m^2, Z_1, Z_2) = (4m^2 - S)S + 2S[Z_1 + Z_2] - (Z_1 - Z_2)^2$ second order polynomial For Finiplicity , do onolyps 14 D=2-2E instead of D=G-28 (two rogults een be related) $\Rightarrow \bigcirc \sim \oint d\overline{z_1} d\overline{z_2} = \frac{1}{Z_1 Z_2 \sqrt{P(s, m^1, \overline{z_1}, \overline{z_1})}} \begin{bmatrix} \int \varepsilon \\ \int \varepsilon$ look at all voidles iteratively and ONJE CTURE toke all republic in E=0 - IF: There are only simple poles & Loud auts 2. tel tentes vordues our EQUAL => the integrap is CANONICAL [] E where expanded produces only PURE LOGARITHMS, so we can neglect , t

8= 0 $\oint \frac{dz_1}{z_1} \oint \frac{dz_2}{z_2}$ $\sqrt{P(s, m^2, z_1, z_2)}$ Rustratic readue at Impinity brouch rendue sh ent. 22=0 (xmmx they are plated by global res there ue limit to z== 0 $le_{22=0}(-) = \int \frac{d_{21}}{21} \frac{1}{\sqrt{2m^{2}s - (s - 21)^{2}}}$ source structure 10 21 Per les Z1=0 Z2=0 VSIS-4m²) B

=> indeed, only Fingle poles and tersted residues one all equal to $\sqrt{S(S-GM^2)}$ -0-CANONICAL (u D~2-28 1**5** -, if turns out $-\frac{D=2-2\varepsilon}{2} \sim -\frac{D=4-2\varepsilon}{2}$ in fret DIN SHIFT so we have "proven" that -O-integral 14 D = 4-28 a cousinal ,)2 r this can be reinterpreted of $\underbrace{\bigcirc}_{z=2-2\varepsilon} = \underbrace{\oint}_{z_1} \underbrace{\frac{dt_1}{dt_1}}_{V_{Lm^2\varsigma} - (s-t_1)^2} \underbrace{\oint}_{z_1} \underbrace{\log}_{z_2} \underbrace{f(s, m^2, z_3, z_2)}_{dz_1} dz_1 }$ $= \int_{S(S-4W^{4})}^{\#} \oint d \log \left(g(S, m^{2}, 2n) \right) d 2n \oint d 2n$ d log (flsm; 21, 21)) dzz 1 t other logs from ()E => we say at's in d-log FORM

Conjecture verified in mulkhide of publicurs Problem: Now do we extend this when non-polylog geometics are moliced? What is the generalization of this statement? in Elliphic cove, we could hope onswer is Folins of E4 or P etc two loop sunrive - (m) - (m) $\int \frac{d^{2}k}{(2\pi)^{0}} \frac{1}{(h-p)^{2}-m^{2}} = \frac{B_{1}(h)(k^{2})}{Z_{1}}$ = Judan Sudan K-p D = 2-2E J dzidzz J V P(S, m', Z1, Z2) meglect 1 quodrobic pol $B_{J_{2}}^{(1L)}(z_{1})$ 8

 $= \oint dZ_1 \operatorname{Bubu}(Z_1) \oint \frac{dZ_2}{Z_2} \frac{1}{\sqrt{2}(S, M^2, Z_1, Z_2)}$ Nouve as at 12 in Z2 $= \oint dz_1 \frac{B_{0}b_{12}(z_1)}{\sqrt{(z_1-q_1)(z_1-q_1)}}$ $\int d \log \left[f(s, m^2, z_1, z_2) \right]_{dz_1}$ $a_{l} = (\sqrt{s} + m)^2$ with $\theta_{1=} (VS - M)^2$ moreover we know that $Bub_{1}(z_{1}) = \frac{1}{\sqrt{z_{1}(z_{1}-Gm^{2})}} \oint dlog \oint dlog$ f dlog f dlog f dlg $\neq \int \frac{dz}{(z_1(z_1-4m^2)(z_1-a_2)(z_1-a_2))}$ \bigcirc pour Bus Pais is Not a d-log 2L pont

 $y = V P_{4}(z)$ elluptic curve $= \oint \frac{dz}{g} \oint deg \oint deg \oint deg$ - () this is exactly one of the differential formes that defne "PURE" elluptic polylogs Ey (°, 2) UP TO ALGEBRAIC PREFACTOR Sdf ~ Wy dz on Torus to this onalys tells us that we expect to be "CANONICAL" IN D=2-2E and in fret it tarns out to be writchle, at every orden 14 2, in terms of pore EG or F functions 10

PROBLEM => we need a second condidate
integral this foundy requires two moster
interes =>
this is the concludente
we upually start hour
Liee tollis of Ourstoph Jehoolbon
According to ouders before nonely that condidate would
not work => it has an apparent Double POLE
_so how do we choose one?
- what dost more camplicated geometries (CVn _etc.)
?
· · · · · · · · · · · · · · · · · · ·