

Geometries, Iterated Period Integrals and Feynman Integrals

Christoph Nega

Joint work with:

Kilian Bönisch, Claude Duhr, Fabian Fischbach, Lennard Görges, Albrecht Klemm, Florian Löbbert, Franziska Porkert, Reza Safari, Lorenzo Tancredi & Fabian Wagner

"The Ice Cone Family and Iterated Integrals for Calabi-Yau Varieties" [1], "Yangian-Invariant Fishnet Integrals in Two Dimensions as Volumes of Calabi-Yau Varieties" [2], "Feynman Integrals in Dimensional Regularization and Extensions of Calabi-Yau Motives" [3], "Analytic structure of all Banana integrals" [4], "The I-loop Banana amplitude from GKZ systems and relative Calabi-Yau periods" [5]

Geometries and Special Functions for Physics and Mathematics Bonn March 20, 2023

Motivation

- **Feynman integrals** are cornerstone of perturbative QFT and necessary for predictions in collider and gravitational wave experiments.
- High precision measurements require multi-loop Feynman integral computations.
- There are many examples starting at two loops where elliptic functions show up.
 This means that these Feynman integrals have an associated non-trivial geometry.

• At higher loops we have examples where even more complicated geometries appear.

 Feynman integrals give us interesting mathematical structures (algebraic geometry, number theory, ...) we want to understand.

Questions

Q1

How do we get a geometry behind a Feynman integral?

Different approaches depending on particular example

Q2

How does this geometry help us to compute Feynman integrals?

Useful insights, for instance function space & boundary conditions

Table of Content

0) Introduction to Calabi-Yau Geometries

Albrecht Klemm]

1) The Banana Family

[3-5]

2) The Ice Cone Family

[1]

3) Fishnet Integrals

[2]

4) Feynman Integrals in Dimensional Regularization

[new]

5) Conclusion and Remarks

Two dimensions

[3-5]

Equal-mass and generic-mass case

Q1: Calabi-Yau geometry

Two dimensions

[3-5]

Equal-mass and generic-mass case

Q1: Calabi-Yau geometry

Second graph polynomial defines a CY:

"CY =
$$\{\mathcal{F} = 0\}$$
"
Singular

Smooth Calabi-Yau mirror pairs from toric resolution and the Batyrev construction:

$$M_{l-1} = \{P_{\Delta_l} = 0 \subset \mathbb{P}_{\Delta_l^\star}\} \qquad \qquad \text{Mirror Symmetry} \qquad W_{l-1} = \{P_{\Delta_l^\star} = 0 \subset \mathbb{P}_{\Delta_l}\}$$

$$W_{l-1} = \{ P_{\Delta_l^{\star}} = 0 \subset \mathbb{P}_{\Delta_l} \}$$

• Toric resolution introduces **new** parameters: $h^{l-2,1} = l^2$ vs. l+1

$$h^{l-2,1} = l^2$$

$$l+1$$

Two dimensions

[3-5]

Equal-mass and generic-mass case

Q1: Calabi-Yau geometry

Second graph polynomial defines a CY:

"CY =
$$\{\mathcal{F} = 0\}$$
"
Singular

• Smooth Calabi-Yau mirror pairs from toric resolution and the Batyrev construction:

$$M_{l-1}=\{P_{\Delta_l}=0\subset\mathbb{P}_{\Delta_l^\star}\}$$
 Mirror Symmetry $W_{l-1}=\{P_{\Delta_l^\star}=0\subset\mathbb{P}_{\Delta_l}\}$

$$W_{l-1} = \{ P_{\Delta_l^{\star}} = 0 \subset \mathbb{P}_{\Delta_l} \}$$

Toric resolution introduces **new** parameters:

$$h^{l-2,1} = l^2$$
 vs. $l+1$

$$l+$$

• Analysis of "torus period" (holomorphic period):

$$I_l^{\max} = \int_{T^l} \frac{1}{\mathcal{F}} \mu_l$$

• Associated smooth complete intersection CY:

$$M_{l-1}^{\text{CI}} = \left\{ P_1 = P_2 = 0 \subset F_l \subset \underset{i=1}{\overset{l+1}{\times}} P_{(i)}^1 \right\}$$

• Correct number of parameters:

$$z_i = \frac{m_i^2}{p^2} \quad \text{for } i = 1, \dots, l+1$$

Q2: Calabi-Yau Period Integrals

- \odot The maximal cuts of the banana family are period integrals of the CY M_{l-1}
- One can compute these periods using differential equations: Picard-Fuchs ideal or Gauss-Manin system
 - Integration by Parts identities
 - Griffiths reduction method or GKZ approach
 - ullet Compute a **single period** and operators via ansatz, e.g. "torus period" $\Pi_0 = \int_{T^n} \Omega$
 - Combination of different approaches

Q2: Calabi-Yau Period Integrals

- \odot The maximal cuts of the banana family are period integrals of the CY M_{l-1}
- One can compute these periods using differential equations: Picard-Fuchs ideal or Gauss-Manin system
 - Integration by Parts identities
 - Griffiths reduction method or GKZ approach
 - ullet Compute a **single period** and operators via ansatz, e.g. "torus period" $\Pi_0 = \int_{T^n} \Omega$
 - Combination of different approaches
- The **simplex** integration domain of the full banana integral makes it a **relative CY period**:
 - -> Inhomogeneous diff. eqs.: $\mathcal{D}_r I(\underline{z}) = q_r(\underline{z}, \log(\underline{z}))$
- Full Feynman integral is linear combination of basis solutions $\{\varpi_i\}$ which are the **Calabi-Yau periods** plus additional **special solutions** of the inhomogeneous \mathcal{D} -module:

$$I(\underline{z}) = \sum_{i} \lambda_{i} \ \varpi_{i}(\underline{z})$$

Q2: Iterated Calabi-Yau Period Integrals

Griffiths transversality gives quadratic relations:

$$\mathbf{Z}(z) = \mathbf{W}(z) \Sigma \mathbf{W}(z)^T$$
 with $\mathbf{W}(z)_{i,j} = \{\partial_z^i \varpi_j\}$

The additional special solution can be interpreted as iterated Calabi-Yau period:

$$\underline{I}_{\mathrm{ban},l}(z) \sim \underline{\Pi}_l(z)^T \int_0^z \mathrm{d}z' \, \mathbf{W}_l(z')^{-1} \, \underline{\mathrm{Inhom}}_l(z') + \mathbf{W}_l \underline{\lambda}$$

$$\sim \underline{\Pi}_l(z)^T \mathbf{\Sigma}_l \int_0^z \frac{\mathrm{d}z'}{z'^2} \underline{\Pi}_l(z') + \mathbf{W}_l \underline{\lambda}$$

2

Quadratic relations to invert Wronskian

Function space banana family

iterated CY period integrals of M_{l-1}

Generalization of elliptic polylogarithms?

Q2: Iterated Calabi-Yau Period Integrals

Griffiths transversality gives **quadratic relations**:

$$\mathbf{Z}(z) = \mathbf{W}(z) \Sigma \mathbf{W}(z)^T$$
 with $\mathbf{W}(z)_{i,j} = \{\partial_z^i \varpi_j\}$

$$\mathbf{W}(z)_{i,j} = \left\{ \partial_z^i \varpi_j \right\}$$

The additional special solution can be interpreted as iterated Calabi-Yau period:

$$\underline{I}_{\mathrm{ban},l}(z) \sim \underline{\Pi}_l(z)^T \int_0^z \mathrm{d}z' \, \mathbf{W}_l(z')^{-1} \, \underline{\mathrm{Inhom}}_l(z') + \mathbf{W}_l \underline{\lambda}$$

$$\sim \underline{\Pi}_l(z)^T \mathbf{\Sigma}_l \int_0^z \frac{\mathrm{d}z'}{z'^2} \underline{\Pi}_l(z') + \mathbf{W}_l \underline{\lambda}$$

Quadratic relations to invert Wronskian

Function space banana family

iterated CY period integrals of M_{l-1}

Generalization of elliptic polylogarithms?

With the mirror map (canonical variable) we can also express the CY periods as iterated integrals:

$$I_{\text{ban},l} \sim \varpi_0(q) \left(\sum_{k=1}^l \lambda_k I(1, Y_1, \dots, Y_{l-k-1}; q) + I(1, Y_1, \dots, Y_1, 1, g_{\text{ban}}; q) \right)$$

Y-invariants

Pure function of weight I?

Q2: Special Calabi-Yau Monodromies

- There are plenty of different approaches to get the **boundary condition**:
 - In certain limits maybe some integrals are known (standard).
 - The banana integrals have special monodromies:

• Generating series:

$$\sum_{l=0}^{\infty} \frac{\lambda_0^{(l)}}{(l+1)!} t^l = -\frac{\Gamma(1-t)}{\Gamma(1+t)} e^{-2\gamma t - i\pi t} \qquad \text{and} \qquad \lambda_k^{(l)} = (-1)^k \binom{l+1}{k} \lambda_0^{(l-k)}$$

$$\lambda_k^{(l)} = (-1)^k \binom{l+1}{k} \lambda_0^{(l-k)}$$

 $\hat{\Gamma}$ -class from CY geometry:

[Iritani]

$$\operatorname{Im}(\lambda): \operatorname{Im}(I(T)) = \int_{W_{l-1}} e^{\omega T} \widehat{\Gamma}(TW_{l-1}) + \mathcal{O}(e^T)$$

$$\operatorname{Re}(\lambda): \operatorname{Re}(I(T)) = \int_{F_l} e^{\omega T} \frac{\Gamma(1-c_1)}{\Gamma(1+c_1)} \cos(\pi c_1) + \mathcal{O}(e^T)$$

Combination of different approaches

4L Equal-Mass Banana Integral

 $\mathcal{L}_4 I_4(z) = -5!z$ or $(\theta - 1)\mathcal{L}_4 I_4(z) = 0$

Equal Mass Case:

1) PF equation:

$$\mathcal{L}_4 = 1 - 5z + (-4 + 28z)\theta + (6 - 63z + 26z^2 - 225z^3)\theta^2 + (-4 + 70z - 450z^3)\theta^3 \\ + (1 - z)(1 - 9z)(1 - 25z)\theta^4 \\ \textbf{AESZ 34} \qquad \begin{array}{c} \text{[Almquist, Enckefort, van Straten and Zudilin]} \end{array}$$

2) Frobenius basis:

$$\varpi_k = \sum_{j=0}^k \binom{k}{j} \log(z)^j \, \Sigma_{k-j} \qquad \text{for } k = 1, \dots, 4-1$$
$$\varpi_l = (-1)^{l+1} (l+1) \sum_{j=0}^l \binom{l}{j} \log(z)^j \, \Sigma_{l-j}$$

$$\varpi_0 = z + 5z^2 + 45z^3 + 545z^4 + 7885z^5 + \cdots
\Sigma_1 = 8z^2 + 100z^3 + \frac{4148}{3}z^4 + \frac{64 \cdot 198}{3}z^5 + \cdots
\Sigma_2 = 2z^2 + \frac{197}{2}z^3 + \frac{33 \cdot 637}{18}z^4 + \frac{2 \cdot 402 \cdot 477}{72}z^5 + \cdots
\Sigma_3 = -12z^2 - \frac{267}{2}z^3 - \frac{19 \cdot 295}{18}z^4 - \frac{933 \cdot 155}{144}z^5 + \cdots
\Sigma_4 = 1830z^3 + \frac{112 \cdot 720}{3}z^4 + \frac{47 \cdot 200 \cdot 115}{72}z^5 + \cdots$$

First extension of CY operator

3) Linear combination from $\hat{\Gamma}$ -conjecture:

$$I_4(z) = (-450\zeta(4) - 80\zeta(3)i\pi)\varpi_0 + (80\zeta(3) - 120\zeta(2)i\pi)\varpi_1 + 180\zeta(2)\varpi_2 + 20i\pi\varpi_3 + \varpi_4$$

4) Analytic structure:

Monodromy action:
$$I_4 \xrightarrow{8_{11}8_2} M_{1,2} I_4$$

$$I_4 \xrightarrow{8} I_4$$

as predicted by the optical theorem

Now we consider the family of ice cone integrals:

external parameters: p_1 and p_2 with $p_1^2=p_2^2=0$

so we have only $s=2p_1\cdot p_2$

internal masses: all equal to m

dimension: two

Now we consider the family of ice cone integrals:

external parameters: p_1 and p_2 with $p_1^2=p_2^2=0$

so we have only $s=2p_1\cdot p_2$

internal masses: all equal to m

dimension: two

With these configurations this is a **one-parameter** family s/m^2 .

Q1: Calabi-Yau geometry

- Naively, we expect that the banana integrals and therefore a CY geometry play a prominent role for ice cone integrals since they explicitly appear in their diagrams.
- We will not find the CY from the graph polynomials here.

[Doran, Harder, Vanhove]

• We will find the ice cone geometry from analyzing maximal cuts.

Q1: Calabi-Yau geometry

• Consider the following representation of the ice cone:

$$I_{\text{ice}}^{(l)} = \int \frac{d^2k}{((k-p_1)^2 - m^2)((k+p_2)^2 - m^2)} I_{\text{ban}}^{(l-1)}(k^2)$$

Q1: Calabi-Yau geometry

Consider the following representation of the ice cone:

$$I_{\text{ice}}^{(l)} = \int \frac{d^2k}{((k-p_1)^2 - m^2)((k+p_2)^2 - m^2)} I_{\text{ban}}^{(l-1)}(k^2)$$

• We analyze the **maximal cuts** in with the Baikov representation:

$$I_{\text{ice, cut}}^{(l)} = \oint \frac{du}{(u - m^2 x)(u - m^2 / x)} I_{\text{ban, cut}}^{(l-1)}(u)$$

$$\frac{s}{m^2} = -\frac{(1-x)^2}{x}$$

Landau variable

Q1: Two banana Calabi-Yau geometries

Consider the following representation of the ice cone:

$$I_{\text{ice}}^{(l)} = \int \frac{d^2k}{((k-p_1)^2 - m^2)((k+p_2)^2 - m^2)} I_{\text{ban}}^{(l-1)}(k^2)$$

$$I_{\text{ice, cut}}^{(l)} = \oint \frac{du}{(u - m^2 x)(u - m^2 / x)} I_{\text{ban, cut}}^{(l-1)}(u)$$

have two choose two different residues

$$\frac{s}{m^2} = -\frac{(1-x)^2}{x}$$

Landau variable

We have **two copies** of the cut banana integrals appearing in the cuts of ice cone:

$$\left\{I_{\text{cut, ice}}^{(l)}\right\} = \left\{I_{\text{ban, cut}}^{(l-1)}(m^2x), I_{\text{ban, cut}}^{(l-1)}(m^2/x)\right\}, \quad 2(l-1)$$

CY periods

• We found that a good basis of master integrals is given by:

trivial master integrals:

simple algebraic & log

• We found that a good basis of master integrals is given by:

trivial master integrals:

constant

simple algebraic & log

non-trivial master integrals:

correspond to the two copies of the bananas

Graw waster

vanishes in two dimensions

• We found that a good basis of master integrals is given by:

trivial master integrals:

simple algebraic & log

non-trivial master integrals:

Graw waster

vanishes in two dimensions

For this basis we can (conjecturally) write down the full GM system in two dimensions.

Q2: Iterated Calabi-Yau Period Integrals

The only non-trivial part of the GM system takes the simple form:

$$\frac{\mathrm{d}}{\mathrm{d}x} \underline{\mathcal{I}}_{l}^{+} = \mathbf{G} \mathbf{M}_{\mathrm{ban}}^{(l-1)}(x) \underline{\mathcal{I}}_{l}^{+} + \underline{N}_{l}^{+} I_{0} + \mathcal{O}(d-2)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \underline{\mathcal{I}}_{l}^{-} = \mathbf{G} \mathbf{M}_{\mathrm{ban}}^{(l-1)}(1/x) \underline{\mathcal{I}}_{l}^{-} + \underline{N}_{l}^{-} I_{0} + \mathcal{O}(d-2)$$

To fix the boundary condition we notice:

$$\mathcal{L}_{\text{ice},l}\mathcal{I}_{l,1}^{+} = (\theta - 1)^{2}\mathcal{L}_{\text{ban},l-1}\mathcal{I}_{l,1}^{+} = 0$$

Double extension of CY operator

• As in the banana case the master integrals of the ice cone family are iterated CY period integrals:

$$\underline{\mathcal{I}}_{l}^{+} \sim \mathbf{W}_{l-1}^{+} \mathbf{\Sigma}_{l-1} \int_{0}^{x} \frac{\log(x')}{x'^{2}} \underline{\Pi}_{l-1}(x') dx' + \mathbf{W}_{l-1}^{+} \underline{c}_{l}^{+}$$

Q2: Iterated Calabi-Yau Period Integrals

• The only non-trivial part of the GM system takes the simple form:

$$\frac{\mathrm{d}}{\mathrm{d}x} \underline{\mathcal{I}}_{l}^{+} = \mathbf{G} \mathbf{M}_{\mathrm{ban}}^{(l-1)}(x) \underline{\mathcal{I}}_{l}^{+} + \underline{N}_{l}^{+} I_{0} + \mathcal{O}(d-2)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \underline{\mathcal{I}}_{l}^{-} = \mathbf{G} \mathbf{M}_{\mathrm{ban}}^{(l-1)}(1/x) \underline{\mathcal{I}}_{l}^{-} + \underline{N}_{l}^{-} I_{0} + \mathcal{O}(d-2)$$

To fix the boundary condition we notice:

$$\mathcal{L}_{\text{ice},l}\mathcal{I}_{l,1}^{+} = (\theta - 1)^{2}\mathcal{L}_{\text{ban},l-1}\mathcal{I}_{l,1}^{+} = 0$$

Double extension of CY operator

• As in the banana case the master integrals of the ice cone family are **iterated CY period integrals**:

$$\mathcal{I}_{l,1}^{+} \sim \varpi_{0}(q) \left(\sum_{k=1}^{l-1} c_{l-k}^{+} I(1, Y_{1}, \dots, Y_{l-k-2}; q) - l! I(1, Y_{1}, \dots, Y_{1}, 1, g_{\text{ice}}; q) \right)$$

Pure function of weight I

Q2: Special Calabi-Yau Monodromies

• We used numerics to fix the boundary values.

 $(l \le 7)$

Special monodromies of the ice cone integrals:

$$(l \leq 3)$$

• We found a generating series:

$$1 + \sum_{l+2}^{\infty} (-1)^{l+1} c_{l,1}^{+} \frac{t^{l}}{l!} = \Gamma(1-t)^{2} e^{-2\gamma t} \qquad \text{and} \qquad c_{l+1,k+1}^{+} = (l+1) c_{l,k}^{+}$$

ullet $\hat{\Gamma}$ -class?

Bananas vs. Ice Cones

maximal cut geometry:

(l-1) -dimensional CY M_{l-1}

maximal cut geometry:

two (l-2) -dimensional CYs M_{l-2}

$$I_{\text{ban},l} \sim \varpi_0(q) \left(\sum_{k=1}^{l} \lambda_k I(1, Y_1, \dots, Y_{l-k-1}; q) \right)$$

$$+I(1, Y_1, \ldots, Y_1, 1, g_{\text{ban}}; q)$$

pure function of weight l

$$\mathcal{I}_{l,1}^+ \sim \varpi_0(q) \left(\sum_{k=1}^{l-1} c_{l-k}^+ I(1, Y_1, \dots, Y_{l-k-2}; q) \right)$$

$$-l!I(1, Y_1, \dots, Y_1, 1, g_{ice}; q)$$

pure function of weight l

$$\mathcal{L}_{\text{ban},l} = (\theta - 1)\mathcal{L}_{\text{CY},l-1}$$

single extension

$$\mathcal{L}_{\text{ice},l} = (\theta - 1)^2 \mathcal{L}_{\text{CY},l-2}$$

double extension

generating series:
$$-\frac{\Gamma(1-t)}{\Gamma(1+t)}e^{-2\gamma t - i\pi t} + \widehat{\Gamma}\text{-class}$$

generating series:
$$\Gamma(1-t)^2e^{-2\gamma t}$$

• Fishnet graphs are obtained from a cut of a tiling of the plane:

• These graphs yield **conformal integrals** if at each vertex the propagator powers add up to the dimension:

$$D=1$$
:

$$u_i=rac{1}{4}$$
 ,

$$D=2$$
:

$$D=1:$$
 $\qquad
u_i=rac{1}{4}$, $\qquad D=2:$ $\qquad
u_i=rac{1}{2}$, $\qquad D=4:$ $\qquad
u_i=1$, ...

$$u_i=1$$
 , ...

[2]

• Fishnet graphs are obtained from a cut of a tiling of the plane:

• These graphs yield **conformal integrals** if at each vertex the propagator powers add up to the dimension:

$$D=1$$
:

$$u_i=rac{1}{4}$$
 ,

$$D=2$$
:

$$D=1:$$
 $\qquad
u_i=rac{1}{4}$, $\qquad D=2:$ $\qquad
u_i=rac{1}{2}$, $\qquad D=4:$ $\qquad
u_i=1$, ...

$$u_i=1$$
 , ...

We consider fishnet integrals in two Euclidean dimensions. Here we can express everything through complex quantities:

• External points:
$$a_i \in \mathbb{C}$$

$$lacktriangle$$
 Internal points: $X_j \in \mathbb{C}$

$$lacktriangleq$$
 Propagators: $\dfrac{1}{|X_i-X_j|}$ or $\dfrac{1}{|X_i-a_j|}$

These integrals have a **permutation** and **Yangian** Symmetry.

[2]

Q1: Calabi-Yau geometry

The Calabi-Yau geometry follows immediately from our integral representation:

$$I_G(a) = \int_{(\mathbb{P}^1)^l} \left(\prod_{i=1}^l \frac{\mathrm{d}\bar{X}_i \wedge \mathrm{d}X_i}{-2i} \right) \frac{1}{\sqrt{|P_G(X,a)|^2}}$$

$$\{Y^2 = P_G(X,a)\} \subset \mathbb{P}^1 \times \ldots \times \mathbb{P}^1$$
 This yields a CY with Ω iff P_G
$$\Omega = \frac{\mu}{\sqrt{P_G(X,a)}}$$
 has degree four in each \mathbb{P}^1 .

Four-valence of vertices

Q1: Calabi-Yau geometry

The Calabi-Yau geometry follows immediately from our integral representation:

$$I_G(a) = \int_{(\mathbb{P}^1)^l} \left(\prod_{i=1}^l \frac{\mathrm{d}\bar{X}_i \wedge \mathrm{d}X_i}{-2i} \right) \frac{1}{\sqrt{|P_G(X,a)|^2}}$$

$$\{Y^2 = P_G(X,a)\} \subset \mathbb{P}^1 \times \ldots \times \mathbb{P}^1 \quad \begin{cases} \text{ This yields a CY with } \Omega \text{ iff } P_G \\ \Omega = \frac{\mu}{\sqrt{P_G(X,a)}} \end{cases} \quad \text{has degree four in each } \mathbb{P}^1.$$

Four-valence of vertices

- Unfortunately, the constraint $Y^2 = P_G(X, a)$ is **singular**:
 - Take Newton polytope and Batyrev's mirror construction.

too many parameters

Resolve singularities by a small resolution.

But fortunately, we can compute the **Picard-Fuchs ideal** from the "torus period":

Q1: Calabi-Yau geometry

The Calabi-Yau geometry follows immediately from our integral representation:

$$I_G(a) = \int_{(\mathbb{P}^1)^l} \left(\prod_{i=1}^l \frac{\mathrm{d}\bar{X}_i \wedge \mathrm{d}X_i}{-2i} \right) \frac{1}{\sqrt{|P_G(X,a)|^2}}$$

$$\left\{ Y^2 = P_G(X,a) \right\} \subset \mathbb{P}^1 \times \ldots \times \mathbb{P}^1$$
 This yields a CY with Ω iff P_G
$$\Omega = \frac{\mu}{\sqrt{P_G(X,a)}}$$
 has degree four in each \mathbb{P}^1 .

Four-valence of vertices

- Unfortunately, the constraint $Y^2 = P_G(X, a)$ is **singular**:
 - Take Newton polytope and Batyrev's mirror construction.

too many parameters

- Resolve singularities by a small resolution. complicated
- But fortunately, we can compute the **Picard-Fuchs ideal** from the "torus period":

The Picard-Fuchs ideal equals the ideal of differential operators derived from the Yangian symmetry and the Permutation symmetries of the graph.

Q2: Monodromy invariance

• Fishnet integrals are **monodromy invariant**:

vector of integral periods

Kähler potential from string theory

$$I_G(a) = \int_{(\mathbb{P}^1)^l} \left(\prod_{i=1}^l \frac{\mathrm{d}\bar{X}_i \wedge \mathrm{d}X_i}{-2i} \right) \frac{1}{\sqrt{|P_G(X,a)|^2}}$$
$$\sim \int_M \Omega \wedge \bar{\Omega}$$

$$\sim \Pi^\dagger \Sigma \Pi$$

$$\sim e^{-K}$$

Q2: Monodromy invariance

• Fishnet integrals are monodromy invariant:

$$I_G(a) = \int_{(\mathbb{P}^1)^l} \left(\prod_{i=1}^l \frac{\mathrm{d}\bar{X}_i \wedge \mathrm{d}X_i}{-2i} \right) \frac{1}{\sqrt{|P_G(X,a)|^2}}$$
$$\sim \int_M \Omega \wedge \bar{\Omega}$$

vector of integral periods

Kähler potential from string theory

$$\sim \Pi^\dagger \Sigma \Pi$$

$$\sim e^{-K}$$

 "We can compute Fishnet integrals from the Yangian and permutation symmetry and combine them in a monodromy invariant way."

new results for two- and three-loop fishnets

Q2: Additional observations

• Using mirror symmetry we can interpret a fishnet integral as a quantum volume of the mirror CYs:

$$I_G \sim \Pi^{\dagger} \Sigma \Pi \sim |\Pi_0|^2 \text{Vol}_{q}(W)$$

 $\sim |\Pi_0|^2 \text{Vol}_{cl}(W) + \mathcal{O}(e^{-t(z)})$

quantum corrections in string theory

For elliptic curves and K3s these quantum corrections are absent:

$$I_{\mathcal{E}} \sim |\Pi_0|^2 \mathrm{Im}(t)$$
 and $I_{\mathrm{K3}} \sim |\Pi_0|^2 (\mathrm{Im}(t))^2$

• For one-parameter fishnets the quantum volume is again a pure function.

Q2: Additional observations

• Using mirror symmetry we can interpret a fishnet integral as a quantum volume of the mirror CYs:

$$I_G \sim \Pi^{\dagger} \Sigma \Pi \sim |\Pi_0|^2 \text{Vol}_{q}(W)$$

 $\sim |\Pi_0|^2 \text{Vol}_{cl}(W) + \mathcal{O}(e^{-t(z)})$

quantum corrections in string theory

For elliptic curves and K3s these quantum corrections are absent:

$$I_{\mathcal{E}} \sim |\Pi_0|^2 \mathrm{Im}(t)$$
 and $I_{\mathrm{K3}} \sim |\Pi_0|^2 (\mathrm{Im}(t))^2$

- For one-parameter fishnets the quantum volume is again a pure function.
- There are interesting **relations** between different fishnet integrals:

The periods of a (MxN)-fishnet graphs can be constructed from (MxM)-determinants of the period matrix of the (M+n-1)-ladder graphs.

• What do these relations mean on the level of the CY geometries?

- ullet So far we have only considered Feynman integrals in exactly ${f d}={f 2}.$
- But many Feynman integrals are divergent and regularization is required:

Dimensional regularization

$$d = 2 \rightarrow d = 2 - 2\epsilon$$

$$I(z,\epsilon) = \sum_{k=-m}^{\infty} I_k(z)\epsilon^k$$

$$dI(z,\epsilon) = A(z,\epsilon)I(z,\epsilon)$$

$$\mathcal{L}(z,\epsilon)I(z,\epsilon) = \text{Inhom}(z,\epsilon)$$

- \bullet So far we have only considered Feynman integrals in exactly $\mathbf{d}=\mathbf{2}$.
- But many Feynman integrals are **divergent** and **regularization** is required:

$$d = 2 \rightarrow d = 2 - 2\epsilon$$

$$I(z,\epsilon) = \sum_{k=-m}^{\infty} I_k(z)\epsilon^k$$

$$dI(z,\epsilon) = A(z,\epsilon)I(z,\epsilon)$$

$$\mathcal{L}(z,\epsilon)I(z,\epsilon) = \text{Inhom}(z,\epsilon)$$

• The ϵ -expansion can easily be solved if the GM system is ϵ -factorized:

$$\tilde{I}(z,\epsilon) = T(z,\epsilon)I(z,\epsilon)$$

such that
$$d\tilde{I}(z,\epsilon)=\epsilon \tilde{A}(z)\tilde{I}(z,\epsilon)$$

$$ilde{I}(z,\epsilon) = \mathbb{P} \exp\left(\epsilon \int_{z_0}^z ilde{A}(z') dz' \right) ilde{I}(z_0,\epsilon) \quad ext{and} \qquad \qquad ilde{I}_k(z) = ext{ Iterated integrals over } ilde{A}_{ij}(z)$$

$$ilde{I}_k(z)= ext{ Iterated integrals over } ilde{A}_{ij}(z)$$

- \bullet So far we have only considered Feynman integrals in exactly $\mathbf{d}=\mathbf{2}$.
- But many Feynman integrals are **divergent** and **regularization** is required:

$$d = 2 \rightarrow d = 2 - 2\epsilon$$

$$I(z,\epsilon) = \sum_{k=-m}^{\infty} I_k(z)\epsilon^k$$

$$dI(z,\epsilon) = A(z,\epsilon)I(z,\epsilon)$$

$$\mathcal{L}(z,\epsilon)I(z,\epsilon) = \text{Inhom}(z,\epsilon)$$

• The ϵ -expansion can easily be solved if the GM system is ϵ -factorized:

$$\tilde{I}(z,\epsilon) = T(z,\epsilon)I(z,\epsilon)$$

such that
$$d ilde{I}(z,\epsilon)=\epsilon ilde{A}(z) ilde{I}(z,\epsilon)$$

$$ilde{I}(z,\epsilon) = \mathbb{P} \exp\left(\epsilon \int_{z_0}^z ilde{A}(z') dz'
ight) ilde{I}(z_0,\epsilon) \quad ext{and} \qquad \qquad ilde{I}_k(z) = ext{ Iterated integrals over } ilde{A}_{ij}(z)$$

$$ilde{I}_k(z)= ext{ Iterated integrals over } ilde{A}_{ij}(z)$$

 \bullet For **equal-mass bananas** a ϵ -factorized GM was found by Weinzierl et al..

[Weinzierl]

• We focus with our new approach more on elliptic Feynman integrals of phenomenological relevance in one and more parameters. But our approach works also for at least some non-elliptic examples.

ullet Our approach is based on constructing the rotation $T(z,\epsilon)$ in **different steps**:

[new]

$$T(z,\epsilon) = T_{\text{new objects}} T_{\text{tot. deri.}} T_{\epsilon-\text{scalings}} T_{\text{semi-simple}} T_{\text{lead. sing.}}$$

 ϖ_0

Our approach is based on constructing the rotation $T(z,\epsilon)$ in **different steps**:

[new]

$$T(z,\epsilon) = T_{\text{new objects}} T_{\text{tot. deri.}} T_{\epsilon-\text{scalings}} T_{\text{semi-simple}} T_{\text{lead. sing.}}$$

• We perform a "leading singularities"-type analysis:

 $T_{\text{lead. sing.}}$

• Multiplication with the inverse semi-simple part of the Wronskian:

 $T_{\text{semi-simple}}$

$$W=SU \quad \text{with} \quad S=\begin{pmatrix} \varpi_0 & 0 \\ \varpi_0' & f(\varpi_0) \end{pmatrix} \quad \text{and} \quad U=\begin{pmatrix} 1 & t=\frac{\varpi_1}{\varpi_0} \\ 0 & 1 \end{pmatrix}$$

• Simple rescalings with ϵ :

 $T_{\epsilon-\text{scalings}}$

 \odot **Total derivatives/simple rotations** remove nearly all disturbing ϵ terms:

 $T_{\rm tot.\ deri.}$

• The remaining wrong ϵ terms can be removed by introducing **new** objects. These new objects are **integrals over** ϖ_0 :

 $T_{\text{new objects}}$

Our approach is based on constructing the rotation $T(z,\epsilon)$ in **different steps**:

[new]

$$T(z, \epsilon) = T_{\text{new objects}} T_{\text{tot. deri.}} T_{\epsilon-\text{scalings}} T_{\text{semi-simple}} T_{\text{lead. sing.}}$$

• We perform a "leading singularities"-type analysis:

 $T_{\text{lead. sing.}}$

• Multiplication with the inverse semi-simple part of the Wronskian:

 $T_{\text{semi-simple}}$

$$W=SU \quad \text{with} \quad S=\begin{pmatrix} \varpi_0 & 0 \\ \varpi_0' & f(\varpi_0) \end{pmatrix} \quad \text{and} \quad U=\begin{pmatrix} 1 & t=\frac{\varpi_1}{\varpi_0} \\ 0 & 1 \end{pmatrix}$$

• Simple rescalings with ϵ :

 $T_{\epsilon-\text{scalings}}$

 \odot **Total derivatives/simple rotations** remove nearly all disturbing ϵ terms:

 $T_{\rm tot.\ deri.}$

• The remaining wrong ϵ terms can be removed by introducing **new** objects. These new objects are **integrals over** ϖ_0 :

 $T_{\text{new objects}}$

- \bullet As for ϵ = 0 we need integrals over ϖ_0 .
- Advantage of our approach is that one sees what new objects one needs and that they are independent.
- Also in Weinzierl's approach for non-elliptic geometries one needs these new objects.

• Example: **Electroweak form factor**

$$d = 4 - 2\epsilon$$

$$z = s/m^2$$

18 master integrals

elliptic top sector with residue

• Example: Electroweak form factor

$$d = 4 - 2\epsilon$$

$$z = s/m^2$$

18 master integrals

elliptic top sector with residue

$$T(z,\epsilon) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$\cdot \left(\begin{array}{ccc} 1 & 0 & 0 \\ -\frac{2}{3}(z+1)\varpi_0(z) & 1 & 0 \\ \frac{1}{24}\left(5z^2 - 44z - 76\right)\varpi_0(z)^2 & 0 & 1 \end{array}\right)$$

$$\cdot \left(\begin{array}{ccc} \epsilon^4 & 0 & 0 \\ 0 & 0 & \epsilon^4 \\ 0 & \epsilon^3 & 0 \end{array} \right)$$

$$\cdot \begin{pmatrix} \frac{1}{\varpi_0(z)} & 0 & 0 \\ \frac{1}{8}(z-8)(z+1)(\varpi_0(z)+z\varpi_0'(z)) & \frac{1}{4}(z-8)(z+1)\varpi_0(z) & 0 \\ 0 & 0 & 1 \end{pmatrix} T_{\text{semi-simple}}$$

$$\begin{pmatrix} 0 & 0 \\ \frac{1}{4}(z-8)(z+1)\varpi_0(z) & 0 \\ 0 & 1 \end{pmatrix}$$

$$T_{\text{new objects}}$$

$$T_{\rm tot.\ deri.}$$

$$T_{\epsilon-\text{scalings}}$$

$$T_{\text{semi-simple}}$$

 $T_{\text{lead. sing.}}$

$$egin{array}{cccc} \cdot \left(egin{array}{cccc} z & 0 & 0 \ 0 & z & 0 \ 0 & 0 & z \end{array}
ight)$$

Full ϵ -factorized GM differential equation:

1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ł	0	0	$-\frac{\epsilon}{z}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ł	0	0	0	$\frac{\epsilon}{z}$	$-\frac{\epsilon}{z+1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	
ł	0	0	0	$\frac{6\epsilon}{z}$	$-\frac{4\epsilon}{z+1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	
ł	$\frac{\epsilon}{2(z-1)}$	0	0	$\frac{2\epsilon}{z-1}$	$-\frac{\frac{\epsilon}{\epsilon}}{2(z-1)}$	$-\frac{\epsilon}{(z-1)z}$	0	0	$-\frac{\epsilon}{z-1}$	0	0	0	0	0	0	0	0	0	
İ	0	0	0	0	0	0	$\frac{\epsilon}{z}$	0	0	$\frac{\epsilon}{\sqrt{z-4}\sqrt{z}}$	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	$-\frac{2\epsilon}{z}$	0	0	0	0	0	0	0	0	0	0	
	$-\frac{\epsilon}{2(z-1)}$	0	0	$-\frac{(z+1)\epsilon}{(z-1)z}$	$\frac{\epsilon}{2(z-1)}$	$\frac{\epsilon}{(z-1)z}$	0	0	$-\frac{(z-2)\epsilon}{(z-1)z}$	0	0	0	0	0	0	0	0	0	
	$\frac{\epsilon}{\sqrt{z-4}\sqrt{z}}$	0	$\frac{\epsilon}{\sqrt{z-4}\sqrt{z}}$	0	0	0	$-\frac{3\epsilon}{\sqrt{z-4\sqrt{z}}}$	0	0	$-\frac{(3z-4)\epsilon}{(z-4)z}$	0	0	0	0	0	0	0	0	
ı	0	0	0	$-\frac{\epsilon}{2\pi}$	0	0	0	0	0	0	0	0	0	$\frac{\epsilon}{z}$	0	0	0	0	
ŀ	0	0	0	0	0	$-\frac{\epsilon}{2}$	$\frac{2\epsilon}{z}$	0	0	0	0	0	0	$\tilde{0}$	0	0	0	0	
	0	$\frac{\epsilon}{8z}$	0	$-\frac{3\epsilon}{2z}$	$\frac{\epsilon}{4z}$	0~	Õ	0	0	0	0	0	$\frac{\epsilon}{z}$	0	$-\frac{\epsilon}{z}$	0	0	0	
l	$\frac{\epsilon}{(z-1)(z+1)}$	$-\frac{\epsilon}{4(z+1)}$	0		$-\frac{z\epsilon}{(z-1)(z+1)}$	$-\frac{2\epsilon}{(z-1)(z+1)}$	0	0	$-\frac{2z\epsilon}{(z-1)(z+1)}$	0	$-\frac{2\epsilon}{z(z+1)}$	0	0	$\frac{(z+3)\epsilon}{z(z+1)}$	0	0	0	0	
	0	$\frac{\epsilon}{4(z+1)}$	$-\frac{\epsilon}{z+1}$	$-\frac{\epsilon}{z+1}$	$\frac{(z-1)(z+1)}{\frac{\epsilon}{2(z+1)}}$	0	0	$-\frac{2\epsilon}{z+1}$	0	0	0	0	$\frac{2\epsilon}{z+1}$	0	$-\frac{2\epsilon}{z+1}$	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$-\frac{(z^2+2z+28)\epsilon}{3(z-8)z(z+1)}$	0	$-\frac{8\epsilon}{(z-8)z(z+1)\varpi_0(z)^2}$	
	0	$\frac{\epsilon}{12z}$	0	$-\frac{4\epsilon}{3z}$	$\frac{\epsilon}{6z}$	$\frac{4\epsilon}{3z}$	$-\frac{4\epsilon}{3z}$	0	0	0	0	0	$\frac{2\epsilon}{3\tau}$	$\frac{2\epsilon}{3z}$	$-\frac{2\epsilon}{3z}$	$\frac{3(z-8)z(z+1)}{4(z+1)\epsilon\varpi_0(z)}$	$\frac{2\epsilon}{3\epsilon}$	0	
	$\frac{1}{2}\epsilon\varpi_0(z)$	$-\frac{(13z-8)\epsilon\varpi_0(z)}{48z}$	$-\epsilon \varpi_0(z)$	$\frac{(73z-20)\epsilon\varpi_0(z)}{12z}$	$-\frac{(37z-8)\epsilon\varpi_0(z)}{24z}$	$\frac{3z}{(5z+8)\epsilon\varpi_0(z)}$	$-\frac{(59z+32)\epsilon\varpi_0(z)}{12z}$	$-2\epsilon\varpi_0(z)$	$-2\epsilon\varpi_0(z)$	$-\frac{(7z-8)\epsilon\varpi_0(z)}{4\sqrt{z-4}\sqrt{z}}$	$\frac{2\epsilon\varpi_0(z)}{z}$	0 -	$-\frac{(7z-8)\epsilon\varpi_0(z)}{6z}$	$\frac{2(2z-1)\epsilon\varpi_0(z)}{3z}$	$\frac{(7z-8)\epsilon\varpi_0(z)}{6z}$	$-\frac{(z-2)\left(11z^3 - 66z^2 - 84z - 88\right)\epsilon\varpi_0(z)^2}{24(z-8)z(z+1)}$	$-\frac{3z}{3z}$	$-\frac{\left(z^2+2z+28\right)\epsilon}{3(z-8)z(z+1)}$	

Our examples include so far (two-loop Higgs+jet-production in QCD):

• For multi-parameter elliptic or more complicated geometries we need as new kernels:

$$\int^z R_2(z') \int^{z'} R_2(z'') \varpi_0(z'')^3 dz' dz'' \qquad \int \varpi_0(z_1, z_2) dz_1 \qquad \qquad \int R(z) \varpi_0(z) \varpi_0(1/z) dz$$
 [Weinzierl]
$$\int \varpi_0'(z) \varpi_0(1/z) dz$$

$$\int \varpi_0(z_1,z_2)dz_1$$

$$\int R(z)\varpi_0(z)\varpi_0(1/z)dz$$

Number of new kernels depends on number of parameters and the total elliptic sector with residues.

Conclusion

• Unterstanding CY geometries is essential for understanding higher loop Feynman integrals.

- The geometry behind a Feynman integral tells us the function space and boundary condition.
- Dictionary between Feynman integrals and non-trivial geometries.
- Using CY techniques we can solve so far three different families of Feynman graphs:

- \odot Our new approach gives, in particular for elliptic Feynman integrals, ϵ -factorized differential equations.
 - For this we have to introduce new objects which are (iterated) integrals of $arpi_0$.
- Open questions:
 - Other families with underlying Calabi-Yau geometry?
 - What are the limits of our method for ϵ -factorized differential equations?
 - Need mathematical definition of iterated Calabi-Yau periods similar to elliptic polylogs.

Thank you for your attention

