LEADING SINCULARITES BEYOND MPLS
lorgnzo tancreai i

- We compote Fegumar Wreyols cu order to compo te samtering amplitudes
- Aupplitudes in "phypady rebvont therieg" (Gonge therier) hore special behwiours motsvated by geveal confiderations a QFT
* poles when ragle patida go on-thell

* brach euts wher muetrabe portes go an shell

$$
1-1 \sim \frac{1}{\sqrt{\sqrt{\left(s-4 m^{2}\right)}} \ln \left(\frac{\sqrt{s-4 m^{2}}-\sqrt{s}}{\sqrt{5-4 m^{2}}+\sqrt{s}}\right) .}
$$

publen $h s>\mathrm{cm}^{2}$

* Cogothmic singulorities (IR, etc)

QUESTION 1. Can we chose integol to "decompose" these ouphindes, cohch moke these propenties monfert?

ANswER 1. if aueplitudes can te watten in tarms of mulhpe jolylogs (geomotiry Riemoun syme) we do!
\Rightarrow whot we call CANONICAL INTEGALAS "pure" ints of UNIFORM TRANSC wFIGHT EXAMPLE (NOT CANONICAL)

$$
\begin{aligned}
& \rightarrow \underbrace{D=h-2 \varepsilon}=\#\left[\frac{1}{\varepsilon}\right]+2-\sqrt{\frac{s-4 m^{2}}{s}} \ln \left(\frac{-\sqrt{s}-\sqrt{s-4 m^{2}}}{\sqrt{s}-\sqrt{s-4 m^{2}}}\right)] \\
& \frac{1}{\varepsilon} \times \text { weight " } O \text { " } \\
& \varepsilon^{0} \times\{\text { weight } 0 \text { \& } 1
\end{aligned}
$$ wilh elgbsoic prefoctor $\}$

ExAMPLE (CANONICAL)

by selecting these type of inteplo we celieve:

1. Ints contorn "brach auts" (inclidy squere roots)
2. Ovenall prepetars gre the poles (rataul functions) If any
\rightarrow these intepols ore dos paticubarly simple to compste becouse they rotisy omple d ff eps in DIn $R \in G$

ImPortantly, we know how to FIND them wither honing to compote them!

This is where leading fongulorites eater QUESTION
soy I write on intepal T_{V} or Q etc
what is the simplest way to know of it is a PORE INTEGRAL

ANSWER is Look at residues of integoud!

$$
\begin{aligned}
& p^{2}=s \\
& s\left(O-\int \frac{d^{D} k}{(2 \pi)^{0}} \frac{1}{\left(k^{2}-m^{2}\right)\left((n-p)^{2}-m^{2}\right)}=\right.\text { BARKOV} \\
& =\oint \frac{d z_{1} d z_{2}}{z_{1} z_{2}}\left[\frac{P\left(s, m, z_{1}, z_{2}\right)}{s}\right]^{\frac{D-2}{2}} \frac{1}{\sqrt{P\left(s, m^{2}, z_{1}, z_{1}\right)}}
\end{aligned}
$$

$$
P\left(s, m^{2}, z_{1}, z_{2}\right)=\left(4 m^{2}-s\right) s+2 s\left[z_{1}+z_{2}\right]-\left(z_{1}-z_{2}\right)^{2}
$$ secaend order polynomial

For rimpliaty / do onolyss in $D=2-2 \varepsilon$ rusted of $D=u-2 \varepsilon$ (two rogults eien be rolated.)

$$
\bigcirc-\oiint d z_{1} d z_{2} \frac{1}{z_{1} z_{2} \sqrt{P\left(s, m^{1}, z_{1}, z_{1}\right)}}[]^{\varepsilon}
$$

CONJECTURE: look at Al voidtes iteratively and toke oll verdug in $\varepsilon=0$ - IF:
(1) There ore only 6 mple ples $\& 1$ roud cuts (2.) Hel tencteal vesidues ore EQUAL \Rightarrow the integos is CANDNICAC
[]$^{\varepsilon}$ when exponded produces only PuRf LOGARTTIMS, so we car neglect it

$$
\varepsilon=0
$$

limit to $z_{2}=0$

$$
\operatorname{Res}(--)=\oint \frac{d z_{1}}{z_{2}=0} \frac{1}{\underbrace{\sqrt{\operatorname{sm}^{2} s-\left(s-z_{1}\right)^{2}}}_{\text {sure stature al } z_{1}}}
$$

$$
\text { Der Res } \because-=\frac{1}{\sqrt{s}=0, z_{2}=0}
$$

\Rightarrow indecd, ouly Angle poles ad teoved residues re ell equal to $\frac{1}{\sqrt{s\left(s-4 m^{2}\right)}}$
-1- un Da 2-2E is CANDNIAL
in fuet, it torns at $\theta_{\text {Dim strikT }}^{\sim_{\sim}^{D=2-2 \varepsilon} \sim e^{D=h-2 \varepsilon}}$
so we have "proven" thot B is a conaniol intepol is $D=4-2 \varepsilon$
this con be reinterpreted of

$$
\begin{aligned}
& \bigcirc^{\Delta=2-2 \varepsilon}=\neq \oint^{\frac{d t_{1}}{z_{1}} \frac{1}{\sqrt{4 m^{2} s-\left(s-z_{1}\right)^{2}}} \oint d \log \left[f\left(s, w_{1}, z_{1}, z_{2}\right)\right] d z_{2}} \frac{d z_{2}}{} \\
& =\frac{\#}{\sqrt{s\left(s-4 u^{2}\right)}} \oint d \frac{\log \left(g\left(s, m^{2}, z_{1}\right)\right)}{d z_{1}} d z_{1} \oint d \log \frac{\left(f\left(s, m_{1}^{2}, z_{1}, z_{1}\right)\right)}{d z_{2}} d z_{2} \\
& \Rightarrow \text { wo soy at's in } d-\log \text { FORY }
\end{aligned}
$$

Congecture verfied in mulkhide of ploblems
Problem: how do we extend this when non-polyloy geameties ore imolved?

Whot is the geurolization of this stotement? in Eliptic cose, we could hope onswen is foens of $\varepsilon_{\text {a or }} \tilde{\Gamma}$
 tos loop sunvire

$$
\left.=\frac{\partial_{n \cdot d m}^{v}}{\frac{e}{k-p}}=\int \frac{d^{0} k}{(2 \pi)^{p}} \frac{1}{\frac{(n-p)^{2}-u^{2}}{z_{2}}} B_{u b^{(n)}}^{\left(k^{z_{1}}\right.}\right)
$$

$$
D=2-2 \varepsilon
$$

$$
=\int \frac{d z_{1} d z_{2}}{z_{2}}[]^{\varepsilon /} \frac{1}{\sqrt{p_{2}\left(s, m^{2}, z_{1}, z_{2}\right)}} B_{u} b^{(1)}\left(z_{1}\right)
$$ neglect \uparrow quadiotic pl

$$
=\oint d z_{1} \operatorname{Bu}_{b_{L}}\left(z_{1}\right) \oint \underbrace{\frac{d z_{2}}{z_{2}} \frac{1}{\sqrt{P_{2}\left(s, m^{\imath}, z_{1}, z_{2}\right)}}}_{\text {sem os ot } 1 L \text { in } z_{2}}
$$

$$
=\oint d z_{1} \frac{B_{0} b_{1 L}\left(z_{1}\right)}{\sqrt{\left(z_{1}-a_{1}\right)\left(z_{1}-a_{2}\right)}} \oint d \log \left[f\left(s_{1} m^{2}, z_{1}, z_{2}\right)\right]_{d z_{2}}
$$

with $\quad a_{1}=(\sqrt{5}-m)^{2} \quad a_{2}=(\sqrt{5}+m)^{2}$
moreover we know that

$$
\operatorname{BubiL}\left(z_{1}\right)=\frac{1}{\sqrt{z_{1}\left(z_{1}-4 m^{2}\right)}} \oint d \log \oint d \log
$$

n

$y=\sqrt{P_{4}(z)} \quad$ elluptic eavve

$$
\bigcirc=\bigcap^{\oint \frac{d z}{y}} \oint d \log \oint d \log \oint d \log _{j}
$$

this is exactly one of the differentiol fames that defue "Pure" elluptic plylogr $\varepsilon_{4}\left(0_{0}^{0} z\right)$ up to alabbalc peefactor $\delta \frac{d z}{y} \sim \omega_{1} d z$ on toros
no this ondyns texls us that we expect Ω to be "canomical" iu $D=2-2 \varepsilon$ and in fet it turns out to be wattole, of evey

ProLEFM \Rightarrow we need a secoud condidate inteprol, this founly requires two mooter intepes \Rightarrow

this is the couchidote we usudly stent hou
Ssee tolus of Albredert chastoph Seboolfon

Accordng to oudenis before nenvely thot condidate wonlt not work \Rightarrow it has an ogporent DoubiE POLE

- so how do we choose one?
- what goost nore coungeicoted yeometies (CY/n etco..)

