Period Geometry of Calabi-Yau n-folds for Feynman integrals

Bethe Forum: Geometries and Special functions for Physics and Mathematics

Albrecht Klemm, BCTP/HCM Bonn University
March 202023

Based on work with

Kilian Bönisch, Claude Duhr, Fabian Fischbach, Florian Loebbert, Christoph Nega, Franzika Porkert, Reza Safari, Lorenzo Tancredi
[1]=arXiv:1912.06201v2, [2]=arXiv:2008.10574v1, [3]=arXiv:2108.05310, published JHEP [4]=arXiv:2209.05291 in PRL and [5]=arXiv: 2212.09550 in JHEP,
in progress

Aspects of Calabi-Yau manifolds (historically)

Differential geometry question

On which Kähler n-folds $\exists g$ with $R_{i j}(g)=0$?

Aspects of Calabi-Yau manifolds (historically)

Differential geometry question

On which Kähler n-folds $\exists g$ with $R_{i j}(g)=0$?
$\exists!g$ in given
Kähler class, if

$$
c_{1}(T M)=0 ?
$$

Aspects of Calabi-Yau manifolds (historically)

$\exists!g$ in given
Kähler class, if

$$
c_{1}(T M)=0 ?
$$

On which Kähler n-folds $\exists g$ with $R_{i \bar{\jmath}}(g)=0$?

Differential geometry question

Existence proof.

Aspects of Calabi-Yau manifolds (historically)

Aspects of Calabi-Yau manifolds (historically)

$$
1954 \text { Differential geometry question } 1976
$$

$\exists!g$ in given Kähler class, if $c_{1}(T M)=0$?

On which Kähler n-folds
$\exists g$ with $R_{i j}(g)=0$?
$\exists!g \leftrightarrow c_{1}(T M)=0!$
Existence proof.

Aspects of Calabi-Yau manifolds (historically)

1954 Differential geometry question 1976

$\exists!g$ in given Kähler class, if $c_{1}(T M)=0$?

Mirror Symmetry 1990

Aspects of Calabi-Yau manifolds (historically)

1954 Differential geometry question 1976

$\exists!g$ in given Kähler class, if $c_{1}(T M)=0$?

Existence proof.

Mirror Symmetry 1990

Aspects of Calabi-Yau manifolds (historically)

Definition of compact Calabi-Yau (CY) \mathbf{n} - folds

A Calabi -Yau n-fold M is a compact complex manifold of complex dimension n that

Definition of compact Calabi-Yau (CY) \mathbf{n} - folds

A Calabi -Yau n-fold M is a compact complex manifold of complex dimension n that
$\omega)$ is a Kähler manifold, i.e. has a Kähler (1, 1)-form ω,

Definition of compact Calabi-Yau (CY) \mathbf{n} - folds

A Calabi -Yau n-fold M is a compact complex manifold of complex dimension n that
ω) is a Kähler manifold, i.e. has a Kähler (1, 1)-form ω,
Ω) and has unique no-where vanishing holomorphic ($n, 0$)-form Ω.

Definition of compact Calabi-Yau (CY) \mathbf{n} - folds

A Calabi -Yau n-fold M is a compact complex manifold of complex dimension n that
ω) is a Kähler manifold, i.e. has a Kähler (1, 1)-form ω,
Ω) and has unique no-where vanishing holomorphic ($n, 0$)-form Ω.
The latter condition is equivalent to

1) the canonical class is trivial $K_{M}=c_{1}\left(T_{M}\right)=0$,
2) given a Kähler class, \exists metric g with $R_{i j}(g)=0$,
3) the holonomy of the metric g is $(\subset S U(n)) S U(n)$,

Definition of compact Calabi-Yau (CY) \mathbf{n} - folds

A Calabi -Yau n-fold M is a compact complex manifold of complex dimension n that
ω) is a Kähler manifold, i.e. has a $\operatorname{Kähler~}(1,1)$-form ω,
Ω) and has unique no-where vanishing holomorphic ($n, 0$)-form Ω.
The latter condition is equivalent to

1) the canonical class is trivial $K_{M}=c_{1}\left(T_{M}\right)=0$,
2) given a Kähler class, \exists metric g with $R_{i j}(g)=0$,
3) the holonomy of the metric g is $(\subset S U(n)) S U(n)$,

Remarks: CY n-fold are generalisations of elliptic curves

- CY 1-fold is an elliptic curve, say $y^{2}=x(x-1)(x-z)$ with Ω given by $\frac{d x}{y}$ and $\omega=\frac{d x}{y} \wedge \frac{d \bar{x}}{\bar{y}}$ is its volume form.

Definition of compact Calabi-Yau (CY) \mathbf{n} - folds

A Calabi-Yau n-fold M is a compact complex manifold of complex dimension n that
ω) is a Kähler manifold, i.e. has a Kähler (1, 1)-form ω,
Ω) and has unique no-where vanishing holomorphic ($n, 0$)-form Ω.
The latter condition is equivalent to

1) the canonical class is trivial $K_{M}=c_{1}\left(T_{M}\right)=0$,
2) given a Kähler class, \exists metric g with $R_{i j}(g)=0$,
3) the holonomy of the metric g is $(\subset S U(n)) S U(n)$,

Remarks: CY n-fold are generalisations of elliptic curves

- CY 1-fold is an elliptic curve, say $y^{2}=x(x-1)(x-z)$ with Ω given by $\frac{d x}{y}$ and $\omega=\frac{d x}{y} \wedge \frac{d \bar{x}}{\bar{y}}$ is its volume form.
- We use $S U(n)$ rather then $\subset S U(n)$ to avoid trivial products of lower CY n-folds in the generalisation.

Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$. Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$. Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

at $T \mathbb{P}^{n+1}$ implies with $c_{1}\left(T \mathbb{P}^{n+1}\right)=(1+H)^{n+2}$ and $c_{1}(\mathcal{N})=(1+d H)$ that $c h(T M)$ equals

$$
\frac{(1+H)^{n+2}}{1+d H}=1+\underbrace{[(n+2)-d] H}_{c_{1}(T M)=0!}+\underbrace{\left[(1-d)^{2}+\frac{1}{2} n(n+3-2 d)\right] H^{2}}_{c_{2}(T M)=c_{2} H^{2}}+\ldots
$$

Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$. Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

at $T \mathbb{P}^{n+1}$ implies with $c_{1}\left(T \mathbb{P}^{n+1}\right)=(1+H)^{n+2}$ and $c_{1}(\mathcal{N})=(1+d H)$ that $c h(T M)$ equals

$$
\frac{(1+H)^{n+2}}{1+d H}=1+\underbrace{[(n+2)-d] H}_{c_{1}(T M)=0!}+\underbrace{\left[(1-d)^{2}+\frac{1}{2} n(n+3-2 d)\right] H^{2}}_{c_{2}(T M)=c_{2} H^{2}}+\ldots
$$

$\Rightarrow 1)$ cubic $d=3$ in $\mathbb{P}^{2} w y^{2}=4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}$ is complex family of elliptic curves with complex modulus z.

Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$. Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

at $T \mathbb{P}^{n+1}$ implies with $c_{1}\left(T \mathbb{P}^{n+1}\right)=(1+H)^{n+2}$ and $c_{1}(\mathcal{N})=(1+d H)$ that $c h(T M)$ equals

$$
\frac{(1+H)^{n+2}}{1+d H}=1+\underbrace{[(n+2)-d] H}_{c_{1}(T M)=0!}+\underbrace{\left[(1-d)^{2}+\frac{1}{2} n(n+3-2 d)\right] H^{2}}_{c_{2}(T M)=c_{2} H^{2}}+\ldots
$$

$\Rightarrow 1)$ cubic $d=3$ in $\mathbb{P}^{2} w y^{2}=4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}$ is complex family of elliptic curves with complex modulus z.
$\Rightarrow 2$) quartic in \mathbb{P}^{3} is a CY 2-fold with 19 complex moduli.

Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$. Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

at $T \mathbb{P}^{n+1}$ implies with $c_{1}\left(T \mathbb{P}^{n+1}\right)=(1+H)^{n+2}$ and $c_{1}(\mathcal{N})=(1+d H)$ that $c h(T M)$ equals

$$
\frac{(1+H)^{n+2}}{1+d H}=1+\underbrace{[(n+2)-d] H}_{c_{1}(T M)=0!}+\underbrace{\left[(1-d)^{2}+\frac{1}{2} n(n+3-2 d)\right] H^{2}}_{c_{2}(T M)=c_{2} H^{2}}+\ldots
$$

$\Rightarrow 1)$ cubic $d=3$ in $\mathbb{P}^{2} w y^{2}=4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}$ is complex family of elliptic curves with complex modulus z.
$\Rightarrow 2$) quartic in \mathbb{P}^{3} is a $C Y 2$-fold with 19 complex moduli.
$\Rightarrow 3$) quintic in \mathbb{P}^{4} is a CY 3 -fold with 101 complex moduli.

More on constructions of Calabi-Yau n-folds

Number of complex moduli \#mon - $\left|\operatorname{Aut}\left(\mathbb{P}^{*}\right)\right|$:

1) $\left(x_{i}^{3} ; 3, x_{i}^{2} x_{j} ; 6, \prod x_{i} ; 1\right): 10-9=1$,

More on constructions of Calabi-Yau n-folds

Number of complex moduli \#mon - $\left|\operatorname{Aut}\left(\mathbb{P}^{*}\right)\right|$:

1) $\left(x_{i}^{3} ; 3, x_{i}^{2} x_{j} ; 6, \prod x_{i} ; 1\right): 10-9=1$,
2) $\left(x_{i}^{4} ; 4, x_{i}^{3} x_{j} ; 12, x_{i}^{2} x_{j}^{2} ; 6, x_{i}^{2} x_{j} x_{k} ; 12, \prod x_{i} ; 1\right): 35-16=19$,
3) Likewise $126-25=101$.

More on constructions of Calabi-Yau n-folds

Number of complex moduli $\#$ mon $-\left|\operatorname{Aut}\left(\mathbb{P}^{*}\right)\right|$:

1) $\left(x_{i}^{3} ; 3, x_{i}^{2} x_{j} ; 6, \prod x_{i} ; 1\right): 10-9=1$,
2) $\left(x_{i}^{4} ; 4, x_{i}^{3} x_{j} ; 12, x_{i}^{2} x_{j}^{2} ; 6, x_{i}^{2} x_{j} x_{k} ; 12, \prod x_{i} ; 1\right): 35-16=19$,
3) Likewise $126-25=101$.

Euler number (Gauss Bonnet): $\chi=\int_{M_{n}} c_{n}(T M)=c_{n} d$, 1) $\chi=0, \chi=2 g-2 \Rightarrow g=1$ one topological type E.

More on constructions of Calabi-Yau n-folds

Number of complex moduli \#mon - $\left|\operatorname{Aut}\left(\mathbb{P}^{*}\right)\right|$:

1) $\left(x_{i}^{3} ; 3, x_{i}^{2} x_{j} ; 6, \prod x_{i} ; 1\right): 10-9=1$,
2) $\left(x_{i}^{4} ; 4, x_{i}^{3} x_{j} ; 12, x_{i}^{2} x_{j}^{2} ; 6, x_{i}^{2} x_{j} x_{k} ; 12, \prod x_{i} ; 1\right): 35-16=19$,
3) Likewise $126-25=101$.

Euler number (Gauss Bonnet): $\chi=\int_{M_{n}} c_{n}(T M)=c_{n} d$,

1) $\chi=0, \chi=2 g-2 \Rightarrow g=1$ one topological type E.
2) By $c_{2}(T M)=6 H^{2} \Rightarrow \chi=24$. HRR for arithmetic genus of surface $\chi_{0}=\sum_{i=0}^{2}(-1)^{i} h^{0, i}=\frac{1}{12} \int_{M_{2}}\left(c_{1}^{2}+c_{2}\right)$. Now by definition $h^{00}=h^{02}=1, h^{01}=0$ because of $S U(2)$ hols, ie. $\chi_{0}\left(M_{2}\right)=2$ and since $c_{1}=0 \Rightarrow \chi\left(M_{2}\right)=24$ and we have only one topological type the $K 3$ surface
3) By $c_{3}(T M)=-40 H^{3} \Rightarrow \chi=-200$. Hirzebruch

Riemann Roch $\chi_{0}=\frac{1}{24} \int_{M_{3}} c_{1} c_{2}=1-0+0-1 \checkmark$, $\chi_{1}=-h^{11}+h^{21}=\frac{1}{24} \int_{M_{3}} c_{1} c_{2}-12 c_{3} \Rightarrow \chi=2\left(h^{11}-h^{21}\right) \checkmark$

More on constructions of Calabi-Yau n-folds

Theorem (C.T.C Wall): The topological type of a Calabi-Yau 3-fold M is fixed by their Hodge numbers $\left(h_{21}, h_{11}\right)$, their triple intersection $D_{i} \cap D_{j} \cap D_{k} \in \mathbb{N}$ and $c_{2}(T M) \cdots D_{k}, D_{k} \in H_{4}(M, \mathbb{Z})$.

More on constructions of Calabi-Yau n-folds

Theorem (C.T.C Wall): The topological type of a Calabi-Yau 3-fold M is fixed by their Hodge numbers $\left(h_{21}, h_{11}\right)$, their triple intersection $D_{i} \cap D_{j} \cap D_{k} \in \mathbb{N}$ and $c_{2}(T M) \cdots D_{k}, D_{k} \in H_{4}(M, \mathbb{Z})$. The topological classification Calabi-Yau n-folds for $n \geq 3$ is an open problem, but it is relatively easy to find classes of constructions:

More on constructions of Calabi-Yau n-folds

Theorem (C.T.C Wall): The topological type of a Calabi-Yau 3-fold M is fixed by their Hodge numbers $\left(h_{21}, h_{11}\right)$, their triple intersection $D_{i} \cap D_{j} \cap D_{k} \in \mathbb{N}$ and $c_{2}(T M) \cdots D_{k}, D_{k} \in H_{4}(M, \mathbb{Z})$. The topological classification Calabi-Yau n-folds for $n \geq 3$ is an open problem, but it is relatively easy to find classes of

constructions:

CICYs: Complete intersections: The vanishing locus of r polynomials $P_{k}=0, k=1, \ldots, r$ in $\mathbb{P}=\otimes_{l=1}^{m} \mathbb{P}_{l}^{n_{l}}$ define a $C Y\left(\sum_{l=1}^{m} n_{l}-r\right)$ -fold if $\sum_{k=1}^{r} d_{k l}=n_{l}+1, \forall I=1, \ldots, m$, with $d_{k l}$ are degrees of the k 'th polynomial in the I^{\prime} th factor: 2 d n -1 loop bananas.

More on constructions of Calabi-Yau n-folds

Theorem (C.T.C Wall): The topological type of a Calabi-Yau 3-fold M is fixed by their Hodge numbers $\left(h_{21}, h_{11}\right)$, their triple intersection $D_{i} \cap D_{j} \cap D_{k} \in \mathbb{N}$ and $c_{2}(T M) \cdots D_{k}, D_{k} \in H_{4}(M, \mathbb{Z})$. The topological classification Calabi-Yau n-folds for $n \geq 3$ is an open problem, but it is relatively easy to find classes of

constructions:

CICYs: Complete intersections: The vanishing locus of r polynomials $P_{k}=0, k=1, \ldots, r$ in $\mathbb{P}=\otimes_{l=1}^{m} \mathbb{P}_{l}^{n_{l}}$ define a $C Y\left(\sum_{l=1}^{m} n_{l}-r\right)$ -fold if $\sum_{k=1}^{r} d_{k l}=n_{l}+1, \forall I=1, \ldots, m$, with $d_{k l}$ are degrees of the k 'th polynomial in the I^{\prime} th factor: 2 d n -1 loop bananas.
$B C s$: Branched covers: Let \mathbb{P} be a n-dimensional Fano variety with positive canonical class $K(\mathbb{P})=c_{1}(\mathbb{P})>0$ then a b-fold cover that is branched at $b K(\mathbb{P})$ is a non necessarily smooth $C Y$ n-fold: 2d n loop fishnets.

Hypersurface in toric ambient spaces

Huge classified construction: CY 3folds as hypersurfaces in toric ambient spaces $\mathbb{P}_{\Delta}, \mathbb{P}_{\hat{\Delta}}$ defined by reflexive pairs $(\Delta, \hat{\Delta})$:

Hypersurface in toric ambient spaces

Huge classified construction: CY 3folds as hypersurfaces in toric ambient spaces $\mathbb{P}_{\Delta}, \mathbb{P}_{\hat{\Delta}}$ defined by reflexive pairs $(\Delta, \hat{\Delta})$:

Hypersurface in toric ambient spaces

Huge classified construction: CY 3folds as hypersurfaces in toric ambient spaces $\mathbb{P}_{\Delta}, \mathbb{P}_{\hat{\Delta}}$ defined by reflexive pairs $(\Delta, \hat{\Delta})$:

General properties of Calabi-Yau n-fold fold families

Theorem Tian/Todorov: The complex moduli space $\mathcal{M}_{c s}(M)$ of a CY n-fold M is parametrized for by $h^{n-1,1}=\operatorname{dim}_{\mathbb{C}}\left(H^{n-1,1}(M)\right)$ globally unobstructed complex deformation parameters z, i.e. is a manifold of complex dimension $h^{n-1,1}=: r\left(E\right.$ and K_{3} are special).

General properties of Calabi-Yau n-fold fold families

Theorem Tian/Todorov: The complex moduli space $\mathcal{M}_{c s}(M)$ of a CY n-fold M is parametrized for by $h^{n-1,1}=\operatorname{dim}_{\mathbb{C}}\left(H^{n-1,1}(M)\right)$ globally unobstructed complex deformation parameters z, i.e. is a manifold of complex dimension $h^{n-1,1}=: r\left(E\right.$ and K_{3} are special).

Example: We counted $101=h^{2,1}$ complex deformation parameters for the quintic in \mathbb{P}^{4} and by the Lefshetz hyperplane theorem $h^{1,1}=1$ (inherited from \mathbb{P}^{4}), hence $\chi=2\left(h^{1,1}-h^{21}\right)=-200$ in accordance with Gauss-Bonnet.

General properties of Calabi-Yau n-fold fold families

Theorem Tian/Todorov: The complex moduli space $\mathcal{M}_{c s}(M)$ of a CY n-fold M is parametrized for by $h^{n-1,1}=\operatorname{dim}_{\mathbb{C}}\left(H^{n-1,1}(M)\right)$ globally unobstructed complex deformation parameters z, i.e. is a manifold of complex dimension $h^{n-1,1}=: r\left(E\right.$ and K_{3} are special).

Example: We counted $101=h^{2,1}$ complex deformation parameters for the quintic in \mathbb{P}^{4} and by the Lefshetz hyperplane theorem $h^{1,1}=1$ (inherited from \mathbb{P}^{4}), hence $\chi=2\left(h^{1,1}-h^{21}\right)=-200$ in accordance with Gauss-Bonnet.

Application: The complex moduli dependent period integrals on CY n-fold families generalize elliptic functions. They are identified for important examples with the maximal cut Feynman n - 1-loop integrals, where the complex moduli z are identified with the scale invariant physical parameters $z_{i}=p^{2} / m_{i}^{2}, \ldots$.

Periods on Calabi-Yau n-folds

Periods integrals

$$
\Pi_{i j}(\underline{z})=\int_{\Gamma_{i}} \gamma^{j}(\underline{z})
$$

define a non-degenerate pairing between between (middle) homology and (middle) cohomology well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{K}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C} .
$$

It is possible and natural to have \mathbb{K} to be \mathbb{Z}. There is an intersection pairing

$$
\Sigma: H_{n}\left(M_{n}, \mathbb{K}\right) \times H_{n}\left(M_{n}, \mathbb{K}\right) \rightarrow \mathbb{K},
$$

that can be made in particular integral. If n is odd Σ is antisymmetric and can be made symplectic. If n is even Σ is a symmetric on the even self dual lattice $H_{n}\left(M_{n}, \mathbb{K}\right)$. E.g. for $k 3 b_{2}=22$ and $\sigma=b_{2}^{+}-b_{2}^{-}=\frac{1}{3} \int_{M_{2}} c_{1}^{2}-2 c_{2}=-16$ hence b_{2} has signature $(3,19)$ and is $E_{8}(-1)^{\oplus 2} \oplus\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

If n is odd we fix can integral symplectic basis $\Gamma=\left\{A_{l}, B^{\prime}\right\}$, $I=0, \ldots, r$ with $\operatorname{Span}_{\mathbb{Z}}(\underline{\Gamma})=H_{n}(W, \mathbb{Z})$ and

$$
A_{l} \cap A_{J}=B^{\prime} \cap B^{J}=0, \quad A_{l} \cap B^{J}=-B^{J} \cap A_{I}=\delta_{l}^{J} .
$$

It is clearly defined up only to an $\operatorname{Sp}\left(b_{n}(M), \mathbb{Z}\right)$ choice.

If n is odd we fix can integral symplectic basis $\underline{\Gamma}=\left\{A_{l}, B^{\prime}\right\}$, $I=0, \ldots, r$ with $\operatorname{Span}_{\mathbb{Z}}(\Gamma)=H_{n}(W, \mathbb{Z})$ and

$$
A_{I} \cap A_{J}=B^{\prime} \cap B^{J}=0, \quad A_{I} \cap B^{J}=-B^{J} \cap A_{I}=\delta_{l}^{J} .
$$

It is clearly defined up only to an $\operatorname{Sp}\left(b_{n}(M), \mathbb{Z}\right)$ choice.

Exp: Calabi-Yau 1-fold: $p_{3}=w y^{2}-x(x-w)(x-w z)=0 \subset \mathbb{P}^{2}$

If n is odd we fix can integral symplectic basis $\underline{\Gamma}=\left\{A_{l}, B^{\prime}\right\}$, $I=0, \ldots, r$ with $\operatorname{Span}_{\mathbb{Z}}(\Gamma)=H_{n}(W, \mathbb{Z})$ and

$$
A_{I} \cap A_{J}=B^{\prime} \cap B^{J}=0, \quad A_{I} \cap B^{J}=-B^{J} \cap A_{I}=\delta_{l}^{J} .
$$

It is clearly defined up only to an $\operatorname{Sp}\left(b_{n}(M), \mathbb{Z}\right)$ choice.

Exp: Calabi-Yau 1-fold: $p_{3}=w y^{2}-x(x-w)(x-w z)=0 \subset \mathbb{P}^{2}$

$$
\Omega(z)=\oint \frac{2 d x \wedge d y}{p_{3}}=\frac{d x}{y}, \partial_{z} \Omega(z) \sim \frac{x d x}{y}
$$

If n is odd we fix can integral symplectic basis $\underline{\Gamma}=\left\{A_{l}, B^{\prime}\right\}$, $I=0, \ldots, r$ with $\operatorname{Span}_{\mathbb{Z}}(\Gamma)=H_{n}(W, \mathbb{Z})$ and

$$
A_{I} \cap A_{J}=B^{\prime} \cap B^{J}=0, \quad A_{I} \cap B^{J}=-B^{J} \cap A_{I}=\delta_{l}^{J} .
$$

It is clearly defined up only to an $\operatorname{Sp}\left(b_{n}(M), \mathbb{Z}\right)$ choice.

Exp: Calabi-Yau 1-fold: $p_{3}=w y^{2}-x(x-w)(x-w z)=0 \subset \mathbb{P}^{2}$

$$
\Omega(z)=\oint \frac{2 d x \wedge d y}{p_{3}}=\frac{d x}{y}, \partial_{z} \Omega(z) \sim \frac{x d x}{y}
$$

$$
E_{1}(z)=\oint_{A} \Omega, E_{2}(z)=\oint_{B} \Omega \text { Elliptic integrals. }
$$

If n is odd we fix can integral symplectic basis $\underline{\Gamma}=\left\{A_{l}, B^{\prime}\right\}$, $I=0, \ldots, r$ with $\operatorname{Span}_{\mathbb{Z}}(\Gamma)=H_{n}(W, \mathbb{Z})$ and

$$
A_{I} \cap A_{J}=B^{\prime} \cap B^{J}=0, \quad A_{I} \cap B^{J}=-B^{J} \cap A_{I}=\delta_{l}^{J} .
$$

It is clearly defined up only to an $\operatorname{Sp}\left(b_{n}(M), \mathbb{Z}\right)$ choice.

Exp: Calabi-Yau 1-fold: $p_{3}=w y^{2}-x(x-w)(x-w z)=0 \subset \mathbb{P}^{2}$

$$
\Omega(z)=\oint \frac{2 d x \wedge d y}{p_{3}}=\frac{d x}{y}, \partial_{z} \Omega(z) \sim \frac{x d x}{y}
$$

$$
E_{1}(z)=\oint_{A} \Omega, E_{2}(z)=\oint_{B} \Omega \quad \text { Elliptic integrals. }
$$

Well studied in part because they solve Keplers problem
Periods annihilated by Picard-Fuchs (1881) 2cd order linear operator $L^{(2)}$.

If n is odd we fix can integral symplectic basis $\underline{\Gamma}=\left\{A_{l}, B^{\prime}\right\}$, $I=0, \ldots, r$ with $\operatorname{Span}_{\mathbb{Z}}(\Gamma)=H_{n}(W, \mathbb{Z})$ and

$$
A_{l} \cap A_{J}=B^{\prime} \cap B^{J}=0, \quad A_{l} \cap B^{J}=-B^{J} \cap A_{l}=\delta_{l}^{J} .
$$

It is clearly defined up only to an $\operatorname{Sp}\left(b_{n}(M), \mathbb{Z}\right)$ choice.

Exp: Calabi-Yau 1-fold: $p_{3}=w y^{2}-x(x-w)(x-w z)=0 \subset \mathbb{P}^{2}$

$$
\Omega(z)=\oint \frac{2 d x \wedge d y}{p_{3}}=\frac{d x}{y}, \partial_{z} \Omega(z) \sim \frac{x d x}{y}
$$

$$
E_{1}(z)=\oint_{A} \Omega, E_{2}(z)=\oint_{B} \Omega \quad \text { Elliptic integrals. }
$$

Well studied in part because they solve Keplers problem
Periods annihilated by Picard-Fuchs (1881) 2cd order linear operator $L^{(2)}$.

$$
L^{(2)} \int_{\Gamma} \Omega=\left[(1-z) \partial_{z}^{2}+(1-2 z) \partial_{z}-\frac{1}{4}\right] \int_{\Gamma} \Omega=0 .
$$

The Picard-Fuchs differential ideal

We can always expand $\Omega=\sum_{i=1}^{b_{3}(W)} \Pi_{i}(z) \gamma_{i}$ in terms of periods $\Pi_{i}(z)=\int_{\Gamma_{i}} \Omega(z)$.
The $b_{n}\left(M_{n}\right)$ periods span a vector space that is identified with the solutions space of linear Picard-Fuchs differential ideal $\mathcal{L} \Pi_{i}(z)=0$.

For one parameter families \mathcal{L} is generated by a $b_{n}\left(M_{n}\right)+1$ order Picard-Fuchs operator $L^{\left(b_{n}\left(M_{n}\right)+1\right)}$, while for multiparameter families $\mathcal{L}=\left\{L_{i}^{(k)}, i=1, \ldots,|\mathcal{L}|, k=2, \ldots, b_{n}\left(M_{n}\right)+1\right\}$ with several $L_{i}^{(k)}$.

The latter can derived using the Griffiths reduction method and for CY embedded in toric ambient space also as a reduction of a Gelfand Kapranov Zelevinskii system.

Finding and integral basis

The Feynman integrals correspond i.a. to periods over integral cycles, e.g. $\underline{\Gamma}=\left\{A_{I}, B^{\prime}\right\}$. Such are not specified by \mathcal{L} alone.

Finding and integral basis

The Feynman integrals correspond i.a. to periods over integral cycles, e.g. $\underline{\Gamma}=\left\{A_{I}, B^{\prime}\right\}$. Such are not specified by \mathcal{L} alone.

On CY moduli space the monodromy of the periods in $\overline{\mathcal{M}_{c s}\left(M_{n}\right)}$ is irreducible and monodromies $\vec{\Pi} \rightarrow M_{i} \vec{\Pi}$ along loops λ_{i} encircling singular (normal crossing) divisor $D_{i} \in \overline{\mathcal{M}_{c s}\left(M_{n}\right)}$ respect the intersection form Σ, i.e. $M_{i}^{t} \Sigma M_{i}=\Sigma, \forall M_{i}$. In an integral bases the $\left\{M_{i}\right\}$ generate a subgroup of $O(\Sigma, \mathbb{Z})$. Since the latter acts irreducible it is possible to find an integral basis up to $O(\Sigma, \mathbb{Z})$ by caculating all $\left\{M_{i}\right\}$ in an arbitrary basis and conjugating them simultaneously into $O(\Sigma, \mathbb{Z})$.

Finding and integral basis

The Feynman integrals correspond i.a. to periods over integral cycles, e.g. $\Gamma=\left\{A_{l}, B^{\prime}\right\}$. Such are not specified by \mathcal{L} alone.

On CY moduli space the monodromy of the periods in $\overline{\mathcal{M}_{c s}\left(M_{n}\right)}$ is irreducible and monodromies $\vec{\Pi} \rightarrow M_{i} \vec{\Pi}$ along loops λ_{i} encircling singular (normal crossing) divisor $D_{i} \in \overline{\mathcal{M}_{c s}\left(M_{n}\right)}$ respect the intersection form Σ, i.e. $M_{i}^{t} \Sigma M_{i}=\Sigma, \forall M_{i}$. In an integral bases the $\left\{M_{i}\right\}$ generate a subgroup of $O(\Sigma, \mathbb{Z})$. Since the latter acts irreducible it is possible to find an integral basis up to $O(\Sigma, \mathbb{Z})$ by caculating all $\left\{M_{i}\right\}$ in an arbitrary basis and conjugating them simultaneously into $O(\Sigma, \mathbb{Z})$.
If $\overline{\mathcal{M}_{c s}\left(M_{n}\right)}$ has a point of maximal unipotent mondromy (MUM) with a known mirror W_{n} one can calculate an integral period vector using the $\hat{\Gamma}\left(T W_{n}\right)$-class.

One Parameter CY 3 fold operators

Examples: There are 14 hyper geometric ${ }_{3} F_{4} \mathrm{CY}$ 3-fold operators given by

$$
L^{(4)}=\theta^{4}-\mu^{-1} z \prod_{k=1}^{4}\left(\theta+a_{k}\right)
$$

where $\theta=z \frac{d}{d z}$ and z parametrizes $\mathcal{M}_{c s}\left(M_{3}\right)=\mathbb{P}^{1} \backslash\{0, \mu, \infty\}$

One Parameter CY 3 fold operators

Examples: There are 14 hyper geometric ${ }_{3} F_{4} \mathrm{CY}$ 3-fold operators given by

$$
L^{(4)}=\theta^{4}-\mu^{-1} z \prod_{k=1}^{4}\left(\theta+a_{k}\right)
$$

where $\theta=z \frac{d}{d z}$ and z parametrizes $\mathcal{M}_{c s}\left(M_{3}\right)=\mathbb{P}^{1} \backslash\{0, \mu, \infty\}$ and

$\#$	W	κ	$c_{2} \cdot D$	$\chi(W)$	$a_{1}, a_{2}, a_{3}, a_{4}$	μ^{-1}	$d T_{\infty}$
1	$X_{5}\left(1^{5}\right)$	5	50	-200	$\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$	5^{5}	$O_{5}^{\text {DG }}$
2	$X_{4,2}\left(1^{6}\right)$	8	56	-176	$\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}$	2^{10}	C_{4}
3	$X_{3,3}\left(1^{6}\right)$	9	54	-144	$\frac{1}{3}, \frac{1}{3}, \frac{2}{3}, \frac{2}{3}$	3^{6}	K_{3}
4	$X_{2,2,2,2}\left(1^{8}\right)$	16	64	-128	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	2^{8}	M_{2}
\vdots							

One Parameter CY 3 fold operators

Their Riemann symbols are

$$
\mathcal{P}\left\{\begin{array}{lll}
0 & \mu & \infty \\
\hline 0 & 0 & a_{1} \\
0 & 1 & a_{2} \\
0 & 1 & a_{3} \\
0 & 2 & a_{4}
\end{array}\right\}
$$

One Parameter CY 3 fold operators

Their Riemann symbols are

$$
\mathcal{P}\left\{\begin{array}{lll}
0 & \mu & \infty \\
\hline 0 & 0 & a_{1} \\
0 & 1 & a_{2} \\
0 & 1 & a_{3} \\
0 & 2 & a_{4}
\end{array}\right\}
$$

At $z=0$ the local exponents are completely degenerate and we have a MUM point. A Frobenius \mathbb{C}-basis of solutions is

$$
\vec{\Pi}_{0}(z)=\left(\begin{array}{c}
f_{0}(z) \\
f_{0}(z) \log (z)+f_{1}(z) \\
\frac{1}{2} f_{0}(z) \log ^{2}(z)+f_{1}(z) \log (z)+f_{2}(z) \\
\frac{1}{6} f_{0}(z) \log ^{3}(z)+\frac{1}{2} f_{1}(z) \log ^{2}(z)+f_{2}(z) \log (z)+f_{3}(z)
\end{array}\right)
$$

for power series normalized by $f_{0}(0)=1$ and $f_{1}(0)=f_{2}(0)=f_{3}(0)=0$.

One Parameter CY 3 fold operators

The $\hat{\Gamma}(T W)$ class determines an integral basis at $z=0$

$$
\vec{\Pi}=\left(\begin{array}{c}
\int_{B^{0}} \Omega \tag{1}\\
\int_{B^{1}} \Omega \\
\int_{A_{0}} \Omega \\
\int_{A_{1}} \Omega
\end{array}\right)=(2 \pi i)^{3}\left(\begin{array}{cccc}
\frac{\zeta(3) \chi(M)}{(2 \pi i)^{3}} & \frac{c_{2} \cdot D}{24 \cdot 2 \pi i} & 0 & \frac{\kappa}{(2 \pi i)^{3}} \\
\frac{c_{2} \cdot D}{24} & \frac{\sigma}{2 \pi i} & -\frac{\kappa}{(2 \pi i)^{2}} & 0 \\
1 & 0 & 0 & 0 \\
0 & \frac{1}{2 \pi i} & 0 & 0
\end{array}\right) \Pi_{0} .
$$

in terms of the C.T.C Wall data.

One Parameter CY 3 fold operators

The $\hat{\Gamma}(T W)$ class determines an integral basis at $z=0$

$$
\vec{\Pi}=\left(\begin{array}{c}
\int_{B^{0}} \Omega \tag{1}\\
\int_{B^{1}} \Omega \\
\int_{A_{0}} \Omega \\
\int_{A_{1}} \Omega
\end{array}\right)=(2 \pi i)^{3}\left(\begin{array}{cccc}
\frac{\zeta(3) \chi(M)}{(2 \pi i)^{3}} & \frac{c_{2} \cdot D}{24 \cdot 2 \pi i} & 0 & \frac{\kappa}{(2 \pi i)^{3}} \\
\frac{c_{2} \cdot D}{24} & \frac{\sigma}{2 \pi i} & -\frac{\kappa}{(2 \pi i)^{2}} & 0 \\
1 & 0 & 0 & 0 \\
0 & \frac{1}{2 \pi i} & 0 & 0
\end{array}\right) \Pi_{0} .
$$

in terms of the C.T.C Wall data. The monodromies in $\operatorname{SP}(4, \mathbb{Z})=O(\Sigma, \mathbb{Z})$ are generated by

$$
M_{0}=\left(\begin{array}{cccc}
1 & -1 & \frac{\kappa}{6}+\frac{c_{2} \cdot D}{12} & \frac{\kappa}{2}+\sigma \\
0 & 1 & \sigma-\frac{\kappa}{2} & -\kappa \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right), M_{\mu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

with $M_{\infty}=\left(M_{0} M_{\mu}\right)^{-1}$. Note that by $\operatorname{HRR} \frac{\kappa}{6}+\frac{c_{2} \cdot D}{12}=\chi\left(\mathcal{O}_{D}\right)+1 \in \mathbb{Z}$

One Parameter CY 3 fold operators

One parameter CY 3-fold differential operators $L^{(4)}=\sum_{i=0}^{4} c_{i}(z) \partial_{z}^{i}$ have been classified by Almkvist, Enckevort, van Straten and Zudilin (AESZ list) at least to finite order in $c_{i}(z)$ in z. E.g. the AESZ34 operator

$$
\begin{aligned}
L^{(4)}= & 1-5 z-(4-28 z) \theta+\left(6-63 z+26 z^{2}-225 z^{3}\right) \theta^{2}-\left(4-70 z+450 z^{3}\right) \theta^{3} \\
& +(1-z)(1-9 z)(1-25 z) \theta^{4}
\end{aligned}
$$

with Riemann symbol

$$
\mathcal{P}_{4}\left\{\begin{array}{ccccc}
0 & \frac{1}{25} & \frac{1}{9} & 1 & \infty \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 1
\end{array}\right\}
$$

One Parameter CY 3 fold operators

One parameter CY 3-fold differential operators $L^{(4)}=\sum_{i=0}^{4} c_{i}(z) \partial_{z}^{i}$ have been classified by Almkvist, Enckevort, van Straten and Zudilin (AESZ list) at least to finite order in $c_{i}(z)$ in z. E.g. the AESZ34 operator

$$
\begin{aligned}
L^{(4)}= & 1-5 z-(4-28 z) \theta+\left(6-63 z+26 z^{2}-225 z^{3}\right) \theta^{2}-\left(4-70 z+450 z^{3}\right) \theta^{3} \\
& +(1-z)(1-9 z)(1-25 z) \theta^{4}
\end{aligned}
$$

with Riemann symbol

$$
\mathcal{P}_{4}\left\{\begin{array}{ccccc}
0 & \frac{1}{25} & \frac{1}{9} & 1 & \infty \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 1
\end{array}\right\}
$$

corresponds to the 4 loop equal mass Banana maximal cut integral with $z=m^{2} / p^{2}$. Which itself is the diagonal specialisation of the five parameter GKZ system of the complete inter section of two degree $d_{1, k}=(1,1,1,1,1), d_{2, k}=(1,1,1,1,1)$ constraints in $\left(\mathbb{P}^{1}\right)^{5}$ describing the general mass case $z_{i}=m_{i}^{2} / p^{2}$.

Period geometry on CY n-fold

The main constrains which govern the period geometry of CY-folds are the Riemann bilinear relations

$$
\begin{equation*}
e^{-K}=i^{n^{2}} \int_{M_{n}} \Omega \wedge \bar{\Omega}>0 \tag{2}
\end{equation*}
$$

defining the real positive exponential of the Kähler potential $K(z)$ for the Weil-Peterssen metric $G_{i \bar{\jmath}}=\partial_{z_{i}} \bar{\partial}_{\overline{z_{\bar{\jmath}}}} K(z)$ on $\mathcal{M}_{c s}\left(M_{n}\right)$.

Period geometry on CY n-fold

The main constrains which govern the period geometry of CY-folds are the Riemann bilinear relations

$$
\begin{equation*}
e^{-K}=i^{n^{2}} \int_{M_{n}} \Omega \wedge \bar{\Omega}>0 \tag{2}
\end{equation*}
$$

defining the real positive exponential of the Kähler potential $K(z)$ for the Weil-Peterssen metric $G_{i \bar{j}}=\partial_{z_{i}} \bar{\partial}_{\bar{z}_{\bar{j}}} K(z)$ on $\mathcal{M}_{c s}\left(M_{n}\right)$. As well as from relations on holomorphic bilinears and their derivatives that follow from Griffiths transversality

$$
\int_{M_{n}} \Omega \wedge \underline{\partial}_{l_{k}}^{k} \Omega=\left\{\begin{array}{cl}
0 & \text { if } k<n \tag{3}\\
C_{l_{n}}(z) & \text { if } k=n
\end{array}\right.
$$

Here $\underline{\partial}_{l_{k}}^{k} \Omega=\partial_{z_{l_{1}}} \ldots \partial_{z_{l_{k}}} \Omega \in F^{n-k}:=\bigoplus_{p=0}^{k} H^{n-p, p}(W)$ are arbitrary combinations of derivatives w.r.t. to the $z_{i}, i=1, \ldots, r$.

Period geometry on CY n-fold

The $C_{I_{n}}(z)$ are rational functions labelled by I_{n} up to permutations. The differential ideals $\mathcal{L} \vec{\Pi}=0$ also determine the $C_{I_{n}}(z)$ up to a multiplicative normalisation

Period geometry on CY n-fold

The $C_{I_{n}}(z)$ are rational functions labelled by I_{n} up to permutations. The differential ideals $\mathcal{L} \vec{\Pi}=0$ also determine the $C_{I_{n}}(z)$ up to a multiplicative normalisation

Exercise: Show that

$$
C_{111}=\frac{\kappa}{z^{3}\left(1-\mu^{-1} z\right)}
$$

for the hypergeometric cases.

Period geometry on CY n-fold

The $C_{I_{n}}(z)$ are rational functions labelled by I_{n} up to permutations. The differential ideals $\mathcal{L} \vec{\Pi}=0$ also determine the $C_{I_{n}}(z)$ up to a multiplicative normalisation

Exercise: Show that

$$
C_{111}=\frac{\kappa}{z^{3}\left(1-\mu^{-1} z\right)}
$$

for the hypergeometric cases.
Remark 1:W.r.t the Hodge decomposition the pairings (2) and (3) have the property that if $\alpha_{m, n} \in H^{m, n}\left(M_{n}\right)$ and $\beta_{p, q} \in H^{r, s}\left(M_{n}\right)$ then $\int_{W} \alpha_{m, n} \wedge \beta_{p, q}=0$ unless $m+p=n+q=3$.
Remark 2: In terms of a basis of periods compatible with Σ they can be written as

$$
\int_{M_{n}} \Omega \wedge \bar{\Omega}=\vec{\Pi}^{\dagger} \Sigma \vec{\Pi}, \quad \int_{M_{n}} \Omega \wedge \underline{\partial}_{l_{k}}^{k} \Omega=-\vec{\Pi}^{T} \Sigma \underline{\partial}_{l_{k}}^{k} \vec{\Pi}
$$

Period geometry on CY n-fold

The pairings (2) and (3) together with Remark 1 give rise to what is know for CY 3-folds as Special Geometry.

Period geometry on CY n-fold

The pairings (2) and (3) together with Remark 1 give rise to what is know for CY 3-folds as Special Geometry.

We will focus here of one aspect of the latter that is relevant for Feynman integral for the following reason: While the maximal integrals are periods and as such solutions of the the homogeneous differential equations $\mathcal{L} \Pi=0$ the actual Feynman integral is a solution of an inhomogeneous extension $\mathcal{L} \Pi=g(z)$.

Period geometry on CY n-fold

The pairings (2) and (3) together with Remark 1 give rise to what is know for CY 3-folds as Special Geometry.

We will focus here of one aspect of the latter that is relevant for Feynman integral for the following reason: While the maximal integrals are periods and as such solutions of the the homogeneous differential equations $\mathcal{L} \Pi=0$ the actual Feynman integral is a solution of an inhomogeneous extension $\mathcal{L} \Pi=g(z)$.

When determining the inhomogeous solutions by the variation of constants methods one considers the Wronskian $[W(z)]_{i, j}=\partial_{z}^{i} \Pi_{j}$, $i, j=0, \ldots, r$ and in particular its inverse.

A simple consequence of Griffiths transversality

Let us define the skew symmetric matrix

$$
Z=W \Sigma W^{T}, \quad \text { i.e. }[Z(z)]_{i j}=\partial_{z}^{i} \Pi^{T} \Sigma \partial_{z}^{i} \Pi, \quad \text { for } i, j=0, \ldots, r
$$

Then (3) implies that Z is rational and its entries are calculated recursively from derivatives of (3) using $\Pi^{T} \Sigma \underline{\partial}_{l_{k}}^{k} \mathcal{L} \Pi=0$.

A simple consequence of Griffiths transversality

Let us define the skew symmetric matrix

$$
Z=W \Sigma W^{T}, \quad \text { i.e. }[Z(z)]_{i j}=\partial_{z}^{i} \Pi^{T} \Sigma \partial_{z}^{i} \Pi, \quad \text { for } i, j=0, \ldots, r
$$

Then (3) implies that Z is rational and its entries are calculated recursively from derivatives of (3) using $\Pi^{T} \Sigma \underline{\partial}_{l_{k}}^{k} \mathcal{L} \Pi=0$.
E.g. for the one parameter case with $r=3$, with the abbreviations $C=C_{111}$, $C^{\prime}=\partial_{z} C$ one finds

$$
Z^{-1}=\frac{(2 \pi i)^{3}}{C}\left(\begin{array}{cccc}
0 & \frac{c^{\prime \prime}}{C}-2 \frac{C^{\prime}}{C}+\frac{c_{2}}{c_{4}} & -\frac{C^{\prime}}{C} & 1 \\
2 \frac{C^{\prime}}{C}-\frac{c^{\prime \prime}}{C}-\frac{c_{2}}{c_{4}} & 0 & -1 & 0 \\
\frac{C^{\prime}}{C} & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

A simple consequence of Griffiths transversality

Let us define the skew symmetric matrix

$$
Z=W \Sigma W^{T}, \quad \text { i.e. }[Z(z)]_{i j}=\partial_{z}^{i} \Pi^{T} \Sigma \partial_{z}^{i} \Pi, \quad \text { for } i, j=0, \ldots, r
$$

Then (3) implies that Z is rational and its entries are calculated recursively from derivatives of (3) using $\Pi^{T} \Sigma \underline{\partial}_{l_{k}}^{k} \mathcal{L} \Pi=0$.
E.g. for the one parameter case with $r=3$, with the abbreviations $C=C_{111}$, $C^{\prime}=\partial_{z} C$ one finds

$$
\begin{gathered}
Z^{-1}=\frac{(2 \pi i)^{3}}{C}\left(\begin{array}{cccc}
0 & \frac{c^{\prime \prime}}{c}-2 \frac{c^{\prime}}{c}+\frac{c_{2}}{c_{4}} & -\frac{c^{\prime}}{c} & 1 \\
2 \frac{c^{\prime}}{c}-\frac{c^{\prime \prime}}{c}-\frac{c_{2}}{c_{4}} & 0 & -1 & 0 \\
\frac{c^{\prime}}{C} & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \\
\Rightarrow W^{-1}=\Sigma W^{T} Z^{-1}
\end{gathered}
$$

depends up to rational functions linear on the periods and its derivatives and the inhomogeous solution becomes an iterated integral.

Special coordinates in special geometry

The local Torelli theorem states that a sufficiently small domain $U_{*} \subset \mathcal{M}_{c s}(W)$ can be identified with a chart in \mathbb{P}^{r} using the period map $z \mapsto\left(X_{*}^{0}(z): \ldots: X_{*}^{r}(z)\right) \in \mathbb{P}^{r}$ and parametrized by inhomogeneous coordinates $t_{*}^{i}(z)=X_{*}^{i} / X_{*}^{0}$. Clearly the $P_{I}^{*}=\int_{B_{I}} \Omega$ are then homogeneous functions of the $X_{*}^{I}=\int_{A^{\prime}} \Omega$.

Special coordinates in special geometry

The local Torelli theorem states that a sufficiently small domain $U_{*} \subset \mathcal{M}_{c s}(W)$ can be identified with a chart in \mathbb{P}^{r} using the period map $z \mapsto\left(X_{*}^{0}(z): \ldots: X_{*}^{r}(z)\right) \in \mathbb{P}^{r}$ and parametrized by inhomogeneous coordinates $t_{*}^{i}(z)=X_{*}^{i} / X_{*}^{0}$. Clearly the $P_{I}^{*}=\int_{B_{I}} \Omega$ are then homogeneous functions of the $X_{*}^{I}=\int_{A^{\prime}} \Omega$. E.g. for CY 3-folds (3) for $k=1,2$ implies the existence of a prepotential $F^{*}\left(X_{*}\right)$ so that

$$
P_{l}^{*}\left(X_{*}\right)=\frac{\partial}{\partial X_{*}^{!}} F^{*}\left(X_{*}\right), \quad 2 F^{*}\left(X_{*}\right)=X_{*}^{\prime} P_{l}^{*}\left(X_{*}\right)
$$

where the Newton equation with Einstein sum conventions implies that $F\left(X_{*}\right)$ is of degree two in the X_{*}^{I}.

Special coordinates in special geometry

Writing $F_{*}\left(X_{*}\right)=\mathcal{F}_{*}\left(t_{*}\right)\left(X_{*}^{0}\right)^{2} \vec{\Pi}=\left(P_{l}^{*}, X_{*}^{\prime}\right)^{t}$ becomes $\vec{\Pi}=X^{0}\left(2 \mathcal{F}_{*}-t^{i} \partial_{t_{*}^{i}} \mathcal{F}_{*}, \partial_{t_{*}^{i}} \mathcal{F}_{*}, 1, t_{*}^{i}\right)^{t}$, and inserting this into (??), changing variables from z_{k} to t^{k} and using the transformations properties of $C_{z_{i} z_{j} z_{k}}$ one establishes $C_{t_{*}^{i} t_{*}^{j} t_{*}^{k}}=\partial_{t_{*}^{t}} \partial_{t_{*}^{j}} \partial_{t_{*}^{k}} \mathcal{F}_{*}\left(t_{*}\right)$

Special coordinates in special geometry

Writing $F_{*}\left(X_{*}\right)=\mathcal{F}_{*}\left(t_{*}\right)\left(X_{*}^{0}\right)^{2} \vec{\Pi}=\left(P_{l}^{*}, X_{*}^{l}\right)^{t}$ becomes $\vec{\Pi}=X^{0}\left(2 \mathcal{F}_{*}-t^{i} \partial_{t_{*}^{i}} \mathcal{F}_{*}, \partial_{t_{*}^{i}} \mathcal{F}_{*}, 1, t_{*}^{i}\right)^{t}$, and inserting this into (??), changing variables from z_{k} to t^{k} and using the transformations properties of $C_{z_{i} z_{j} z_{k}}$ one establishes $C_{t_{*}^{i} t_{*}^{j} t_{*}^{k}}=\partial_{t_{*}^{t_{*}}} \partial_{t_{*}^{j}} \partial_{t_{*}^{k}} \mathcal{F}_{*}\left(t_{*}\right)$
By change of the dependent variable one defines a vector $\underline{\mathcal{V}}=\left(2 \mathcal{F}_{*}-t_{*}^{c} \partial_{c} \mathcal{F}_{*}, \partial_{j}\left(2 \mathcal{F}_{*}-t_{*}^{c} \partial_{c} \mathcal{F}_{*}\right), t_{*}^{j}, 1\right)^{T}$, and with $\mathcal{V}^{j}:=\mathcal{V}_{b_{3}\left(M_{3}\right) / 2+j}, \mathcal{V}^{0}:=\mathcal{V}_{b_{3}\left(M_{3}\right)}$ one gets trivially

$$
\partial_{t_{*}^{i}}\left(\begin{array}{c}
\mathcal{V}_{0} \\
\mathcal{V}_{j} \\
\mathcal{\nu}^{j} \\
\mathcal{V}^{0}
\end{array}\right)=\left(\begin{array}{cccc}
0 & \delta_{i k} & 0 & 0 \\
0 & 0 & c_{i j k} & 0 \\
0 & 0 & 0 & \delta_{i}^{j} \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\mathcal{V}_{0} \\
\mathcal{V}_{k} \\
\mathcal{V}^{k} \\
\mathcal{V}^{0}
\end{array}\right)
$$

Special coordinates in special geometry

Writing $F_{*}\left(X_{*}\right)=\mathcal{F}_{*}\left(t_{*}\right)\left(X_{*}^{0}\right)^{2} \vec{\Pi}=\left(P_{l}^{*}, X_{*}^{l}\right)^{t}$ becomes $\vec{\Pi}=X^{0}\left(2 \mathcal{F}_{*}-t^{i} \partial_{t_{*}^{i}} \mathcal{F}_{*}, \partial_{t_{*}^{i}} \mathcal{F}_{*}, 1, t_{*}^{i}\right)^{t}$, and inserting this into (??), changing variables from z_{k} to t^{k} and using the transformations properties of $C_{z_{i} z_{j} z_{k}}$ one establishes $C_{t_{*}^{i} t_{*}^{j} t_{*}^{k}}=\partial_{t_{*}^{t_{*}}} \partial_{t_{*}^{j}} \partial_{t_{*}^{k}} \mathcal{F}_{*}\left(t_{*}\right)$
By change of the dependent variable one defines a vector $\underline{\mathcal{V}}=\left(2 \mathcal{F}_{*}-t_{*}^{c} \partial_{c} \mathcal{F}_{*}, \partial_{j}\left(2 \mathcal{F}_{*}-t_{*}^{c} \partial_{c} \mathcal{F}_{*}\right), t_{*}^{j}, 1\right)^{T}$, and with $\mathcal{V}^{j}:=\mathcal{V}_{b_{3}\left(M_{3}\right) / 2+j}, \mathcal{V}^{0}:=\mathcal{V}_{b_{3}\left(M_{3}\right)}$ one gets trivially

$$
\partial_{t_{*}^{\prime}}\left(\begin{array}{c}
\mathcal{V}_{0} \\
\mathcal{V}_{j} \\
\mathcal{V}^{j} \\
\mathcal{V}^{0}
\end{array}\right)=\left(\begin{array}{cccc}
0 & \delta_{i k} & 0 & 0 \\
0 & 0 & c_{i j k} & 0 \\
0 & 0 & 0 & \delta_{i}^{j} \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\mathcal{V}_{0} \\
\mathcal{V}_{k} \\
\mathcal{V}^{k} \\
\mathcal{V}^{0}
\end{array}\right)
$$

This is the Gauss-Manin connection in projective flat coordinates and in special Kähler gauge. These formulas allow simpler iterated integrals and generalise to all n provided one knows Σ.

Omisions:

The theory of mixed Hodge structure gives very detailed information about the possible degeneration of the periods. Here we brushed only over the maximal unipotent degeneration.

Omisions:

The theory of mixed Hodge structure gives very detailed information about the possible degeneration of the periods. Here we brushed only over the maximal unipotent degeneration.

CY n-folds exhibit modularity in a similar sense than elliptic curves. As as consequence at certain rational z values the periods can be given by Hecke L function values or better by periods and quasi periods of modular objects.

Omisions:

The theory of mixed Hodge structure gives very detailed information about the possible degeneration of the periods. Here we brushed only over the maximal unipotent degeneration.

CY n-folds exhibit modularity in a similar sense than elliptic curves. As as consequence at certain rational z values the periods can be given by Hecke L function values or better by periods and quasi periods of modular objects.

So far we explored mainly the holomorphic story following from (3) and not the combinations of (3) with (2) and Remark 1. This leads to an integrable structure, $t t^{*}$-equations, Kodaira Spencer gravity, topological string theory and related topics

Conclusion and Outlook

Conclusion and Outlook

Conclusion and Outlook

Conclusion and Outlook

