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Definition of compact Calabi-Yau (CY) n - folds

A Calabi -Yau n-fold M is a compact complex manifold of complex

dimension n that

ω) is a Kähler manifold, i.e. has a Kähler (1, 1)-form ω,

Ω) and has unique no-where vanishing holomorphic (n, 0)-form Ω.

The latter condition is equivalent to

1) the canonical class is trivial KM = c1(TM) = 0,

2) given a Kähler class, ∃ metric g with Ri ̄(g) = 0,

3) the holonomy of the metric g is (⊂ SU(n)) SU(n),

Remarks: CY n-fold are generalisations of elliptic curves

- CY 1-fold is an elliptic curve, say y 2 = x(x − 1)(x − z) with

Ω given by dx
y and ω = dx

y ∧
dx̄
ȳ is its volume form.

- We use SU(n) rather then ⊂ SU(n) to avoid trivial

products of lower CY n-folds in the generalisation.
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ȳ is its volume form.

- We use SU(n) rather then ⊂ SU(n) to avoid trivial

products of lower CY n-folds in the generalisation.

3



Definition of compact Calabi-Yau (CY) n - folds

A Calabi -Yau n-fold M is a compact complex manifold of complex

dimension n that

ω) is a Kähler manifold, i.e. has a Kähler (1, 1)-form ω,

Ω) and has unique no-where vanishing holomorphic (n, 0)-form Ω.

The latter condition is equivalent to

1) the canonical class is trivial KM = c1(TM) = 0,

2) given a Kähler class, ∃ metric g with Ri ̄(g) = 0,

3) the holonomy of the metric g is (⊂ SU(n)) SU(n),

Remarks: CY n-fold are generalisations of elliptic curves

- CY 1-fold is an elliptic curve, say y 2 = x(x − 1)(x − z) with

Ω given by dx
y and ω = dx

y ∧
dx̄
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Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree N = dH embedding of M into H ⊂ Pn+1 .

Then the splitting of the exact sequence

0→ TM → TPn+1 → N → 0

at TPn+1 implies with c1(TPn+1) = (1 + H)n+2 and

c1(N ) = (1 + dH) that ch(TM) equals

(1 + H)n+2

1 + dH
= 1+[(n + 2)− d ]H︸ ︷︷ ︸

c1(TM)=0!

+ [(1− d)2 + 1
2n(n + 3− 2d)]H2︸ ︷︷ ︸

c2(TM)=c2H2

+ . . .

⇒ 1) cubic d = 3 in P2 wy2 =4x3−g2(z)xw2−g3(z)w3 is complex

family of elliptic curves with complex modulus z .

⇒ 2) quartic in P3 is a CY 2-fold with 19 complex moduli.

⇒ 3) quintic in P4 is a CY 3-fold with 101 complex moduli.

4



Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree N = dH embedding of M into H ⊂ Pn+1 .

Then the splitting of the exact sequence

0→ TM → TPn+1 → N → 0

at TPn+1 implies with c1(TPn+1) = (1 + H)n+2 and

c1(N ) = (1 + dH) that ch(TM) equals

(1 + H)n+2

1 + dH
= 1+[(n + 2)− d ]H︸ ︷︷ ︸

c1(TM)=0!

+ [(1− d)2 + 1
2n(n + 3− 2d)]H2︸ ︷︷ ︸

c2(TM)=c2H2

+ . . .

⇒ 1) cubic d = 3 in P2 wy2 =4x3−g2(z)xw2−g3(z)w3 is complex

family of elliptic curves with complex modulus z .

⇒ 2) quartic in P3 is a CY 2-fold with 19 complex moduli.

⇒ 3) quintic in P4 is a CY 3-fold with 101 complex moduli.

4



Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree N = dH embedding of M into H ⊂ Pn+1 .

Then the splitting of the exact sequence

0→ TM → TPn+1 → N → 0

at TPn+1 implies with c1(TPn+1) = (1 + H)n+2 and

c1(N ) = (1 + dH) that ch(TM) equals

(1 + H)n+2

1 + dH
= 1+[(n + 2)− d ]H︸ ︷︷ ︸

c1(TM)=0!

+ [(1− d)2 + 1
2n(n + 3− 2d)]H2︸ ︷︷ ︸

c2(TM)=c2H2

+ . . .

⇒ 1) cubic d = 3 in P2 wy2 =4x3−g2(z)xw2−g3(z)w3 is complex

family of elliptic curves with complex modulus z .

⇒ 2) quartic in P3 is a CY 2-fold with 19 complex moduli.

⇒ 3) quintic in P4 is a CY 3-fold with 101 complex moduli.

4



Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree N = dH embedding of M into H ⊂ Pn+1 .

Then the splitting of the exact sequence

0→ TM → TPn+1 → N → 0

at TPn+1 implies with c1(TPn+1) = (1 + H)n+2 and

c1(N ) = (1 + dH) that ch(TM) equals

(1 + H)n+2

1 + dH
= 1+[(n + 2)− d ]H︸ ︷︷ ︸

c1(TM)=0!

+ [(1− d)2 + 1
2n(n + 3− 2d)]H2︸ ︷︷ ︸

c2(TM)=c2H2

+ . . .

⇒ 1) cubic d = 3 in P2 wy2 =4x3−g2(z)xw2−g3(z)w3 is complex

family of elliptic curves with complex modulus z .

⇒ 2) quartic in P3 is a CY 2-fold with 19 complex moduli.

⇒ 3) quintic in P4 is a CY 3-fold with 101 complex moduli.

4



Construction of Calabi-Yau n-folds hypersurface in projective

spaces

Let M be a degree N = dH embedding of M into H ⊂ Pn+1 .

Then the splitting of the exact sequence

0→ TM → TPn+1 → N → 0

at TPn+1 implies with c1(TPn+1) = (1 + H)n+2 and

c1(N ) = (1 + dH) that ch(TM) equals

(1 + H)n+2

1 + dH
= 1+[(n + 2)− d ]H︸ ︷︷ ︸

c1(TM)=0!

+ [(1− d)2 + 1
2n(n + 3− 2d)]H2︸ ︷︷ ︸

c2(TM)=c2H2

+ . . .

⇒ 1) cubic d = 3 in P2 wy2 =4x3−g2(z)xw2−g3(z)w3 is complex

family of elliptic curves with complex modulus z .

⇒ 2) quartic in P3 is a CY 2-fold with 19 complex moduli.

⇒ 3) quintic in P4 is a CY 3-fold with 101 complex moduli. 4



More on constructions of Calabi-Yau n-folds

Number of complex moduli #mon − |Aut(P∗)|:
1) (x3

i ; 3, x2
i xj ; 6,

∏
xi ; 1): 10-9=1,

2) (x4
i ; 4, x3

i xj ; 12, x2
i x

2
j ; 6, x2

i xjxk ; 12,
∏

xi ; 1): 35-16=19,

3) Likewise 126-25=101.

Euler number (Gauss Bonnet): χ =
∫
Mn

cn(TM) = cnd ,

1) χ = 0, χ = 2g − 2 ⇒ g = 1 one topological type E .

2) By c2(TM) = 6H2 ⇒ χ = 24. HRR for arithmetic genus

of surface χ0 =
∑2

i=0(−1)ih0,i = 1
12

∫
M2

(c2
1 + c2). Now

by definition h00 = h02 = 1, h01 = 0 because of SU(2)

hol, i.e. χ0(M2) = 2 and since c1 = 0 ⇒ χ(M2) = 24

and we have only one topological type the K3 surface

3) By c3(TM) = −40H3 ⇒ χ = −200. Hirzebruch

Riemann Roch χ0 = 1
24

∫
M3

c1c2 = 1− 0 + 0− 1X,

χ1 =−h11 + h21 = 1
24

∫
M3

c1c2− 12c3⇒χ=2(h11− h21)X

5
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More on constructions of Calabi-Yau n-folds

Theorem (C.T.C Wall): The topological type of a Calabi-Yau

3-fold M is fixed by their Hodge numbers (h21, h11), their triple

intersection Di ∩ Dj ∩ Dk ∈ N and c2(TM) · · ·Dk , Dk ∈ H4(M,Z).

The topological classification Calabi-Yau n-folds for n ≥ 3 is an

open problem, but it is relatively easy to find classes of

constructions:

CICYs: Complete intersections: The vanishing locus of r polynomials

Pk = 0, k = 1, . . . , r in P=⊗m
l=1Pnl

l define a CY (
∑m

l=1 nl − r)

-fold if
∑r

k=1 dkl = nl + 1, ∀l = 1, . . . ,m, with dkl are degrees

of the k ’th polynomial in the l ′th factor: 2d n-1 loop bananas.

BCs: Branched covers: Let P be a n-dimensional Fano variety with

positive canonical class K (P) = c1(P) > 0 then a b-fold cover

that is branched at bK (P) is a non necessarily smooth CY

n-fold: 2d n loop fishnets .

6
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open problem, but it is relatively easy to find classes of

constructions:

CICYs: Complete intersections: The vanishing locus of r polynomials

Pk = 0, k = 1, . . . , r in P=⊗m
l=1Pnl

l define a CY (
∑m

l=1 nl − r)

-fold if
∑r

k=1 dkl = nl + 1, ∀l = 1, . . . ,m, with dkl are degrees

of the k ’th polynomial in the l ′th factor: 2d n-1 loop bananas.

BCs: Branched covers: Let P be a n-dimensional Fano variety with

positive canonical class K (P) = c1(P) > 0 then a b-fold cover

that is branched at bK (P) is a non necessarily smooth CY

n-fold: 2d n loop fishnets .
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Hypersurface in toric ambient spaces

Huge classified construction: CY 3folds as hypersurfaces in toric

ambient spaces P∆, P∆̂ defined by reflexive pairs (∆, ∆̂):

M = {[p∆̂ = 0] =

[
∑

i Hi ] ⊂ P∆}

W = {[p∆ = 0] =

[
∑

i Ĥi ] ⊂ P∆̂}

Batyrev:

(M,W ) mir-

ror pairs

(h11, h2,1) = (11, 491) (h11, h2,1) = (491, 11)

Geom. #(∆k , ∆̂k)

2 pts 1

ell crv 16

K3 43191

CY 3-flds 4738007761

CY 4-flds O(1022)?
...

...
1 Kreuzer & Skarke

’02, k = 3, 4
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General properties of Calabi-Yau n-fold fold families

Theorem Tian/Todorov: The complex moduli space Mcs(M) of

a CY n-fold M is parametrized for by hn−1,1 = dimC(Hn−1,1(M))

globally unobstructed complex deformation parameters z , i.e. is a

manifold of complex dimension hn−1,1 =: r (E and K3 are special).

Example: We counted 101 = h2,1 complex deformation

parameters for the quintic in P4 and by the Lefshetz hyperplane

theorem h1,1 = 1 (inherited from P4), hence

χ = 2(h1,1 − h21) = −200 in accordance with Gauss-Bonnet.

Application: The complex moduli dependent period integrals on

CY n-fold families generalize elliptic functions. They are identified

for important examples with the maximal cut Feynman n − 1-loop

integrals, where the complex moduli z are identified with the scale

invariant physical parameters zi = p2/m2
i , . . ..
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Periods on Calabi-Yau n-folds

Periods integrals

Πij(z) =

∫
Γi

γj(z)

define a non-degenerate pairing between between (middle)

homology and (middle) cohomology well defined by the theorem of

Stokes:

Π : Hn(Mn,K)× Hn(Mn,C)→ C .

It is possible and natural to have K to be Z. There is an

intersection pairing

Σ : Hn(Mn,K)× Hn(Mn,K)→ K,

that can be made in particular integral. If n is odd Σ is

antisymmetric and can be made symplectic. If n is even Σ is a

symmetric on the even self dual lattice Hn(Mn,K). E.g. for K3 b2 = 22 and

σ = b+
2 − b−2 = 1

3

∫
M2

c2
1 − 2c2 = −16 hence b2 has signature (3, 19) and is E8(−1)⊕2⊕

(
0 1

1 0

)⊕3

. 9



If n is odd we fix can integral symplectic basis Γ = {AI ,B
I},

I = 0, . . . , r with SpanZ(Γ) = Hn(W ,Z) and

AI ∩ AJ = B I ∩ BJ = 0, AI ∩ BJ = −BJ ∩ AI = δJI .

It is clearly defined up only to an Sp(bn(M),Z) choice.

<

A <

B

Exp: Calabi-Yau 1-fold: p3 = wy2 − x(x − w)(x − wz) = 0 ⊂ P2

Ω(z) =
∮

2dx∧dy
p3

= dx
y , ∂zΩ(z) ∼ xdx

y

E1(z) =
∮
A

Ω, E2(z) =
∮
B

Ω Elliptic integrals.

Well studied in part because they solve Keplers problem

Periods annihilated by Picard-Fuchs (1881) 2cd order linear operator L(2).

L(2)

∫
Γ

Ω =

[
(1− z)∂2

z + (1− 2z)∂z −
1

4

] ∫
Γ

Ω = 0 .

10
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The Picard-Fuchs differential ideal

We can always expand Ω =
∑b3(W )

i=1 Πi (z)γi in terms of periods

Πi (z) =
∫

Γi
Ω(z).

The bn(Mn) periods span a vector space that is identified with the

solutions space of linear Picard-Fuchs differential ideal LΠi (z) = 0.

For one parameter families L is generated by a bn(Mn) + 1 order

Picard-Fuchs operator L(bn(Mn)+1), while for multiparameter

families L = {L(k)
i , i = 1, . . . , |L|, k = 2, . . . , bn(Mn) + 1} with

several L
(k)
i .

The latter can derived using the Griffiths reduction method and for

CY embedded in toric ambient space also as a reduction of a

Gelfand Kapranov Zelevinskii system.

11



Finding and integral basis

The Feynman integrals correspond i.a. to periods over integral

cycles, e.g. Γ = {AI ,B
I}. Such are not specified by L alone.

On CY moduli space the monodromy of the periods in Mcs(Mn) is

irreducible and monodromies ~Π→ Mi
~Π along loops λi encircling

singular (normal crossing) divisor Di ∈Mcs(Mn) respect the

intersection form Σ, i.e. Mt
i ΣMi = Σ, ∀ Mi . In an integral bases

the {Mi} generate a subgroup of O(Σ,Z). Since the latter acts

irreducible it is possible to find an integral basis up to O(Σ,Z) by

caculating all {Mi} in an arbitrary basis and conjugating them

simultaneously into O(Σ,Z).

If Mcs(Mn) has a point of maximal unipotent mondromy (MUM)

with a known mirror Wn one can calculate an integral period

vector using the Γ̂(TWn)-class.

12
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One Parameter CY 3 fold operators

Examples: There are 14 hyper geometric 3F4 CY 3-fold operators

given by

L(4) = θ4 − µ−1z
4∏

k = 1

(θ + ak) ,

where θ = z d
dz and z parametrizes Mcs(M3) = P1 \ {0, µ,∞}

and

# W κ c2 · D χ(W ) a1, a2, a3, a4 µ−1 dT∞

1 X5(15) 5 50 −200 1
5
, 2

5
, 3

5
, 4

5
55 ODG

5

2 X4,2(16) 8 56 −176 1
4
, 1

2
, 1

2
, 3

4
210 C4

3 X3,3(16) 9 54 −144 1
3
, 1

3
, 2

3
, 2

3
36 K3

4 X2,2,2,2(18) 16 64 −128 1
2
, 1

2
, 1

2
, 1

2
28 M2

...
...

...
...

...
...

...
...
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One Parameter CY 3 fold operators

Their Riemann symbols are

P



0 µ ∞
0 0 a1

0 1 a2

0 1 a3

0 2 a4


.

At z = 0 the local exponents are completely degenerate and we have a MUM point.

A Frobenius C-basis of solutions is

~Π0(z) =


f0(z)

f0(z) log(z) + f1(z)
1
2
f0(z) log2(z) + f1(z) log(z) + f2(z)

1
6
f0(z) log3(z) + 1

2
f1(z) log2(z) + f2(z) log(z) + f3(z)


for power series normalized by f0(0) = 1 and f1(0) = f2(0) = f3(0) = 0.
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One Parameter CY 3 fold operators

The Γ̂(TW ) class determines an integral basis at z = 0

~Π =


∫
B0 Ω∫
B1 Ω∫
A0

Ω∫
A1

Ω

 = (2πi)3


ζ(3)χ(M)

(2πi)3
c2·D

24·2πi 0 κ
(2πi)3

c2·D
24

σ
2πi

− κ
(2πi)2 0

1 0 0 0

0 1
2πi

0 0

Π0 . (1)

in terms of the C.T.C Wall data.

The monodromies in SP(4,Z) = O(Σ,Z) are

generated by

M0 =


1 −1 κ

6
+ c2·D

12
κ
2

+ σ

0 1 σ − κ
2

−κ
0 0 1 0

0 0 1 1

 , Mµ =


1 0 0 0

0 1 0 0

−1 0 1 0

0 0 0 1


with M∞ = (M0Mµ)−1. Note that by HRR κ

6
+ c2·D

12
= χ(OD) + 1 ∈ Z
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One Parameter CY 3 fold operators

One parameter CY 3-fold differential operators L(4) =
∑4

i=0 ci (z)∂ iz have been

classified by Almkvist, Enckevort, van Straten and Zudilin (AESZ list) at least to finite

order in ci (z) in z. E.g. the AESZ34 operator

L(4) = 1− 5z − (4− 28z)θ +
(
6− 63z + 26z2 − 225z3

)
θ2 −

(
4− 70z + 450z3

)
θ3

+(1− z)(1− 9z)(1− 25z)θ4

with Riemann symbol

P4



0 1
25

1
9

1 ∞
1 0 0 0 0

1 1 1 1 0

1 1 1 1 1

1 2 2 2 1



corresponds to the 4 loop equal mass Banana maximal cut integral with z = m2/p2.

Which itself is the diagonal specialisation of the five parameter GKZ system of the

complete inter section of two degree d1,k = (1, 1, 1, 1, 1), d2,k = (1, 1, 1, 1, 1)

constraints in (P1)5 describing the general mass case zi = m2
i /p

2.
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Period geometry on CY n-fold

The main constrains which govern the period geometry of CY-folds

are the Riemann bilinear relations

e−K = in
2
∫
Mn

Ω ∧ Ω̄ > 0 (2)

defining the real positive exponential of the Kähler potential K (z)

for the Weil-Peterssen metric Gi ̄ = ∂zi ∂̄z̄̄K (z) on Mcs(Mn).

As

well as from relations on holomorphic bilinears and their derivatives

that follow from Griffiths transversality∫
Mn

Ω ∧ ∂kIk Ω =

 0 if k < n

CIn(z) if k = n .
(3)

Here ∂kIk Ω = ∂zI1 . . . ∂zIk Ω ∈ F n−k :=
⊕k

p=0 H
n−p,p(W ) are

arbitrary combinations of derivatives w.r.t. to the zi , i = 1, . . . , r .
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Period geometry on CY n-fold

The CIn(z) are rational functions labelled by In up to permutations.

The differential ideals L~Π = 0 also determine the CIn(z) up to a

multiplicative normalisation

Exercise: Show that

C111 =
κ

z3(1− µ−1z)
.

for the hypergeometric cases.

Remark 1:W.r.t the Hodge decomposition the pairings (2) and (3)

have the property that if αm,n ∈ Hm,n(Mn) and βp,q ∈ H r ,s(Mn)

then
∫
W αm,n ∧ βp,q = 0 unless m + p = n + q = 3.

Remark 2: In terms of a basis of periods compatible with Σ they

can be written as∫
Mn

Ω ∧ Ω̄ = ~Π†Σ~Π,

∫
Mn

Ω ∧ ∂kIk Ω = −~ΠTΣ∂kIk
~Π ,
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Period geometry on CY n-fold

The pairings (2) and (3) together with Remark 1 give rise to what

is know for CY 3-folds as Special Geometry.

We will focus here of one aspect of the latter that is relevant for

Feynman integral for the following reason: While the maximal

integrals are periods and as such solutions of the the homogeneous

differential equations LΠ = 0 the actual Feynman integral is a

solution of an inhomogeneous extension LΠ = g(z).

When determining the inhomogeous solutions by the variation of

constants methods one considers the Wronskian [W (z)]i ,j = ∂ izΠj ,

i , j = 0, . . . , r and in particular its inverse.
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A simple consequence of Griffiths transversality

Let us define the skew symmetric matrix

Z = WΣW T , i.e. [Z (z)]ij = ∂ izΠTΣ∂ izΠ, for i , j = 0, . . . , r

Then (3) implies that Z is rational and its entries are calculated

recursively from derivatives of (3) using ΠTΣ∂kIkLΠ = 0.

E.g. for the one parameter case with r = 3, with the abbreviations C = C111,

C ′ = ∂zC one finds

Z−1 =
(2πi)3

C


0 C ′′

C
− 2C ′

C
+ c2

c4
−C ′

C
1

2C ′

C
− C ′′

C
− c2

c4
0 −1 0

C ′

C
1 0 0

−1 0 0 0


⇒ W−1 = ΣW TZ−1 .

depends up to rational functions linear on the periods and its

derivatives and the inhomogeous solution becomes an iterated

integral.
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Special coordinates in special geometry

The local Torelli theorem states that a sufficiently small domain

U∗ ⊂Mcs(W ) can be identified with a chart in Pr using the

period map z 7→ (X 0
∗ (z) : . . . : X r

∗ (z)) ∈ Pr and parametrized by

inhomogeneous coordinates t i∗(z) = X i
∗/X

0
∗ . Clearly the

P∗I =
∫
BI

Ω are then homogeneous functions of the X I
∗ =

∫
AI Ω .

E.g. for CY 3-folds (3) for k = 1, 2 implies the existence of a

prepotential F ∗(X∗) so that

P∗I (X∗) =
∂

∂X I
∗
F ∗(X∗), 2F ∗(X∗) = X I

∗P
∗
I (X∗),

where the Newton equation with Einstein sum conventions implies

that F (X∗) is of degree two in the X I
∗ .
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Special coordinates in special geometry

Writing F∗(X∗) = F∗(t∗)(X 0
∗ )2 ~Π = (P∗I ,X

I
∗)

t becomes
~Π = X 0(2F∗ − t i∂t i∗F∗, ∂t i∗F∗, 1, t

i
∗)

t , and inserting this into (??),

changing variables from zk to tk and using the transformations

properties of Czizjzk one establishes C
t i∗t

j
∗tk∗

= ∂t i∗∂t j∗
∂tk∗F∗(t∗)

By change of the dependent variable one defines a vector

V = (2F∗ − tc∗∂cF∗, ∂j(2F∗ − tc∗∂cF∗), t
j
∗, 1)T , and with

V j := Vb3(M3)/2+j , V0 := Vb3(M3) one gets trivially

∂t i∗


V0

Vj
V j

V0

 =


0 δik 0 0

0 0 Cijk 0

0 0 0 δji
0 0 0 0



V0

Vk
Vk

V0

 .

This is the Gauss-Manin connection in projective flat coordinates

and in special Kähler gauge. These formulas allow simpler iterated

integrals and generalise to all n provided one knows Σ.
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Omisions:

The theory of mixed Hodge structure gives very detailed

information about the possible degeneration of the periods. Here

we brushed only over the maximal unipotent degeneration.

CY n-folds exhibit modularity in a similar sense than elliptic curves.

As as consequence at certain rational z values the periods can be

given by Hecke L function values or better by periods and quasi

periods of modular objects.

So far we explored mainly the holomorphic story following from (3)

and not the combinations of (3) with (2) and Remark 1. This

leads to an integrable structure, tt∗-equations, Kodaira Spencer

gravity, topological string theory and related topics ....
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