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Energy-momentum and angular momentum of gravitational radiation

For free gravitational waves in the TT-gauge, in a volume V, the following quantities
are conserved modulo boundary terms:

By = / P E(x,t) E= % (O¢hij)* + % (Oxhij)? energy density
Vv
Py, = /Vdgw i (z, 1) IL; = — O;hunpn Orhynn momentum density
Ly;= / &x Ai(z»t) Az = Eijk [2hjmathkm - wjakhmnathmn] angu.lar-momentum
v density

Each integrand satisfies an equation of continuity:

9,& = a1, where II; as above, and
- . 1 2 (o 2
atHi = _akSki Skz o 8khmnalhm” + 2 [(athmn) (ajhmn) ]
1
atAi - _8kjki Jki = Eijt |:hl" gk hj” + wjalhmnakhmn + 5 6klxj((athmn)2 - (aphmn)z)

— <dEV, dPV", dLVi) = _7{ d?c (IL,, Spi, Jni) =0 modulo flow of gravitational-wave
dt = dt = dt ov energy/momentum/angular momentum
across the boundary of V



Energy flux

Taking the volume to be a large sphere of radius r: V==_5,

the surface element becomes a spherical surface element:  d?c = r2sin 0dbdyp = r2dQ

then we can write for the outward radial energy flux:

dE

— =TI, = d,h;;0:h;;
aad = OO

-Taking monochromatic plane waves in the z-direction
through an area element dA = dxdy in the plane z = 0 :

dFE 20> .
m = Hz = 8Zh,-j8thij = —T (63_ =+ ei) Sll’l2 wt
1
(2=0)
(temporarily restoring ¢) recall: | hyy = —hyy = e4 cosw(z — ct)

Energy densities in monochromatic plane waves

Averaging the flux of plane waves over an integral number of cycles: wT = 27mn
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Other fluxes

Outward momentum flux: by =S,
r2d§dt

Outward angular momentum flux:

1. For radial flow out of spherical volume S, involving fields h;(t —r):

dP;
integrated momentum flux vanishes: =— d?0 Sni =0

dt a5,

as momentum density Sy,; on the boundary surface in direction of propagation,
i.e. radially outward:

S,; o< 7; — integrating over a full sphere contributions from opposite points cancel

2. This argument does not hold for angular momentum:

dL; o
- jgsrd 0 Jni 0

as J,; directed orthogonal to direction of propagation: tangent to surface

Sources of gravitational waves

here: consider an isolated source of maximal size d
av/ V=5 observed from a distance rwith 7 > d

e.g., a binary system of compact objects
like white dwarfs, neutron stars or black holes

d
note: for PSR 1913+16 -~ 1078

Assume the observer is at rest w.r.t. to the CM of
the source; if not: signals are Doppler shifted.

We have to solve an inhomogeneous
wave equation if type

U d)(X? t) = p(X7 t)

Retarded (causal) solution: - POS/tion of source element

_ 1 3 ,p(x’,t—\x’—x])
o(x,t) = 47T/dx

x' — x|
Vs,
/ ™~

position of observer distance between source
element and observer

binary star system




solving the gravitational-wave equation

— _ K 3 ,TM,,(X',t— |X,_X|)
Dhm/ - KT/u/ -_— h#y(xa t) - E /S d’x ’X’ _ Xl

to evaluate, note:
- h,,(x,t) observed in far region whereT,.,(x,t) = 0

- in that region thw =0

and the TT - gauge applies: (X, t) = Iy (x,1)

- only spherical waves falling off as 1/r survive:

eik(r—t)

hijtxt) ~ [ dives () and oo = hoi = 0
with hjj =0 and fzhz] =0

ejj =0 kieij =0

General form of amplitude

K 3
By = o 5 &' T (Xt =)
energy-momentum conservation:  dyhg, = 4i &>z’ O To, (X't — 1)
wr S,
= | #ram (x,t—r)=0
drr S s ’

TT - gauge: 1
hij = T (04 — TiT1) (051 — 7574) (Ikl + 3 Op7 - I - r>

1
and ILj(t—r)= / d*a’ (Tij 3 5ikak>

t—r



Quadrupole approximation
use. (‘3§T00 = &@-Tio = &@Tm
1 1
. 5 83 /de CL’iLC]'TOO = 5 /d3$ TiZ; 6k81Tkl = /dSIE T;j

for non-relativistic sources Tpo(X,t) = p(x,t) (mass density)

16%Q,
2 Ot2

— I, =

1
Qi(t —1) = / &’z (l’% —3 6in'2) p(x' t — )

(mass quadrupole)

final result:
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Integrated fluxes
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Differential fluxes of energy, momentum and angular momentum



