Majorana Edge Modes in a spinful particle-conserving model

- 1) Introduction:
 - Majoranas
 - Kitaev
 - Spinless ladder

- Spinful ladder Majorana phase
- 2) Our model: 3) The results:

1) Introduction

Majoranas are half fermionic degree of freedom

Majorana Fermions in HEP:

A fermion that is its *own* antiparticle **Creation** = **Anihilation**: $\gamma = \gamma^{\dagger}$

Majoranas are half fermionic degree of freedom

Majorana Fermions in HEP:

A fermion that is its *own* antiparticle = Creation = Anihilation: $\gamma = \gamma^{\dagger}$ 2 Majoranas

1 Fermion

Majoranas are half fermionic degree of freedom

Majorana Fermions in HEP: A fermion that is its *own* antiparticle = Creation = Anihilation: $\gamma = \gamma^{\dagger}$ 2 Majoranas

1 Fermion

Majorana occupation?

- $\gamma^{\dagger}_{\alpha}\gamma_{\alpha}=1$ Not very useful!
- You cannot occupy a single Majorana mode!!

Majoranas on a chain?

Number operator?

$$n = c^{\dagger}c = \frac{1}{2}(i\gamma_A\gamma_B + 1)$$

We need **two different** Majoranas to define an **occupation number!**

$$i\gamma_A\gamma_B = 2c^{\dagger}c - 1 = \pm 1$$

Different sites?

 $i\gamma_{Bj}\gamma_{Aj+1}$

Definition: $egin{array}{ll} \gamma_A = c + c^\dagger \ i \gamma_B = c - c^\dagger \end{array}$

Majoranas on a chain?

Number operator?

$$n = c^{\dagger}c = \frac{1}{2}(i\gamma_A\gamma_B + 1)$$

We need two different Majoranas to define an occupation number!

$$i\gamma_A\gamma_B = 2c^{\dagger}c - 1 = \pm 1$$

Different sites?

 $i\gamma_{Bj}\gamma_{Aj+1}$

Definition: $\gamma_A = c + c^\dagger \ i \gamma_B = c - c^\dagger$

Trivial

Non-local

 $H = \sum_{j} i \gamma_{Bj} \gamma_{Aj+1} \text{ Does not conserve N,} \\ \downarrow j$

$H = -\sum_{j} (c_{j}^{\dagger} c_{j+1} - c_{j} c_{j+1} + hc)$

Topological phase in the Kitaev chain

Kitaev, Phys. Usp. 44, 131 (2001)

Topological phase in the Kitaev chain

Kitaev, *Phys. Usp.* **44**, 131 (2001)

Topological case:

What about the **Majoranas at the ends**? $\tilde{c}_M = \frac{1}{2}(\gamma_{A1} + i\gamma_{BL})$

Non-local zero-energy fermionic state!

Characteristics

Both parity sectors are quasi-degenerate

> E(P=0) = E(P=1)!Zero-energy mode

Characteristics

Both parity sectors are quasi-degenerate

> E(P=0) = E(P=1)!Zero-energy mode

(3)

 $H=-it\sum_{j}\gamma_{Bj}\gamma_{Aj+1}$

 $\tilde{c}_M = \frac{1}{2}(\gamma_{A1} + i\gamma_{BL})$

Double degeneracy on the Entanglement Spectrum

(4) **Robust against local noise**

A number conserving model

■ Works from 2010 Work from 2013 by Kraus et al

Idea: **Two chains coupled** only by a pair-hopping Each one can act as

a pair reservoir for the other

A number conserving model

■ Works from 2010 Work from 2013 by Kraus et al

Idea: Two chains coupled only by a pair-hopping Each one can act as a pair reservoir for the other

Kraus et al, *PRL* **111**, 173004 (2013)

$H = -t \sum_{j} (a_{j}^{\dagger} a_{j+1} + b_{j}^{\dagger} b_{j+1} + hc) + hc$ $+W\sum_{j}(a_{j}^{\dagger}a_{j+1}^{\dagger}b_{j}b_{j+1}+hc)$

Fixed N!

They find a Majorana phase!

A number conserving model

Kraus et al, *PRL* **111**, 173004 (2013)

Both parity sectors are quasidegenerate

Non-local end-end correlations

A number conserving model

Kraus et al, *PRL* **111**, 173004 (2013)

Both parity sectors are quasidegenerate

-log(λ)

Non-local end-end correlations

③ Double degeneracy on the ES

Robust against local noise

2) Our model

A spinful model?

Single leg:

10

A spinful model?

Our Model

11

Our Model

$$H_{tt'} = \sum_{j\alpha} (-t\alpha^{\dagger}_{\downarrow 2j}\alpha_{\downarrow 2j+1} - t'\alpha^{\dagger}_{\downarrow 2j+1}\alpha_{\downarrow 2j+2}) \\ -t'\alpha^{\dagger}_{\uparrow 2j}\alpha_{\uparrow 2j+1} - t\alpha^{\dagger}_{\uparrow 2j+1}\alpha_{\uparrow 2j+2} + hc) \\ H_x = \sum_{j\alpha} (h_x\alpha^{\dagger}_{\uparrow j}\alpha_{\downarrow j} + hc) \\ H_U = \sum_{j\alpha} Un_{\alpha\uparrow j}n_{\alpha\downarrow j} \\ H_W = \sum_{j\alpha} (Wa^{\dagger}_{\uparrow j}a^{\dagger}_{\downarrow j}b_{\downarrow j}b_{\uparrow j} + hc)$$

- Single leg: P_a conserved (N_a is not)

Do we have a **Majorana Phase?**

• Doesn't conserve the total spin projection $(\Sigma S_z)!$

3) The results

12

Methods?

Ground state calculations using MPS

Size: up to 150 rungs **Bond dim**: up to **3000 W** = 2.6t n = N/2L = 0.32 (fixed)

Criteria:

(1)Both parity sectors have the same E (2) We have end-end correlations ③There is an even Deg in the ES (4) Robust against local noise

Energy difference and Entanlgement spectrum

We compute the lowest-lying energy in each parity sector

14

Energy difference and Entanlgement spectrum

We compute the lowest-lying energy in each parity sector

Also the Entanglement Spectrum

Energy difference and Entanlgement spectrum

L = 100 rungsN = 64

(1)Both parity sectors have the same E ③There is an even Deg in the ES

 $\Delta = E(P_a = 0) - E(P_a = 1)$ Λ_i : entanglement spectrum eigenvalue

• Contour Plot:
$$log_{10}(\Delta)$$

• Squares: $\frac{\Lambda_0 - \Lambda_1}{\Lambda_0 + \Lambda_1}$

Finite end-end correlations

Finite end-end correlations

Finite end-end correlations

1 Both parity sectors have the same E 2 We have end-end correlations **3** There is an even Deg in the ES