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Motivation

® Feynman integrals are cornerstone of perturbative QFT and necessary for
predictions in collider and gravitational wave experiments.

@® High precision measurements require multi-loop Feynman integral computations.

@® There are many examples starting at two loops where elliptic functions show up.
This means that these Feynman integrals have an associated non-trivial geometry.

@ At higher loops we have examples where even more complicated geometries appear.

—=— ,

® Feynman integrals give us interesting mathematical structures (algebraic geometry, number

theory, ...) we want to understand.
: TUTI




Questions

How do we get a geometry behind a Feynman integral?

Different approaches depending on particular example

Q2 l How does this geometry help us to compute
Feynman integrals?

Useful insights, for instance function space & boundary conditions
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The Banana Family

Two dimensions [3-5]
s

v Equal-mass and generic-mass case

Q1l: Calabi-Yau geometry

@ Second graph polynomial defines a CY: “CY = {F=0}"
Singular

@® Smooth Calabi-Yau mirror pairs from toric resolution and the Batyrev construction:
M;—1 ={Pa, =0CPar} Mirror Symmetry Wi_1 ={Par =0CPa,}

® Toric resolution introduces new parameters: pl=2t =712 s, [+1

1
- ]_-Mz

Imax —

@® Analysis of "torus period" (holomorphic period):

[+1
@ Associated smooth complete intersection CY: MY = {Pl =P,=0cFc X P%i)} [Kerr, 3]
1=1

2
© Correct number of parameters: 2, = —2

Ziofori=1,...,0+1
: P TUTI



The Banana Family

Q2: Calabi-Yau Period Integrals

® The maximal cuts of the banana family are period integrals of the CY M;_,

® One can compute these periods using differential equations:

@ Integration by Parts identities
@ Griffiths reduction method or GKZ approach

@® Compute a single period and operators via ansatz, e.g. "torus period" IIy = / 0

@® Combination of different approaches

Picard-Fuchs ideal or Gauss-Manin system

T’n



The Banana Family

Q2: Calabi-Yau Period Integrals

® The maximal cuts of the banana family are period integrals of the CY M;_,

® One can compute these periods using differential equations: Picard-Fuchs ideal or Gauss-Manin system

@ Integration by Parts identities
@ Griffiths reduction method or GKZ approach

@® Compute a single period and operators via ansatz, e.g. "torus period" IIy = / 0
TTL
@ Combination of different approaches

@® The simplex integration domain of the full banana integral makes it a relative CY period:

—= Inhomogeneous diff. egs.: D, I1(z) = q,(z,log(2))

@ Full Feynman integral is linear combination of basis solutions { @}
which are the Calabi-Yau periods plus additional special solutions I(g) — E A; T; (g)
)

of the inhomogeneous D-module:
; TUTI



The Banana Family

Q2: Iterated Calabi-Yau Period Integrals

® Griffiths transversality gives quadratic relations: Z(2) = W(2)SW(2)T  with  W(z);,; = {0.w;}

® The additional special solution can be interpreted as iterated Calabi-Yau period:

Looni(2) ~ IL(2)T / 4=/ W(=')~" Inhom, () + WA
0

Quadratic relations to
invert Wronskian

Generalization of
elliptic polylogarithms?

~ Function space & > iterated CY period
banana family - integrals of M;_




The Banana Family

Q2: Iterated Calabi-Yau Period Integrals

® Griffiths transversality gives quadratic relations: Z(2) = W(2)SW(2)T  with  W(z);,; = {0.w;}

® The additional special solution can be interpreted as iterated Calabi-Yau period:

Looni(2) ~ IL(2)T / 4=/ W(=')~" Inhom, () + WA
0

Quadratic relations to
invert Wronskian

Generalization of
elliptic polylogarithms?

- Function space , “
banana family < >

@® With the mirror map (canonical variable) we can also express the CY periods as iterated integrals:

Y-invariants
Tpan,i ~ wO(Q)(Z)\kl(LYh o Yiegm139) HI(L YA, YL L gbans C]))

1 Pure function of
: weight I2 TUT



The Banana Family

Q2: Special Calabi-Yau Monodromies

@® There are plenty of different approaches to get the boundary condition:

@ In certain limits maybe some integrals are known (standard).

@® The banana integrals have special monodromies:

I’Ju('a)
- =-— - * — Kooo— — H
- - 200 Rof2)

2=0 2=, 2 =Y
- hesa (e-4
© Generating series: > 0 ¢l =— e 2Vt and N\ = (—1)’“( ))\O
2 (13 1)! T(1+1) k

® T'-class from CY geometry: [Iritani]

Im(\):  Im(I(T)) = /W STE(TW, 1) + O(T)

Re(\): Re(I(T)) = /F GWTES _T_ 2; cos(mey) + O(el)

@® Combination of different approaches 'I'u'"
8



41 Equal-Mass Banana Integral

Equal Mass Case: 1) PF equation:

L4=1—5z+ (—4+282)0 + (6 — 632 + 2627 — 2252°)0* + (—4 + 70z — 4502°)6°
+(1-2)1—-92)(1 - 252)94 AESZ 34 [Almquist, Enckefort,
van Straten and Zudilin]

L414(z) = =5z or (0 —1)LyI4(2)=0 First extension of CY operator

2) Frobenius basis:

k

Z (k) log( )j for & wo = z + 52° + +452° + 5452 + 78852° + - -
W = . ) log(2)? Xk ork=1,...,4—1
= \J ’ 2, = 822 4+ 10023 + 41348z4 ;o 31 98 5
z B 197 5 33637 , 2402477 ;
= (1) +1)) ( ) log(z)? ©y_; e TR T t
= S — 19,2 267 5 19295 , 933155 ,
3T TR T 18 - 144~
¥4 = 18302° + 12 720 4 47200115 5 |
3 72
3) Linear combination I4(z) = (—450¢(4) — 80¢(3)im)wg + (80¢(3) — 120((2)im) o1
fromI'-conjecture: + 180 (2)w2 + 20imws + w4
4) Analytic structure: /—\
ot =s g - 4 e
. Bt \ .
hDV\o&rOW‘7 ockim: Ty =5 Hao Ly \oromch cut 1
’Eq g > IL' ‘ bananen 'ml:&&m[ s real
: ~ Nessel 9(“.,\46'0\4 re presen to o
as ?m&&o\ 107 the gPE-Ca[ theorew



The lce Cone Family

® Now we consider the family of ice cone integrals:

external parameters: Pp1and P2 with p% = p% =0
so we have only s = 2pq - po

internal masses: all equal tom

dimension: two

—~=y With these configurations this is a one-parameter family s/m2.

o TUTI



The lce Cone Family

® Now we consider the family of ice cone integrals:

external parameters: Pp1and P2 with p% = p% =0
so we have only s = 2pq - po

internal masses: all equal tom

dimension: two

—~=y With these configurations this is a one-parameter family s/m2.

Q1: Calabi-Yau geometry

@® Naively, we expect that the banana integrals and therefore a CY geometry play a
prominent role for ice cone integrals since they explicitly appear in their diagrams.

® We will not find the CY from the graph polynomials here. [Doran, Harder, Vanhove]

® We will find the ice cone geometry from analyzing maximal cuts.

o TUTI



The lce Cone Family

Q1l: Calabi-Yau geometry

@® Consider the following representation of the ice cone:

d*k _
I(l) :/ I(l 1) k2
= | = pr =) (o pa)? =) e )

! TUTI



The lce Cone Family

Q1l: Calabi-Yau geometry

@® Consider the following representation of the ice cone:

d*k _
I(Z) :/ I(l 1) k2
= | = pr =) (o pa)? =) e )

@® We analyze the maximal cuts in with the Baikov representation:

S

du I—1
0 _ ]{ 70-1)
1ce, cut (u _ mQZIZ) (’LL _ m2/:13) ban, cut (u) (1 B 33)2

m2 T
Landau variable

! TUTI



The lce Cone Family

Q1l: Two banana Calabi-Yau geometries

@® Consider the following representation of the ice cone:

d*k _
I(l) :/ I(l 1) k2
= | = pr =) (o pa)? =) e )

@® We analyze the maximal cuts in with the Baikov representation:

du I—1
O ]{ =D ()
ice, cu ) o2 ban, cut
(= ) (u = m? ) oo s (-ap
N R R
\ / \ Landau variable
have two choose two CY periods

different residues

-~y \We have two copies of the cut banana integrals appearing in the cuts of ice cone:

(0 oo = {1 m20), T (m ) b, 20— 1)

3 TUTI



The lce Cone Family

® We found that a good basis of master integrals is given by: 1]

trivial master integrals:

L —— i (- - /)

simple
algebraic & log

constant

: TUTI



The lce Cone Family

® We found that a good basis of master integrals is given by:

trivial master integrals:

[1]

L —— i (- - /)

constant

non-trivial master integrals:

\% + \%x Nuwesa bor
— — -

correspond to the two
copies of the bananas

12

simple
algebraic & log

u
G)\'O.!M ukustﬁ\'

e
vanishes in two
dimensions




The lce Cone Family

® We found that a good basis of master integrals is given by: 1]

trivial master integrals:

L —— i (- - /)

simple
algebraic & log

constant

non-trivial master integrals:

\% i \?’Q D“m\‘OLD“ G'\'o.w wu&‘ﬁv “
—— —— e’

\——\r_-J

correspond to the two vanishes in two
copies of the bananas dimensions

@® For this basis we can (conjecturally) write down the full GM system in two dimensions.

: TUTI



The lce Cone Family

Q2: Iterated Calabi-Yau Period Integrals

@® The only non-trivial part of the GM system takes the simple form:

I = GM, V(@)L + NI + O(d - 2)

d _
=L = GMy, V(1/2)Z; + N I+ 0(d —2)

@® To fix the boundary condition we notice:

Double extension
oL = (0 —1)? I =
£1ce,l [,1 ( ) ﬁban,l 1511 0 of CY operator

® As in the banana case the master integrals of the ice cone family are iterated CY period integrals:

T log(x’
igz )Hl—1($,)d$/ + VVlJr—lgl+

Wi s

. TUTI



The lce Cone Family

Q2: Iterated Calabi-Yau Period Integrals

@® The only non-trivial part of the GM system takes the simple form:

I = GM, (@)L + N o+ O(d - 2)

I = GM"V(1/2)Z + Ny I+ O(d — 2)

@® To fix the boundary condition we notice:

Double extension
oL = (0 —1)? I =
£1ce,l [,1 ( ) ﬁban,l 1511 0 of CY operator

® As in the banana case the master integrals of the ice cone family are iterated CY period integrals:

l_
+ .
Il,1 ~ wo(q) ( Z L1, Y1, Y k259) Pure function of
k=1 ight |
N1V, ... YA, 1,gice;q)) Wele

13
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The lce Cone Family

Q2: Special Calabi-Yau Monodromies

® We used numerics to fix the boundary values. (I<7)
@® Special monodromies of the ice cone integrals: (1<3)
A8
l} - — — ————
X=- 00 X=u Xf"é‘ Xe ):(;.z)" ety

® We found a generating series:

l
z 1+ U 207271
1+ g + Cl 1“ = F(l —t) e “7 and CZ—|:|_1,]€_|_1 - (l+ 1>Cl—|,_k
[+2

® I'-class?

’ TUTI



Bananas vs. Ilce Cones

maximal cut geometry:
(I —1)-dimensional CY M;_,

Tnan, ~ @o(g (Zwl Yi,.o o Yiko13q)

—|—I(1, Yl, ce ,Yl, 1,gban; q))

pure function of weight [

»Cban,l — (9 — 1)£CY,Z—1

single extension

generating series: —

+ I'-class

maximal cut geometry:
two (I — 2) -dimensional CYs M;_»

T, ~ wolg (ch TV Yk i)
—l![(l,Yl,...,Y1,1ygice;Q)>

pure function of weight [

['ice,l — (9 — 1)2£CY,Z—2

double extension

generating series: TI'(1 — t)%e™ 27"

; TUTI



Fishnet Integrals

@ Fishnet graphs are obtained from a cut of a tiling of the plane:

L ) [ ]
i

|

T

® These graphs yield conformal integrals if at each vertex the propagator powers add up to the dimension:

D=1: vV, = ’ D =2: Vi:%I D=4: Vzi:l,---

AN

. TUTI
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Fishnet Integrals

@ Fishnet graphs are obtained from a cut of a tiling of the plane:

2]

L ) [ ]
i

|

EAREEES

® These graphs yield conformal integrals if at each vertex the propagator powers add up to the dimension:

D=1: vV, = ’ D =2: Vi:%I D=4: Vizl,---

AN

® We consider fishnet integrals in two Euclidean dimensions. Here we can express everything through
complex quantities:

© External points: a; € C } l
dX; A dX; 1
ints: . N Ig(a) = -
© Internal points: X, El(C 1 ( c(a) /(Cl (I[l —9 ) \/|Pg(X, a)|?
@® Propagators: J

or
| X — X | X — aj

@® These integrals have a permutation and Yangian Symmetry.

g TUTI



Fishnet Integrals

Q1l: Calabi-Yau geometry

® The Calabi-Yau geometry follows immediately Te(a) = / H dX; A dX; 1
from our integral representation: A P\ —24 VIPa(X,a)?

B

{Y?=Pz(X,a)} CP' x...x P!
| This yields a CY with Q iff P

( _ 1 Four-valence of vertices v
has degree four in each IP-.

Q

_ 7
\/Pg(X, CL)

. Tum



Fishnet Integrals

Q1l: Calabi-Yau geometry

® The Calabi-Yau geometry follows immediately Te(a) / H dX; A dX; 1
cla) = .
(P1)! —2i VIPa(X,a)?

from our integral representation:

{Y?=Pz(X,a)} CP' x...x P!

Q

_ 7
\/Pg(X, CL)

B

| This yields a CY with Q iff P

( _ 1 Four-valence of vertices v
has degree four in each IP-.

@ Unfortunately, the constraint Y? = Pg(X, a) is singular:

@ Take Newton polytope and Batyrev’s mirror construction. == too many parameters

© Resolve singularities by a small resolution.  ~——=  complicated

@ But fortunately, we can compute the Picard-Fuchs ideal from the "torus period":

. TUm



Fishnet Integrals

Q1l: Calabi-Yau geometry

® The Calabi-Yau geometry follows immediately Te(a) = / H dX; A dX; 1
from our integral representation: A P\ —24 V]Pa(X,a)]2

B

{Y?=Pz(X,a)} CP' x...x P!
| This yields a CY with Q iff P

( _ 1 Four-valence of vertices v
has degree four in each IP-.

Q

_ 7
\/Pg(X, CL)

@ Unfortunately, the constraint Y? = Pg(X, a) is singular:

@ Take Newton polytope and Batyrev’s mirror construction. —-—= too many parameters

© Resolve singularities by a small resolution.  ~——=  complicated

@ But fortunately, we can compute the Picard-Fuchs ideal from the "torus period":

. The Picard-Fuchs ideal equals the ideal of differential operators derived
" from the Yangian symmetry and the Permutation symmetries of the graph. |

; TUm




Fishnet Integrals

Q2: Monodromy invariance

l —
dX; NdX; 1
® Fishnet integrals are monodromy invariant: Ig(a) = / H ;
(P \;4 —21 \/‘PG(Xa CL)|2
~ / QOAQ

M
vector of integral periods ~ TP
Kdhler potential from string theory ~e K

- TUTI



Fishnet Integrals

Q2: Monodromy invariance

@® Fishnet integrals are monodromy invariant:

vector of integral periods

Kahler potential from string theory

® "We can compute Fishnet integrals from the the Yangian and permutation symmetry and

combine them in a monodromy invariant way."

new results for two- and
three-loop fishnets

L7 a3 Q & ‘\llr
R
QG Q.S 13 qZ QG

18

400
300 -

200 |

100 p
]

0.05

0.1

0.15

0.2

0.25 m



Fishnet Integrals

Q2: Additional observations
@® Using mirror symmetry we can interpret a fishnet integral as a quantum volume of the mirror CYs:
I ~ IITYII ~ |TTy|*Voly (W)
~ |TIy|* Vol (W) + O(e 1))
T o
guantum corrections in string theory
@ For elliptic curves and K3s these quantum corrections are absent:

Ig ~J \HO\QIm(t) and IKg ~ |H0|2(Im(t))2

@® For one-parameter fishnets the quantum volume is again a pure function.

o TUTI



Fishnet Integrals

Q2: Additional observations
@® Using mirror symmetry we can interpret a fishnet integral as a quantum volume of the mirror CYs:
I ~ IITYII ~ |TTy|*Voly (W)
~ |TTp|?* Vol (W) 4+ O(e~12))
T o
guantum corrections in string theory
@ For elliptic curves and K3s these quantum corrections are absent:

Ig ~J \HO\QIm(t) and IK3 ~ |H0|2(Im(t))2

@® For one-parameter fishnets the quantum volume is again a pure function.

N
® There are interesting relations between different fishnet integrals: o
The periods of a (MxN)-fishnet graphs can be . /’\ co
constructed from (MxM)-determinants of the H { & ?
period matrix of the (M+n-1)-ladder graphs. W/
Z
|
Basso-Dixon formula Jﬂl( QB _ao) = o<%>oo
2 2

® What do these relations mean on the level of the CY geometries? .I.u."

19



Feynman Integrals in Dimensional Regularization

® So far we have only considered Feynman integrals in exactly d = 2.

@® But many Feynman integrals are divergent and regularization is required:

Dimensional regularization > y
1 = 1
d=2 —3 d=2—2¢ (2, ¢) Z k(2)e

k=—m

L(z,€)I(z,e¢) = Inhom(z,€)

. TUTI



Feynman Integrals in Dimensional Regularization

® So far we have only considered Feynman integrals in exactly d = 2.

@® But many Feynman integrals are divergent and regularization is required:

Dimensional regularization >0 dI(z,€) = A(z,€)I(z,¢)
_ k ) ) )
d:2.....§>d:2_2€ I(Z’€>_k_z_ Ik(Z)E
- L(z,€)I(z,e) = Inhom(z, €)
® The €-expansion can easily be solved if the GM system is e-factorized: [Henn]
I(z,€) =T(z,€)I(z,¢) suchthat  dI(z,€) = €A(2)I(z,¢€)

~

(z’)dz’) I(z9,€) and I,(z) = Iterated integrals over A;;(2)

ol
}\2
2
1
aS
D
o
o)
N\
N
;z\
o N
AN
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Feynman Integrals in Dimensional Regularization

® So far we have only considered Feynman integrals in exactly d = 2.

@® But many Feynman integrals are divergent and regularization is required:

Dimensional regularization >0 dI(z,€) = A(z,€)I(z,¢)
I _ I k ) ) Y
d=2 -3 d=2— 2 (2, €) k_z_ k(2)e
- L(z,€)I(z,e) = Inhom(z, €)

® The €-expansion can easily be solved if the GM system is e-factorized: [Henn]

I(z,€) = T(z,€)I(z,e€) suchthat  dI(z,€) = €A(2)I(z, ¢€)

I(z,€) = Pexp <e/ fl(z’)dz’) I(z9,€) and I,(z) = Iterated integrals over A;;(2)

Z0

® For equal-mass bananas a e-factorized GM was found by Weinzierl et al.. [Weinzierl]

® We focus with our new approach more on elliptic Feynman integrals of phenomenological relevance in
one and more parameters. But our approach works also for at least some non-elliptic examples.

. TUTI



Feynman Integrals in Dimensional Regularization

® Our approach is based on constructing the rotation 7'(z, €) in different steps: [new]

T(Z, 6) — Tnevv objects Ttot. deri. Te—scalings Tsemi—simple fFlead. sing.

. TUTI



Feynman Integrals in Dimensional Regularization

® Our approach is based on constructing the rotation 7'(z, €) in different steps: [new]

T(Z, 6) — Tnevv objects Ttot. deri. Te—scalings Tsemi—simple CZjlead. sing.

® We perform a "leading singularities"-type analysis: Tead. sing.
©® Multiplication with the inverse semi-simple part of the Wronskian: Tsemi-simple
W =SU with S:(w(} 0 )and U:(l tz%)
wy  f(w@o) 0 1
@ Simple rescalings with €: Te—scalings
@ Total derivatives/simple rotations remove nearly all disturbing € terms: Tiot deri

@® The remaining wrong eterms can be removed by introducing new

T :
objects. These new objects are integrals over @q: new objects

. TUTI



Feynman Integrals in Dimensional Regularization

® Our approach is based on constructing the rotation 7'(z, €) in different steps: [new]

T(Z, 6) — Tnevv objects Ttot. deri. Te—scalings Tsemi—simple CZjleaJd. sing.

® We perform a "leading singularities"-type analysis: Tead. sing.
©® Multiplication with the inverse semi-simple part of the Wronskian: Tsemi-simple
W =SU with S:(w(} 0 )and U:(l tz%)
wy  f(wo) 0 1
@ Simple rescalings with €: Te—scalings
@ Total derivatives/simple rotations remove nearly all disturbing € terms: Tiot deri

@® The remaining wrong eterms can be removed by introducing new

T :
objects. These new objects are integrals over @q: new objects

@® As for € =0 we need integrals over .
® Advantage of our approach is that one sees what new objects one needs and that they are independent.

® Also in Weinzierl's approach for non-elliptic geometries one needs these new objects.

. TUTI



Feynman Integrals in Dimensional Regularization

@® Example: Electroweak form factor

QAZ:O
d=4—2¢ 18 master integrals
Ples 5 elliptic top sector
. z=s/m . .
=0 with residue

g TUTI



Feynman Integrals in Dimensional Regularization

@® Example: Electroweak form factor

uzo
d=4—2¢ 18 master integrals
L 3/m2 elliptic top sector
oo with residue
_n=
T(z,€) = Thew objects
1 0 O
—%(z + 1)w0(z) 10 Ttot. deri.
o+ (522 — 44z — 76) wo(2)? 0 1
4
e 0 0
VNS Te—scalings
3

_— O O

0
0
wol(z) 0
: ( s(z = 8)(z+1) (wo(2) + zww((z)) 1(z—8)(z+ 1)wo(z) ) T semi-simple

0 0

22

z 0 O
1 0 2 0 Tiead. sing.
o T



Feynman Integrals in Dimensional Regularization

Full e-factorized GM differential equation:

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 — 0 0 0 0 0 0

0 0 0 < - 0 0 0 0

0 0 0 fe -5 0 0 0 0

2(;—1) 0 0 22—61 2(26—1) - (z—el)z 0 0 7zi1

0 0 0 0 0 0 < 0 0

0 0 0 0 0 0 0 _2 0
e _ (241D)e € € _ (2=2)e

2(z—1) 0 0 (z—1)z 2(z—1) (z—1)z 03 0 (z—1)z
—1 0 —1 0 0 0 =W 0 0

0 0 0 5 0 0 0 0 0

0 0 0 0 0 —< Z 0 0

0 = 0 —5¢ = 0 0 0 0

e e 0 (222+z+1)€ _ ze _ 2¢ 0 0 _ 2ze
(z—1)(2+1) 4(62+1) . (z—l)zgz-%—l) (z—le)(z+1) (z—1)(z+1) 2 (z—1)(2+1)

0 4(z+1) RS Tz 2(z41) 0 Tz

0 0 0 0 0 0 0 0 0

0 1 0 -3 & 5 -5 0 0
%EZU()(Z) 7% *GWO(Z) (73Z72(;)zew0(z) _ (37Z7282;w0(z) (5z+8?))zw0(z) _ (59Z+§22)Zew0(z) 726@0(2’) 726‘!D0(Z)

0 0
0 0
0 0
0 0
0 0
0 0

2—64\/5 0
0 0
0 0

_ (3z—4)e

(z—4)z 0
0 0
0 0
0 0

2¢

0 T z2(z+1)
0 0
0 0
0 0

_ (Tz=8)ewo(2) 2ewo(z)
4vz—4\/z z

23

O O O OO0 OO0 O OO0 o oo ocooo

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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Feynman Integrals in Dimensional Regularization

® Our examples include so far (two-loop Higgs+jet-production in QCD): [new]
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® For multi-parameter elliptic or more complicated geometries we need as new kernels:

/Z Ro(2') /Z Ro(2")wo(z")3dz'd2" /w0(2172’2)d7‘1 /R(Z)wo(z)wo(l/z)dz 2 new kernels

[Weinzierl] /w(’)(z)wo(l/z)dz

]
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® Number of new kernels depends on number of parameters and the total elliptic sector with residues.
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Conclusion

® Unterstanding CY geometries is essential for understanding higher loop Feynman integrals.

Riemann sphere elliptic curve Calabi-Yau

® The geometry behind a Feynman integral tells us the function space and boundary condition.

@ Dictionary between Feynman integrals and non-trivial geometries.
@® Using CY techniques we can solve so far three
different families of Feynman graphs:

@ Our new approach gives, in particular for elliptic Feynman integrals, €-factorized differential equations.

=y  For this we have to introduce new objects which are (iterated) integrals of @y .

® Open questions:

@® Other families with underlying Calabi-Yau geometry?
@® What are the limits of our method for €-factorized differential equations?

@® Need mathematical definition of iterated Calabi-Yau periods similar to elliptic polylogs. 'I-I.m
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Thank you for
vour attention



