Slavomira Stefkova

Bundesministerium und Forschung

[PRL 127, 181802 (2021)]

- Seminar
- Bonn, Germany
 - 10.11.2022

Slavomira Stefkova, 10.11.2022, Bonn

Outline

Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with inclusive tagging

[PRL 127, 181802 (2021)]

Prospects

SuperKEKB

Energy asymmetric e⁺e⁻-collider in Tsukuba, Japan

- ° $\sqrt{s} = 10.58 \text{ GeV} \rightarrow (\Upsilon(4S) \rightarrow B\overline{B}) + \text{nothing w} / ℬ > 96\%$ → clean *B* sample (on-resonance)
- $\sqrt{s} = 10.52 \text{ GeV} \rightarrow \text{control sample to constrain continuum}$ backgrounds $e^+e^- \rightarrow q\bar{q}$, where q = (u, d, s, c) (off-resonance)
- Other \sqrt{s}
- Operating with continuous injection scheme

Slavomira Stefkova, 10.11.2022, Bonn

SuperKEKB in not only a *B***-factory** τ and *c* pairs have high cross-section at $\sqrt{s} = 10.58$ GeV

Comparison to KEKB

With nano-beam scheme and upgraded rings SuperKEKB aims to reach 30 × ℒ_{inst} higher at cost of 𝒪(10) × higher backgrounds:
• x 1.5 currents
• x 1/20 vertical beam size

Belle II Detector

Slavomira Stefkova, 10.11.2022, Bonn

• Upgraded **DAQ** and trigger (higher readout frequency + low multiplicity channels)

> Simulated $e^+e^- \rightarrow \mu^+\mu^-$ event with high luminosity backgrounds (CDC x-y view)

Luminosity

Status

- 363 fb⁻¹ (on-resonance) \rightarrow (~1/2 Belle, ~ BaBar)
- 42 fb⁻¹ (off-resonance)
- ~ 90 % data-taking efficiency
- Record-breaking $\mathscr{L}_{inst} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Highest daily integrated luminosity: 2.5 fb⁻¹

Prospects

• Short-term plan:

- Now in long shutdown (LS1) until end of 2023:
 - Full PXD installation
 - New beampipe
 - Replacement of defect CDC readout boards
 - Replacement of 50% of barrel TOP PMTs
- **Long-term plan**: LS2, final goal: $\mathscr{L}_{int} = 50 \text{ ab}^{-1}$

Rare B-decays with neutrinos at Belle II

Zeeman Building, Warwick University, UK

Challenges of rare B-decays

- High reconstruction efficiency
- Good MC modelling

Slavomira Stefkova, 10.11.2022, Bonn

Key ingredients

Challenges of channels with neutrinos

- Good understanding of the neutral objects $(\pi^0, K_L, K_s^0, \mathbf{n}, \gamma)$
- Choice of reconstruction approach

Reconstruction

Exclusive Tagging Approach:

- **1. step:** B_{tag}^+ reconstruction in its **semileptonic**
- (SL) or hadronic (HAD) decay chain
- **2. step:** B_{sig}^- reconstruction
 - Flavour constraint: $B_{tag}^+ \rightarrow B_{sig}^-$
 - Kinematically constrained system with hadronic B_{tag}^+ : $\overrightarrow{p}_{\overline{\nu}} + \overrightarrow{p}_{l^-} = \overrightarrow{p}_{e^+e^-} - \overrightarrow{p}_{B_{tag}^-}$

Higher intrinsic background rejection

 \mathbf{M} Better resolution \rightarrow analytical fits

- \Box Lower signal efficiency (<1%) DESY.
 - HAD (~ 0.04%) SL (~0.2%)
- \Box Systematics (B_{tag}^+)

Slavomira Stefkova, 10.11.2022, Bonn

Inclusive Tagging Approach: 1. step: B_{sig}^- reconstruction **2. step:** Constrain the rest

- **2. step:** Constrain the rest of the event
- Higher signal efficiency
 Lower intrinsic background
 rejection
 - \Box Worse resolution \rightarrow binned fits

Other Approaches:

- 'Semi-inclusive' tagging
- Charm tagging

Efficiency

Reconstruction

Exclusive Tagging Approach: 1. step: B_{tag}^+ reconstruction in its **semileptonic** (SL) or hadronic (HAD) decay chain **2. step:** B_{sig}^- reconstruction e^+ • Flavour constraint: $B_{tag}^+ \rightarrow B_{sig}^-$ • Kinematically constrained system with hadronic \underline{B}_{tag}^+ : $\overrightarrow{p}_{\bar{\nu}} + \overrightarrow{p}_{l^-} = \overrightarrow{p}_{e^+e^-} - \overrightarrow{p}_{B_{tag}^-}$ Higher intrinsic background rejection \mathbf{M} Better resolution \rightarrow analytical fits \Box Lower signal efficiency (<1%) DESY. HAD (~ 0.04%) SL (~0.2%) \Box Systematics (B_{tag}^+)

Slavomira Stefkova, 10.11.2022, Bonn

Rare B-decay with neutrinos

Inclusive Tagging Approach: 1. step: B_{sig}^- reconstruction

- **2. step:** Constrain the rest of the event
- Higher signal efficiency **D** Lower intrinsic background rejection
 - \square Worse resolution \rightarrow binned fits

Other Approaches:

- 'Semi-inclusive' tagging
- Charm tagging

Best sensitivity : channel dependent, background dependent Use of different approaches : systematical check due to orthogonality, combination savvy

(Theoretical) Motivations

Blackett Laboratory, Imperial College London, UK

Exclusive $b \rightarrow sl^+l^-$ measurements:

- Single measurement: 3.1 σ evidence of lepton flavour universality violation in R(K)0
- Tensions also measured in angular observables of $B \rightarrow K^* \mu^+ \mu^-$ 0
- Global fits with prefer non-zero NP Wilson coefficients^{*} C9 and / or C10 at > 4σ 0

Complementarity of $b \rightarrow sl^+l^-$ and $b \rightarrow s\nu\bar{\nu}$ transitions: 0

• In SM neutrinos and left-handed charged leptons are related by $SU(2)_L$ symmetry \rightarrow within SM-EFT formalism $b \rightarrow sl^+l^-$ and $b \rightarrow s\nu\bar{\nu}$ share Wilson coefficients

Slavomira Stefkova, 10.11.2022, Bonn

Anomalies in $b \rightarrow sll$ transition

SM

$$R(K^{(*)}) = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})} = 1 \pm \mathcal{O}(10^{-2})$$

$$q^{2} \in [1(1.1), 6] \text{ for } R(K^{(*)})$$

JHEP 2018, 93 (2018)

In SM governed by the same form factors, but in $b \rightarrow s \nu \bar{\nu}$ absence of photon exchange \rightarrow theoretically cleaner

*In EFTs, the heavier degrees of freedom (i.e the loop) can be integrated out and replaced with an effective coupling known as Wilson coefficient C_i

SM and BSM extensions

$B \to K^{(*)} \nu \bar{\nu}$ decays in SM

• FCNC transitions heavily suppressed in SM • Observables : $\frac{d\mathscr{B}(B \to K\nu\bar{\nu})}{dq^2}$, $\frac{d\mathscr{B}(B \to K^*\nu\bar{\nu})}{dq^2}$, $F_L(q^2)$, where $q^2 = M^2(\nu\bar{\nu})$

$\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})$ in SM

- $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6}$ [arxiv:606.00916]
- SM $q^2(\nu\bar{\nu})$ taken from [arXiv:1409.4557]

Possible BSM extensions

- Axions [PRD 102, 015023 (2020)]
- Dark Matter candidates [PRD 101, 095006 (2020)
- Z' [PL B 821 (2021) 136607]
- Leptoquarks [PRD 98, 055003 (2018)]

All previous measurements with exclusive tagging approach:

- Best limit set by BaBar in 2013
- Limit ~ 10 higher than SM $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) \epsilon_{sig} \cdot \epsilon_{tag} \sim 0.04 \%$
- One of the Belle II's golden channel 0

Experiment	Year	r Observed limit on $\begin{array}{c c} BR(B^+ \to K^+ \nu \bar{\nu}) \end{array} \qquad \mbox{Appro}$		Data[fb ⁻¹]
BABAR	2013	< 1.6 × 10 ⁻⁵ [Phys.Rev.D87,112005]	SL + Had tagging	429
Belle	2013	< 5.5 × 10 ⁻⁵ [Phys.Rev.D87,111103(R)]	Had tagging	711
Belle	2017	< 1.9 × 10 ⁻⁵ [Phys.Rev.D96,091101(R)]	SL tagging	711

Backgrounds

- Beam-backgrounds 0
- Luminosity Backgrounds 0
- Continuum Backgrounds 0
- *B*-backgrounds 0

Slavomira Stefkova, 10.11.2022, Bonn

$\neg \Lambda \nu \nu$ $B^+ \rightarrow K^+ \nu \bar{\nu} :$ experimental status

$$B_{\rm tag}^{\pm} \rightarrow {\rm hadrons}$$

$$B_{\rm tag}^{\pm} \to D^{(*)} l \nu_l$$

Search for $B^+ \to K^+ \nu \bar{\nu}$ decays with inclusive tagging

[PRL 127, 181802 (2021)]

DESY stamp for 25th anniversary, Germany

Inclusive tag exploits distinct signal kinematics

- **Reconstruct signal by selecting highest**-*p*_{*T*} **track in the event** 1.
- **Reconstruct remaining tracks and clusters in the event (ROE)***

Slavomira Stefkova, 10.11.2022, Bonn

[PRL 127, 181802 (2021)]

Main Backgrounds

Beam-backgrounds Luminosity Backgrounds **Continuum Backgrounds B-backgrounds**

Discriminating variables [PRL 127, 181802 (2021)]

3. Construct >100 discriminating variables

- event topology
- missing energy
- vertex separation
- signal kinematics
- 2/3 track vertices....

qq

Belle II

0.2

 $\times 10^{-1}$

fraction of events N P 0

0.0

Nested BDTs

4. Minimise the background contamination with two nested BDTs using 51 input variables

- 51 variables : good data/MC modelling and w/o loss of performance 0
- BDT₁ trained on the chosen 51 variables on ~ 10⁶ events for all types of backgrounds and signal 0
- BDT₂ is trained with the same set of variables **but only on events with BDT₁ > 0.9** (~ 28% ε_{sig}) 0
- Boosting of statistics in signal region \rightarrow improvement of signal purity of 35% @ 4% ε_{sig} 0

Improvement of Continuum Modelling

5. Improve continuum modelling

- - **Signal = off-resonance data**, **background = continuum simulation**
 - **Continuum simulation** events are reweighted with $\frac{p}{1-p}$, where $p = BDT_c$ output 0
 - After reweighting significant improvement for all input variables
 - Method taken from J. Phys.: Conf. Ser. 368 012028: 0

Slavomira Stefkova, 10.11.2022, Bonn

[PRL 127, 181802 (2021)]

• Additional BDT_c is trained on events with $BDT_1 > 0.9$ in order to correct mis-modelling of continuum simulation:

Validation I

6. Validation with control channel $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$

- Used because of high \mathscr{B} and clean signature
- Validation for both **signal** and *B***-backgrounds**! 0
- Excellent agreement \rightarrow for BDT₂ > 0.95 0

 $data/MC = 1.06 \pm 0.10$

Signal-like $B^+ \to J/\psi (\to \mu^+ \mu^-) K^+ = B^+ \to J/\psi (\to \mu^+ \mu^-) K^+$

- 1. Reconstruct $B^+ \to J/\psi (\to \mu^+ \mu^-) K^+$
- 2. Ignore dimuon from J/ψ to mimic missing energy

3. Replace four-momenta of K^+ by that of the signal to mimic 3-body kinematics

Slavomira Stefkova, 10.11.2022, Bonn

[PRL 127, 181802 (2021)]

Fit region

7. Fitting variables and measurement region selection

- Identify signal region (SR) with BDT2 output at maximum FOM
- Bin further in 2D : $p_T(K) \times BDT_2$ to maximise sensitivity 0
- Fit region = 24 bins in $p_T(K) \times BDT_2$ 0
 - 12 bins (on-resonance)
 - 12 bins (off-resonance) 0

Slavomira Stefkova, 10.11.2022, Bonn

[PRL 127, 181802 (2021)] 12

Region	2D Bin Boundary Definition	Physics Processes	\sqrt{S}
Signal	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c	signal +	$\Upsilon(4S)$
Region (SR)	$BDT_2 \in [0.95, 0.97, 0.99, 1.0]$	all backgrounds	
Control	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c	signal +	$\Upsilon(4S)$
Region 1 (CR1)	$BDT_2 \in [0.93, 0.95]$	all backgrounds	
Control	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c	continuum	off-resonance
Region 2 (CR2)	$BDT_2 \in [0.95, 0.97, 0.99, 1.0]$	backgrounds	(-60 MeV/c^2
Control	$p_T(K^+) \in [0.5, 2.0, 2.4, 3.5]$ GeV/c	continuum	off-resonance
Region 3 (CR3)	$BDT_2 \in [0.93, 0.95]$	backgrounds	$(-60 \text{ MeV/}c^2)$

With only 1/10 \mathscr{L}_{int} inclusive tagging approach achieved 20 imes higher signal efficiency (~ 4%) compared to tagged reconstruction approach of previous experiments

8. Validation between off-resonance data and continuum simulation in fitting variables $p_T(K) \times BDT_2$

- Very good agreement in shape
- Large normalisation discrepancy: **Data/MC =1.40 ± 0.12**

CR2 + CR3

Statistical model

9. Set-up binned fit using HistFactory statistical model

- - Signal and background templates from MC
 - Separate templates for all backgrounds: mixed *B*, charged *B*, $c\bar{c}$, $u\bar{u}$, $s\bar{s}$, $d\bar{d}$, $\tau^{-}\tau^{+}$ 0
 - All systematics included via nuisance parameters:
 - background normalisation uncertainty 0
 - tracking inefficiency 0
 - neutral energy mis-calibration for photons 0
 - neutral energy mis-calibration for unmatched photons 0
 - uncertainty on PID correction due to limited statistics 0
 - uncertainty on branching fractions of leading background processes 0
 - uncertainty on SM form factor 0
 - **Total number of fit parameters:** 0
 - 175 nuisance parameters ϕ
 - 1 parameter of interest (signal strength= μ)
 - $1 \mu = SM \mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (4.6 \pm 0.5) \times 10^{-6}$

• Likelihood based on <u>HistFactory</u> formalism implemented with <u>pyhf</u> + cross-check with sghf: simplified Gaussian model

• Systematic uncertainties (normalisations) bkg's yields, BR of the leading *B*-decay Subprinstitut für Tecl

Statistical model

9. Set-up binned fit using HistFactory statistical model

- - Signal and background templates from MC

Slavomira Stefkova, 10.11.2022, Bonn

[PRL 127, 181802 (2021)]

• Likelihood based on <u>HistFactory</u> formalism implemented with <u>pyhf</u> + cross-check with sghf: simplified Gaussian model

• 1 parameter of interest: signal strength μ : multiplicative factor with respect to the S expectation.

Fit validation

Entries

10. Perform Fit Bias Check

- Used because of high \mathscr{B} and clean signature
- Generate toys with signal strength $\mu = 1, 5, 20$ 0 and check pulls = $\frac{\mu_{fit} - \mu_{inj}}{\mu_{fit}}$
- Results: o bias, expected μ recovered, very good agreement between pyhf and sghf

11. Check Data-Model Compatibility

- Generate toys and check fit quality
- Results: *p*-value shows good data model compatibility for both pyhf and sghf

Fit results

12. Perform simultaneous ML fit to $p_T(K^+) \times BDT_2$ to extract signal strength μ

- $\mu = 4.2^{+2.9}_{-2.8}(\text{stat})^{+1.8}_{-1.6}(\text{syst}) = 4.2^{+3.4}_{-3.2} \rightarrow \text{no significant signal is observed}$
- Limit of $4.1 \times 10^{-5} @ 90$ C.L. \rightarrow competitive with *only* 63 fb⁻¹

Slavomira Stefkova, 10.11.2022, Bonn

[PRL 127, 181802 (2021)]

What we learnt from fit? [PRL 127, 181802 (2021)]

- 1. $c\bar{c}$, $s\bar{s}$ continuum backgrounds are pulled up by 40%
- Inclusive tag approach shows the best performance 2.
 - 1. 3.5 better than HAD tag
 - 2. 20% better than SL Belle tag
 - 3. 10% better than HAD and SL tag
- BSM $B^+ \rightarrow K^+ \nu \bar{\nu}$ already with 1 ab⁻¹ 3.

					Ĩ	Î				1.00
0.00	0.00	-0.00	-0.01	-0.02	0.01	-0.00	1.00-		-	
		0.00	0.05	0 1 4	0.72	1.00	0.00		-	0.75
	0.00	(63 +	0.05 - 9) fł	-0.14	-0.72	1.00	-0.00-		-	0.50
0.52	0.01	0.02	0.08	-0.16	1.00	-0.72	0.01–		-	0.00
									-	0.25
-0.19	-0.10	-0.30	-0.75	1.00	-0.16	-0.14	-0.02-		-	0.00
0.18	-0.04	-0.18		-0.75	0.08	0.05	-0.01–		-	0.00
									-	-0.25
0.08	-0.01	1.00	-0.18	-0.30	0.02	-0.00	-0.00-		-	
-0.01	1.00	-0.01	-0.04	-0.10	0.01	0.00	0.00-		-	-0.50
						S	ghf			-0.75
-1.00	0.01	-0.08	-0.18	0.19	-0.52	0.04	-0.00			1
μ	$\mu_{ m d} \overline{ m d}$	$\mu_{11\overline{1}}$	$\mu_{\mathrm{s}\overline{\mathrm{s}}}$	$\mu_{ m car c}$	$\mu_{ m chg}$	$\mu_{ m mxd}$	$\mu_{ au \overline{ au}}$			-1.00
	-0.00 Bel -0.04 $\int \mathcal{L}$ c -0.19 -0.18 -0.01 -0.01 -1.00 μ	$\begin{array}{cccc}0.00 & 0.00 \\ Belle II \\ -0.04 & 0.00 \\ \int \mathcal{L} dt = (\\0.52 & 0.01 \\0.19 & -0.10 \\0.18 & -0.04 \\0.08 & -0.01 \\0.01 & 1.00 \\ -1.00 & 0.01 \\ \mu & \mu_{d\bar{d}} \end{array}$	$\begin{array}{c ccccc}0.00 & 0.00 & -0.00 \\ \hline \textbf{Belle II} \\ -0.04 & 0.00 & -0.00 \\ \hline \int \mathcal{L} dt = (63 + 0.02) \\0.52 & 0.01 & 0.02 \\ \hline0.19 & -0.10 & -0.30 \\ \hline0.18 & -0.04 & -0.18 \\ \hline0.08 & -0.01 & 1.00 \\ \hline0.01 & 1.00 & -0.01 \\ \hline \mu & \mu_{d\bar{d}} & \mu_{u\bar{u}} \\ \hline \mu & \mu_{d\bar{d}} & \mu_{u\bar{u}} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.00 0.00 -0.00 -0.01 -0.02 0.01 -0.00 1.00- Belle II -0.04 0.00 -0.00 0.05 -0.14 -0.72 1.00 -0.00 $\int \mathcal{L} dt = (63 + 9) fb^{-1}$ 1.00 -0.72 0.01- -0.19 -0.10 -0.30 -0.75 1.00 -0.16 -0.14 -0.02- -0.18 -0.04 -0.18 1.00 -0.75 0.08 0.05 -0.01- -0.08 -0.01 1.00 -0.18 -0.30 0.02 -0.00 -0.00- -0.01 1.00 -0.01 -0.04 -0.10 0.01 0.00 0.00- sghf -1.00 0.01 -0.08 -0.18 0.19 -0.52 0.04 -0.00- $\mu \mu d\bar{d} \mu u \bar{u} \mu_{s\bar{s}} \mu_{c\bar{c}} \mu chg \mu mxd \mu_{T\bar{T}}$	$-0.00 0.00 -0.00 -0.01 -0.02 0.01 -0.00 1.00 - \mathbf{Belle II} \\ -0.04 0.00 -0.00 0.05 -0.14 -0.72 1.00 -0.00 - \mathbf{D} \\ -0.04 -0.00 0.02 0.08 -0.16 1.00 -0.72 0.01 - \mathbf{D} \\ -0.19 -0.10 -0.30 -0.75 1.00 -0.16 -0.14 -0.02 - \mathbf{D} \\ -0.18 -0.04 -0.18 1.00 -0.75 0.08 0.05 -0.01 - \mathbf{D} \\ -0.08 -0.01 1.00 -0.18 -0.30 0.02 -0.00 -0.00 - \mathbf{D} \\ -0.01 1.00 -0.01 -0.04 -0.10 0.01 0.00 0.00 - \mathbf{Sghf} \\ -1.00 0.01 -0.08 -0.18 0.19 -0.52 0.04 -0.00 - \mathbf{D} \\ -0.04 -0.04 -0.18 0.19 -0.52 0.04 -0.00 - \mathbf{D} \\ -0.04 -0.04 -0.04 -0.10 0.01 0.00 0.00 - \mathbf{Sghf} \\ -1.00 0.01 -0.08 -0.18 0.19 -0.52 0.04 -0.00 - \mathbf{D} \\ -0.04 -0.00 -0.04 -0.10 0.01 0.00 0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.10 0.01 0.00 0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.10 0.01 0.00 0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.01 0.04 -0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.04 -0.00 -0.04 -0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.04 -0.04 -0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 - \mathbf{Sghf} \\ -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 -0.00 -0.04 $

Prospects

Hochhaus, KIT, Germany

Prospects in Belle II

Belle II snowmass paper : 2 scenarios baseline (improved*)

Uncertainties on the signal strength *u*

		0		
Decay	$1{ m ab}^{-1}$	$5{ m ab}^{-1}$	$10\mathrm{ab}^{-1}$	$50{ m ab}^{-1}$
$B^+ \to K^+ \nu \bar{\nu}$	0.55 (0.37)	0.28(0.19)	0.21(0.14)	0.11(0.08)
$B^0 \to K^0_{ m S} \nu \bar{\nu}$	2.06(1.37)	$1.31 \ (0.87)$	1.05~(0.70)	0.59(0.40)
$B^+ \to K^{*+} \nu \bar{\nu}$	2.04(1.45)	$1.06\ (0.75)$	$0.83 \ (0.59)$	$0.53 \ (0.38)$
$B^0 \to K^{*0} \nu \bar{\nu}$	1.08(0.72)	0.60(0.40)	0.49(0.33)	0.34(0.23)

 3σ (5 σ) for SM B⁺ \rightarrow K⁺ $\nu\bar{\nu}$ with 5 ab⁻¹

Slavomira Stefkova, 10.11.2022, Bonn

Prospects in Belle II

• What we want to measure:

- Other channels
- Differential measurements
- Inclusive measurement X_s 0
- Measurement of F_L
- BSM measurements

• How to get there faster?

- Reduce biggest systematics
- Combine all tagging approaches
- Combining more channels

*The "improved" scenario assumes a 50% increase in signal efficiency for the same background level

Re-(interpretations)

Partial reinterpretation can be done as Belle II publishes ϵ_{sig} as a function of q^2 :

- Reminder: default signal model \rightarrow PHSP model with SM form factor reweighting [arXiv:1409.4557]
- At low q^2 maximum signal efficiency of 13%
- No sensitivity for $q^2 > 16 \text{ GeV}^2/c^2$
- All public plots at <u>HEPData</u>

For full re-(interpretation):

• Provide full likelihood

Belle II

- is accumulating high quality data
- is well suited to study rare B-decays with (multiple) neutrinos
- will provide competitive and independent checks of $b \rightarrow sll$ channels where anomalies were reported

Rare B-decays with neutrinos are challenging but fun!

- $b \rightarrow sll$ transitions are heavily suppressed in SM
- BSM can change this
- Next stop is measurement of \mathscr{B}

Belle II made its first footprint with search for $B^+ \rightarrow K^+ \nu \bar{\nu}$ decays

- first Belle II B-physics paper
- employing novel inclusive tagging approach
- highly competitive limit with "only" 1/10 of previous B-factory dataset

Conclusion

Experiment	Year	Observed limit on ${\rm BR}(B^+\to K^+\nu\bar\nu)$	Approach	Data[fb ⁻¹]
BABAR	2013	$< 1.6 \times 10^{-5}$ [Phys.Rev.D87,112005]	SL + Had tagging	429
Belle	2013	$< 5.5 \times 10^{-5}$ [Phys.Rev.D87,111103(R)]	Had tagging	711
Belle	2017	< 1.9 × 10 ⁻⁵ [Phys.Rev.D96,091101(R)]	SL tagging	711
Belle II	2021	$< 4.1 \times 10^{-5}$	Inclusive tagging	63

 $b \rightarrow s \nu \bar{\nu}$

 4.1×10^{-5}

Backup

Globe, CERN, Geneva, Switzerland

SuperKEKB vs KEKB

	KEKB		SuperKEKB (Juni 2022)		SuperKEKE	
	LER	HER	LER	HER	LER	
Energie [GeV]	3.5	8	4	7	4	
#Bunches	1584		2249		1800	
β* _x /β* _y [mm]	1200/5.9	1200/5.9	80/1.0	60/1.0	32/0.27	2
I [A]	1.64	1.19	1.46	1.15	2.8	
Luminosität [10 ³⁴ cm ⁻² s ⁻¹]	2.1		4.65 (Rekord!)		60	
Int. Luminosität [ab-1]	1		0.	43	5	0

Belle II vs LHCb

LHCb

single-arm detector longitudinal momentum of B not known

LHCb	Belle II
single-arm detector	hermetic detector
longitudinal momentum of B not known	known initial state kiner
	pro @ neutral object reconstructi

Slavomira Stefkova, 10.11.2022, Bonn

matics tion (photon, K_L)

LHC	SuperKEKB
ollisions	e ⁺ e ⁻ energy asymmetric collisions
ced by gluon fusion	$B\overline{B}$ produced from Y(4S)
es (B_d , B_s , B_c , <i>b</i> -baryon)	exclusive BB production
sted topology	asymmetric beam energy $ ightarrow$ boost
= 100 µb	$\sigma_{bb} = 1.1 \text{ nb}$
ounds (N/S = 1000)	B-backgrounds, continuum backgrounds + QED (N/S=4)
fb^{-1}	$1 \mathrm{ab}^{-1}$

<u>Magnet</u> 1.5 Ts

7 GeV electron

EM Calorimeter (ECL) CsI(TI) crystals **Updated electronics with** waveform sampling

<u>Central Drift Chamber (CDC)</u>

14336 sense wires in He-C₂H₆ Smaller cells + longer lever arm + faster electronics

Vertex detectors (PXD+SVD)

2 pixel layers (DEPFET)

4 layers of silicon microstrip layers

Slavomira Stefkova, 10.11.2022, Bonn

Charged PID detectors

Time of propagation counter (TOP) (barrel) Aerogel Cerenkov detector (ARICH) (forward)

Belle II Detector

- Designed to give **similar or better** 0 **performance** at cost of $\mathcal{O}(10) \times$ higher backgrounds
- Upgraded **DAQ** and trigger (higher readout frequency + low multiplicity channels)

Simulated $e^+e^- \rightarrow \mu^+\mu^-$ event with high luminosity backgrounds (CDC x-y view)

4 GeV positron

K_L and muon ID detectors **Resistive plate chambers**

Scintillators

7 GeV electron

EM Calorimeter (ECL)

Energy resolution ~ 4 - 1.6%

Central Drift Chamber (CDC) Spatial resolution ~ 100 μ m

 $p_{\rm T}$ resolution = 0.4 %

Vertex detectors (PXD+SVD)

Vertex resolution ~ 15 μ m

Charged PID detectors Pion mis-id efficiency ~ 5 % Kaon id-efficiency ~ 90 %

Slavomira Stefkova, 10.11.2022, Bonn

Belle II Detector

- Designed to give **similar or better performance** at cost of $\mathcal{O}(10) \times$ higher backgrounds
- Upgraded **DAQ** and trigger (higher readout frequency + low multiplicity channels)

Simulated $e^+e^- \rightarrow \mu^+\mu^-$ event with high luminosity backgrounds (CDC x-y view)

4 GeV positron

K_L and muon ID detectors **Resistive plate chambers Muon ID efficiency ~ 90 %**

Experimental Summary

Observable	SM	Experiment	Observed 90% CL	Reconstruction	Data
	expectation			approach	$[{\rm fb}^{-1}]$
$\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$	$(4.6 \pm 0.5) \times 10^{-6} [17]$	Belle II	$< 4.1 \times 10^{-5}$	Inclusive tag [SS21a]	63
		BaBar	$< 1.6 imes 10^{-5}$	SL and HAD tag $[12]$	429
		Belle	$< 5.5 imes 10^{-5}$	Hadronic tag [11]	711
		Belle	$< 1.9 imes 10^{-5}$	Semileptonic tag [10]	711
${\cal B}(B^0 o K^0_s u ar u)$	$(4.3 \pm 0.5) \times 10^{-6} [17]$	BaBar	$< 4.9 imes 10^{-5}$	SL and HAD tag $[12]$	429
${\cal B}(B^0\! ightarrow K^0_s uar u)$		Belle	$< 9.7 imes 10^{-5}$	Hadronic tag [11]	711
${\cal B}(B^0 \to K^0_s u ar u)$		Belle	$< 1.3 imes 10^{-5}$	Semileptonic tag [10]	711
$\mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})$	$(8.4 \pm 1.5) \times 10^{-6} [17]$	BaBar	$< 6.3 imes 10^{-5}$	SL and HAD tag $[12]$	429
$\mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})$		Belle	$< 4.0 imes 10^{-5}$	Hadronic tag [11]	711
$\mathcal{B}(B^+ \to K^{*+} \nu \bar{\nu})$		Belle	$< 6.1 imes 10^{-5}$	Semileptonic tag $[10]$	711
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$	$(7.8 \pm 1.4) \times 10^{-6} [17]$	BaBar	$< 12.0 \times 10^{-5}$	SL and HAD tag $[12]$	429
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$		Belle	$< 5.5 \times 10^{-5}$	Hadronic tag [11]	711
$\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu})$		Belle	$< 1.8 \times 10^{-5}$	Semileptonic tag $[10]$	711

Neutral Particles

To take advantage of the 'clean event' need to reconstruct every particle possible!

$$\pi^0, K_L, K_s, n, \gamma$$

- γ = cluster in ECL that are not associated to a track
- K_L , n = cluster in KLM and ECL that is not associated to a track • $\pi^0 = \gamma \gamma$

•
$$K_s = \pi^+ \pi^-$$
 or $\pi^0 \pi^0$

Background Rejection

- Large fraction of *B*-decay products have π^0 in its decay chain
- If K_L , n's interact with atomic nuclei in ECL and KLM, then need to devise vetos

Slavomira Stefkova, 10.11.2022, Bonn

• If signal has π^0 , K_s : need to have high reconstruction efficiency and good resolution

ROE / Tagged Reconstruction

- Missing energy related variables (all particles that are not associated to signal/and B_{tag}) often used as discriminating variables/fitting variables
- If *K_L*, n's do not interact with atomic nuclei in ECL and KLM, potential fakes for invisible particles

y chain hen

Full Event Interpretation (FEI)

with 200 BDTs ~ 10000 decay chains

MC tag-side efficiency @10% purity	Had. B ⁺ /B ⁰ [%]	SL. B ⁺
Full Reconstruction Belle	0.28/0.18	0.67
FEI Belle	0.76/0.46	1.80
N of correct B_{tag} per 1 fb ⁻¹ in Belle (FEI)	8350/5060	19800

Slavomira Stefkova, 10.11.2022, Bonn

42

• $B^0 \overline{B}^0$ signal side:

• B^+B^- signal side:

 $b \to s \nu \bar{\nu}$

Slavomira Stefkova, 10.11.2022, Bonn

Background Composition In SR

BDT Variable Ranking

Variable

foxWolframR1

 $B_sig_KSFWVariables_hso22$

 $B_sig_KSFWV ariables_hso 20$

 $B_sig_roeDeltae_ipMask$

 $B_sig_weMissM2_ipMask_0$

sphericity

foxWolframR3

nTracksCleanedPlusNGammasCleaned

TagVpVal

harmonicMomentThrust0

 $B_sig_KSFWVariables_hoo0$

Future Ideas - Sharing of the Systematics

Status:

- Next iteration of analysis expects new channels $(B^+ \to K^{*+} \nu \bar{\nu}, B \to K^* \nu \bar{\nu}, B^0 \to K_s^0 \nu \bar{\nu})$
- Can perform simultaneous fit to all channels
 - Main advantage: could share the systematics
 - Main disadvantage: how to account for partial correlations/shared statistical errors properly?

	Scalar	Scalar	Axial Vector	Axial Vector
Signal	K+	Ks	K*	K*+
Background				
normalisation				
Tracking inefficiency				
Neutral Energy				
Miscalibration				
PID				
BR uncertainty				
FF uncertainty				

Slavomira Stefkova, 03.05.2022, Missing Energy Workshop

BSM scenarios of $B^+ \to K^+ \nu \bar{\nu}$: new mediators (a) **a** (= dark scalar or ALP) decaying invisibly \rightarrow 0 very similar to the search for $B^+ \to K^+ \nu \bar{\nu}$ main experimental difference: two-body vs 0 three-body kinematics 10^{2} Signal Simulation Event 10^{1} $m_a = 50 \text{ MeV}$ 10^{0} -1 ⁻∧¹ 10⁻¹ ^w/(<)[±] 10⁻² 10^{-4} $10^{-5}_{10^{-2}}$ Kaon Track

BSM scenarios of $B^+ \to K^+ \nu \bar{\nu}$: new mediators (a) **a** (= dark scalar or ALP) decaying invisibly \rightarrow 0 very similar to the search for $B^+ \to K^+ \nu \bar{\nu}$ main experimental difference: two-body vs 0 three-body kinematics 10^{2} Signal Simulation Event 10^{1} $m_a = 50 \text{ MeV}$ 10^{0} ---->= 10⁻¹ f^w / (2) f^w 10^{-4} 10^{-5} 10^{-2} 10^{-2} Kaon Track

Search for $B^+ \rightarrow K^+a$ (ALP): Sensitivity

Simplified sensitivity study probing different m_A scenarios for m_A in [5 MeV, 4 GeV]

- With 0.5 ab⁻¹ limit on $\mathscr{B}(B^+ \to K^+ a) < 10^{-5} @ 90 \text{ CL} \to \text{expected an order of magnitude improvement}$ 0
- With 50 ab⁻¹ limit on $\mathscr{B}(B^+ \to K^+ a) < 10^{-7} @ 90 \text{ CL} \to \text{expected two orders of magnitude improvement}$

Belle II near-term plans

- Compare sensitivity of inclusive tagged vs hadronic tagged reconstruction approach for $B^+ \to K^+ a$
- Adapt inclusive tag to favour two-body kinematics 0
- Perform search for $B^+ \rightarrow K^+ a / B \rightarrow K^* a$ with pre-shutdown dataset (0.5 ab⁻¹) 0

Slavomira Stefkova, 10.11.2022, Bonn

[arxiv: 2201.06580]

3.1 σ evidence of LFUV in R(K) reported by LHCb

Slavomira Stefkova, 10.11.2022, Bonn

Towards $b \rightarrow sll LFU : R(K^{(*)})$

3.1 σ evidence of LFUV in R(K) reported by LHCb

Slavomira Stefkova, 10.11.2022, Bonn

Towards $b \rightarrow sll LFU : R(K^{(*)})$

Signal extraction with simultaneous ML fit to M_{bc} and ΔE

R(K): Belle II vs LHCb (Aside)

[Nature Physics volume 18, pages 277–282 (2022)]

Search for $\mathbf{B} \to \mathbf{K}^{(*)} \mathbf{S}$

- **S** (= long-lived scalar particle = LLP) that decays visibly into pair of charged particles $x^+, x^-, x \in (e, \mu, \pi, K)$
- Bump hunt in the LLP invariant mass
- Separately for $x \in (e, \mu, \pi, K)$
- Separately for different lifetimes

Slavomira Stefkova, 10.11.2022, Bonn

Current bounds and predictions

Prediction does not contain e^+e^- **channel**

Search for $B \to K^{(*)} \tau \tau$

Motivation:

- FCNC transition involving 3rd generation leptons
- SM $\mathscr{B}(B \to K(*)\tau\tau) \sim 10^{-7}$

BSM:

• Rate enhanced by NP models (especially those coupling only to 3rd generation / with coupling \propto particle mass)

Current Bounds:

- Belle $\mathscr{B}(B^0 \to K^{*0}\tau^+\tau^-) < 2.0 \times 10^{-3} @ 90 \% C.L. [arxiv:2110.03871]$
- Babar $\mathscr{B}(B^+ \to K^+ \tau^+ \tau^-) < 2.3 \times 10^{-3} @ 90 \% C.L. [PRL 118, 031802 (2017)]$

Belle II can:

- exploit different tagging approaches
- include more τ decay modes (improved scenario)
- measure other channels K^{*+}

Slavomira Stefkova, 10.11.2022, Bonn

Belle II snowmass paper

	$\mathcal{B}(B^0 \to K^{*0})$	$(\tau \tau)$ (had tag)
ab^{-1}	"Baseline" scenario	"Improved" scenar
1	$< 3.2 imes 10^{-3}$	$< 1.2 \times 10^{-3}$
5	$< 2.0 imes 10^{-3}$	$< 6.8 imes 10^{-4}$
10	$< 1.8 imes 10^{-3}$	$< 6.5 imes 10^{-4}$
50	$< 1.6 \times 10^{-3}$	$< 5.3 \times 10^{-4}$

Time

Two scenarios are considered, which are similar for all except the \BKSpnn decay. The "baseline" scenario assumes no further improvements. The "improved" scenario assumes a 50\% increase in signal efficiency for the same background level, an advance that current studies indicate to be achievable by various means including combination with semileptonic and hadronic reconstruction of the partner \$B\$ meson. For the \BKSpnn decay, we assume 20\% and 70\% improvements for the baseline and improved scenarios, respectively, since Ref.~\cite{Belle-II:2021rof} relied on the \$\Kstarp \to \Kp \piz\$ sub-decay only. The projections are in ~\autoref{tab:b2knnbase}. {\bf Belle~II is the only experiment capable of exploring these key channels that disclose a vast and uncharted region of SM and non-SM dynamics.} For example, with just 5\invab of integrated luminosity, the \BKpnn analysis is sensitive to the SM rate at \$3\sigma\$ (\$5\sigma\$) level for the baseline (improved) scenarios.

DESY.