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Part I. Elliptic associators and elliptic multizeta values

Let θ be the (odd) Jacobi theta function,

θ(z; τ) =

∞∑
n=−∞

(−1)n−
1
2 q(n+1

2 )2e(2n+1)iz

= 2q
1
4 sin(z)− 2q

9
4 sin(3z) + 2q

25
4 sin(5z) + · · ·

with q = eiπτ , and τ runs over the Poincaré upper half-plane. Let

Fτ (u, v) =
θ(u+ v; τ)

θ(u; τ)θ(v; τ)

denote the Kronecker function.

The starting point in the construction of the elliptic associator by
B. Enriquez is the pair of iterated integrals (for each r ≥ 1) over simplices on
the boundary components [0; 1] and [0; τ ] of the fundamental parallelogram
of the elliptic curve associated to τ ∈ H:

IAτ (u1, . . . , ur) =

∫
0<vr<···<v1<1

Fτ (u1, v1) · · ·Fτ (ur, vr) dvr · · · dv1

IBτ (u1, . . . , ur) =

∫
0<vr<···<v1<τ

Fτ (u1, v1) · · ·Fτ (ur, vr) dvr · · · dv1,
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Fix a field k and a k-algebra R. A mould is a family

M = (Mr)r≥0

of functions defined over R, such that M(∅) ∈ k and Mr(u1, . . . , ur) is a
function of r commutative variables. In this talk we consider only rational
functions and polynomials. The vector space of moulds with constant term
0 is denoted ARI, the set of moulds with constant term 1 is denoted GARI.

The functions IAτ and IBτ are thus moulds, with constant term 1.

Proposition. (B. Enriquez) (i) For each r ≥ 1, define moulds Aτ and Bτ
by setting {

Aτ (u1, . . . , ur) = u1 · · ·urIAτ (u1, . . . , ur)
Bτ (u1, . . . , ur) = u1 · · ·urIBτ (u1, . . . , ur)

for each r ≥ 1. Then Aτ and Bτ are both polynomial moulds.

Definition. The pair (Aτ , Bτ ) is known as the elliptic associator.
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Polynomial moulds

Let Lie[a, b] denote the degree-completed free Lie algebra on two gen-
erators and Q〈〈a, b〉〉 its universal enveloping algebra. We can write

Q〈〈a, b〉〉 ⊃ Qa⊕Q〈〈c1, c2, . . .〉〉

where for i ≥ 0 we set
ci = ad(a)i−1(b).

The subspace Q〈〈c1, c2, . . .〉〉 contains all elements in the kernel of the deriva-
tion partialx defined by ∂x(x) = 1, ∂x(y) = 0 and contains all the series we
will see (Lie-like, group-like etc.)

There is an an isomorphism

Q〈〈c1, c2, . . .〉〉
∼↔ ARIpol

given by linearly extending the map on monomials

ca1 · · · car 7→ ua1−1
1 · · ·uar−1

r .

By a slight abuse of notation, we write Aτ and Bτ also for the power series
in a, b associated to the moulds. Enriquez shows that these power series are
group-like, i.e. they lie in the group

exp(Lie[a, b]) ⊂ Q〈〈a, b〉〉.

Goal: Show how the elliptic associator breaks into two parts, an arithmetic
part and a geometric part; show how the arithmetic part comes from the
Drinfeld associator in genus zero; show how any genus zero associator gives
rise to an elliptic associator.

Caveat: we work mod 2πi, see more below.
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Quick reminder on multizeta values and the Drinfeld associator.

For each sequence (k1, . . . , kr) of strictly positive integers, k1 ≥ 2, the
multiple zeta value is defined by the convergent series

ζ(k1, . . . , kr) =
∑

n1>···>nr>0

1

nk11 · · ·n
kr
r

.

These real numbers have been studied since Euler (1775).

They form a Q-algebra, the multizeta algebra Z.
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Multiplication of multizeta values

It is easy to see that we have the iterated integral form for multizeta
values

ζ(k1, . . . , kr) = (−1)r
∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

dtn
tn − εn

· · · dt2
t2 − ε2

dt1
t1 − ε1

where
(ε1, . . . , εn) = (0, . . . , 0︸ ︷︷ ︸

k1−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k2−1

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
kr−1

, 1).

The product of two simplices is a union of simplices, giving an expres-
sion for the product of two multizeta values as a sum of multizeta values.
This is the shuffle product.

Example. We have

ζ(2) =

∫ 1

0

∫ t1

0

dt2
1− t2

dt1
t1

ζ(2, 2) =

∫ 1

0

∫ t1

0

∫ t2

0

∫ t3

0

dt4
1− t4

dt3
t3

dt2
1− t2

dt1
t1

ζ(3, 1) =

∫ 1

0

∫ t1

0

∫ t2

0

∫ t3

0

dt4
1− t4

dt3
1− t3

dt2
t2

dt1
t1

and
ζ(2)2 = 2 ζ(2, 2) + 4 ζ(3, 1).
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Convergent and non-convergent words

A convergent word w ∈ Q〈x, y〉 is a word w = xvy.

The reason for this notation is that it gives a bijection

{tuples with k1 ≥ 2} ↔ {convergent words}
(k1, . . . , kr)↔ xk1−1y · · ·xkr−1y.

As a notation, we use this to write

ζ(k1, . . . , kr) = ζ(xk1−1y · · ·xkr−1y).

We extend the definition to ζ(w) for any word w = yauxb with u convergent:

ζ(w) =
a∑
r=0

b∑
s=0

(−1)r+sζ
(
sh(yr, ya−ruxb−s, xs)

)
.

Proposition. The ζ(w) for all words w satisfy the shuffle relations

ζ(w)ζ(u) = ζ
(
sh(w, u)

)
.

The depth of a word w the number of y’s and the weight is the degree;
correspondingly, the depth of ζ(k1, . . . , kr) is r and the weight is k1+· · ·+kr.
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The Drinfel’d associator

Definition. The Drinfel’d associator is the power series given by

ΦKZ(x, y) = 1 +
∑

w∈Q〈x,y〉

(−1)dwζ(w)w

where dw is the number of y’s in the word w. It is a generating series for
multizeta values.

• It can be obtained as monodromy of the KZB equation

d

dz
G(z) =

(x
v

+
y

1− v

)
G(z);

more specifically ΦKZ(x, y) = G1(z)−1G0(z), where G0 (resp. G1) is the
solution to the KZ equation that tends to zx as z → 0 (resp. to (1− z)y as
z → 1).

• If ΦrKZ denotes the depth r part of ΦKZ , then ΦrKZ is given by the iterated
integral

ΦrKZ(x, y) =

∫
0<vr<···<v1<1

( x
v1

+
y

1− v1

)
· · ·
( x
vr

+
y

1− vr

)
dvr · · · dv1.
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Geometric part of the elliptic associator

For i ≥ 0, let ε2k denote the derivation of Lie[a, b] defined by

ε2k(a) = ad(a)2k(b), ε2k([a, b]) = 0,

and let u denote the Lie subalgebra of Der0(Lie[a, b]) generated by these.

The Lie algebra Lie[ε0, ε2, ε4, . . .] is far from free. There are many
interesting relations among the derivations ε2i, closely related to period
polynomials associated to cusp forms on SL2(Z).

Example. [ε4, ε10] − 3[ε6, ε8] = 0 in weight 14 corresponds to the period
polynomial

(X8 −X2)− 3(X6 −X4)

associated to the Ramanujan ∆-function. These relations were first inves-
tigated by A. Pollack.
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Let gτ denote the power series in Uu

gτ = id+
∑
n>0

∑
(k1,...,kn)

G(2k1,...,2kn)(τ)ε2k1 ◦ · · · ◦ ε2kn

where all ki ≥ 0 and G(2k1,...,2kn)(τ) denotes (a regularization of) the iterated
integral of the Eisenstein series G2k from τ to i∞. This gτ satisfies the
differential equation

1

2πi

∂

∂τ
gτ = −

(∑
k≥0

G2k(τ)ε2k

)
gτ ,

so gτ is group-like, so it gives an automorphism of Q〈〈a, b〉〉.

Let E denote the Q-algebra generated inside O(H) by the coefficients
of gτ written in any basis of the subspace generated inside Uu by the mono-
mials ε2k1 ◦ · · · ◦ ε2kn . These coefficients are “sufficiently independent” in
the sense that we have:

Proposition.
E ' Uu∗.
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Elliptic multiple zeta algebra

In analogy with the Q-algebra Z of multizeta values arising as the
coefficients of the Drinfeld associator, we write EZ for the Q-algebra of
elliptic multiple zeta values, generated by the coefficients of Aτ and Bτ
(essentially just Aτ ). Note that these form a Q-algebra thanks to the fact
that Aτ is group-like.

Let

t01 =
ad(b)

exp(b)− 1
(−a), t02 =

ad(−b)
exp(−b)− 1

(a), t12 = [a, b]

lie inside the free Lie algebra Lie[a, b]. They satisfy t01 + t02 + t12 = 0.
We can view this as the image of a map

Lie[x, y]→ Lie[a, b]

x, y, z 7→ t12, t01, t02

which is the Lie algebra (or pro-unipotent) “translation” of the homo-
morphism of topological π1s of the thrice-punctured sphere to the once-
punctured torus coming from joining two of the punctures.
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Theorem. (Enriquez) Let ΦKZ be the Drinfeld associator, and set

A = ΦKZ(t01, t12)−1e2πit01ΦKZ(t01, t12).

Then
Aτ = gτ (A)

where

This theorem shows that the coefficients of Aτ are polynomial combi-
nations of multiple zeta values and 2πi and elements of E (all viewed inside
O(H)).

Theorem. We have the isomorphism

EZ ' Z[2πi]⊗Q E .

Modulo the ideal generated by 2πi, we have

EZ ' Z ⊗Q E .
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If we replace the multiple zeta values by their motivic versions (or make
the conjecture that the motivic multizeta value algebra is isomorphic to the
real one), we then have:

Theorem. (F. Brown) Z is a Hopf algebra dual to the universal enveloping
algebra of a free Lie algebra with one generator in each odd rank ≥ 3:

Z∨ ' ULie[σ3, σ5, . . .].

Recall that we had
E∨ = Uu

where u ⊂ Der0(Lie[a, b]) is genearted by the ε2k.

EZ∨ = U
(
uoLie[σ3, σ5, . . .]

)
.

Alternatively, if ez denotes the quotient of the Hopf algebra EZ by products,
then

ez∨ ' uoLie[σ3, σ5, . . .].
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Brief motivic remark

The Lie algebra Lie[σ3, σ5, . . .] is the fundamental Lie algebra (Lie al-
gebra of the pro-unipotent radical of the Tannakian fundamental group) of
the Tannakian category MTM of mixed Tate motives over Z, and as we
saw above, its dual is the Hopf algebra of motivic multizeta values mod
products.

In the elliptic situation, Hain and Matsumoto constructed the Tan-
nakian category MEM of mixed elliptic motives and showed that the fun-
damental Lie algebra is isomorphic to

uoLie[σ3, σ5, . . .].

As we just saw, the universal enveloping algebra is dual to the Hopf algebra
of “elliptic motivic multizetas”, i.e. elliptic multizetas in which the “real
multizetas” are replaced by the motivic ones.
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Part II. How mould theory helps

There is much interplay between genus zero and elliptic associators is
reflected for example in fact that Z is contained in EZ, or in the identity

Aτ = gτ
(
ΦKZ(t01, t12)−1e2πit01ΦKZ(t01, t12)

)
(where t01 = Berb(−a), t12 = [a, b]), or in the interplay between the genus
zero multizeta values in Z and the geometric elements in E , or in the dual
situation in which the elliptic fundamental Lie algebra takes the form

uoLie[σ3, σ5, . . .].

Mould theory is particularly helpful in understanding this interplay.
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To every element f ∈ Lie[x, y], associate a derivationDf ∈ Der(Lie[x, y])
by

Df (x) = 0, Df (y) = [y, f ].

Define a Lie algebra L by the underlying vector space of Lie[x, y] and the
Ihara bracket defined by

{f, g} = Df (g)−Dg(f) + [f, g]

or equivalently, by
[Df , Dg] = D{f,g}.

There is an exponential map from L to exp(L), a Campbell-Hausdorff law
defining the multiplication in the group exp(L) and and an adjoint action
of exp(L) on L, denoted ad{,}(F ) for F ∈ exp(L).
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All of these definitions were extended by Écalle to all of ARI by ex-
plicit formulas. The bracket {, } extends to a Lie bracket called the ari-
bracket on ARI, written ari(A,B). There is an exponential map from ARI
equipped with the ari-bracket to GARI, which gives a multiplication law
on GARI, written gari(P,Q), and an an adjoint action of GARI on ARI,
denote adari(P ) for P ∈ GARI. Let invpal denote the inverse of pal for the
GARI multiplication.

Let ∆ be the map from ARI to ARI defined by

∆(A)(u1, . . . , ur) = u1 · · ·ur(u1 + · · ·+ ur)A(u1, . . . , ur),

and let ∆∗ be its “group version” that makes the diagram

GARI
∆∗
// GARI

ARI
∆ //

OO

ARI

OO

commute.
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Écalle’s magic mould pal

Let dupal be the “Bernoulli map mould”

dupal(u1, . . . , ur) =
Br
r!

1

u1 · · ·ur

(
r−1∑
j=0

(−1)j
(r − 1

j

)
uj+1

)
.

Let dur be the mould operator defined by

dur(P )(u1, . . . , ur) = (u1 + · · ·+ ur)P (u1, . . . , ur).

Define the mould pal recursively by pal(∅) = 1 and

dur(pal) = pal · dupal.

In low weights for instance, We have{
pal(u1) = − 1

2u1

pal(u1, u2) = u1+2u2

12u1u2(u1+u2)

We write invpal for the inverse of pal in GARI.
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Construction Theorem for the elliptic associatior. Let ΦKZ de-
note the Drinfeld associator mod ζ(2). Let PKZ denote the associated
polynomial-valued mould. Let

C = ∆∗(gari(invpal, PKZ , pal)
)

and set
Cτ = gτ (C).

Then there exists an automorphism of

exp
(
Lie[a, b]⊗Q O(H)

)
mapping ea 7→ Cτ and fixing [a, b]. This automorphism also maps

et01 7→ Aτ , eb 7→ Bτ .
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Another application of mould theory is to make the semi-direct product

uoLie[σ3, σ5, . . .]

explicit.

Theorem. For each n ≥ 1, there exists a (non-unique) “genus zero Lie
associator” (satisfying Lie versions of the relations satisfied by the Drinfeld
associator) f2n+1 of degree 2n+ 1 starting with the Lie term ad(x)n−1(y).
Let Fn be the associated polynomial mould. Then the mould

∆ ◦ adari(invpal)(Fn)

is a polynomial-valued mould. Let Σn ∈ Lie[a, b] be the associated power
series. Then letting σ2n+1 ∈ Der(Lie[a, b]) be defined by

σ2n+1(a) = Σn, σ2n+1([a, b]) = 0

gives a map from
Lie[σ3, σ5, . . .]→ Der(Lie[a, b])

that extends to a Lie morphism

uoLie[σ3, σ5, . . .]→ Der(Lie[a, b]).
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Thanks to the explicit knowledge of σ2n+1 as derivations of Lie[x, y],
we can compute their brackets with the elements of u and thus explicitly
determine the semi-direct product structure.

Example. For n = 3 there is a unique choice for the genus zero Lie
associator,

f3 = [x, [x, y]]− [[x, y], y] = c3 − [c2, c1]

with ci = ad(x)i−1(y). The associated mould F3 is given by

F3(∅) = 0, F3(u1) = u2
2, F3(u1, u2) = u1 − u2.

We have

∆ ◦ adari(invpal)(F3)(∅) = 0

∆ ◦ adari(invpal)(F3)(u1) = u4
1

∆ ◦ adari(invpal)(F3)(u1, u2) = 0

∆ ◦ adari(invpal)(F3)(u1, u2, u3) = −3u3
1u2 + 3u3

1u3 − 3u2
1u

2
2

−u2
1u2u3 + 6u2

1u
2
3 + 2u1u

2
2u3 − u1u2u

2
3 + 3u1u

3
3 − 3u2

2u
2
3 − 3u2u

3
3.
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Converting back to a, b we find

Σ3 = c5 − 3c4c2c1 + 3c4c1c2 − 3c3c3c1 − c3c2c2 + 6c3c1c3 + 2c2c3c2

−c2c2c3 + 3c2c1c4 − 3c1c3c3 − 3c1c2c4 + · · ·

= c5 + 3[c4, [c1, c2]]− 3[c3, [c3, c1]]− [c2, [c2, c3]] + · · ·

Thus σ2n+1 can be identified with the derivation of Lie[a, b] mapping a to
Σ3 and annihilating [a, b], which determines it completely, and its action on
u can then be determined explicitly.
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