Gravitational waves

Kepler's laws of planetary orbits

- planets move on elliptic orbits with the sun in a focal point
- the radius connecting the planet and the sun sweeps out equal areas in equal times

- the square of the period of the orbit is proportional to the cube of the major axis
inner solar system

Newton's theory of gravity

- masses interact by a central force
\longrightarrow conservation of angular momentum
- inverse square law
\longrightarrow period-radius relation
$r=\frac{\rho}{1-e \cos \varphi}$
$\mathbf{F}=\frac{G m M}{r^{2}} \hat{\mathbf{r}} \quad \longrightarrow \quad \frac{\mathrm{a}^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}}$

		a^{3} / T^{2}
	Mercury	3.362
actually motion around common center of mass	Venus	3.362
$\longrightarrow M=m_{1}+m_{2} \quad m=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$	Earth	3.362
	Mars	3.362
Instantaneous action at a distance		$\left(10^{18} \mathrm{~m}^{3} \mathrm{~s}^{-2}\right)$

Binary pulsar $1913+16$:
violations of Kepler's laws and evidence for GR

Binary pulsar data:
masses $\quad m_{1}=1.441 M_{\odot}, \quad m_{2}=1.387 M_{\odot}$
period
7.75 hr
semi-major axis
$a=1950000 \mathrm{~km}$

eccentricity	$e=0.617$	
distance	6.4 kpc	
quasi-elliptic orbit		
- precesses $4.2^{\circ} / \mathrm{yr}$		
- shrinks	$\Delta a=3.5 \mathrm{~m} / \mathrm{yr} \longrightarrow$corrections to Newton's law	
emission of gravitational waves $7.35 \times 10^{24} \mathrm{~W}$		

Binary black holes

$M_{B H}^{2} \simeq 50 m_{1} m_{2}$

GW energy flux of binaries ~ product of the masses
\longrightarrow binary black holes with masses $M_{B H}=10 M_{\odot}$ same orbit would emit ~ 50 times more energy: $3.7 \times 10^{26} \mathrm{~W} \sim$ solar luminosity in e.m. radiation

- frequencies of these massive compact binaries are very low:

$$
\begin{array}{ll}
f_{\text {binary }} \sim 0.7 \times 10^{-4} \mathrm{~Hz} & f_{\text {light }} \sim 0.5 \times 10^{6} \mathrm{~Hz} \\
\lambda_{\text {binary }} \sim 4 \times 10^{9} \mathrm{~km} & \lambda_{\text {light }} \sim 600 \mathrm{~nm}
\end{array}
$$

- Gravitational forces are extremely weak:
in hydrogen atom $\frac{F_{\text {newton }}}{F_{\text {coulomb }}} \simeq 0.45 \times 10^{-39}$
gravitational radiation very difficult to detect!

Direct detection of gravitational waves
$\begin{aligned} & \text { Amplitudes expressed by } \\ & \text { metric deformations (strain) }\end{aligned} \quad h=\frac{\Delta l}{l}$

mergers last up to minutes and reach frequencies up to $\sim 300 \mathrm{~Hz}$.

Observing the inspiral phase of compact binaries:
space mission (LISA)

General Relativity

\square
Gravitational fields are dynamical \longleftrightarrow geometry can fluctuate fluctuations can propagate as gravitational waves

Tools for dynamical space-time:

differential geometry

metric: line element $\quad d s^{2}=g_{\mu \nu}(x) d x^{\mu} d x^{\nu} \quad($ signature $(-,+,+,+))$
connection: geodesics $\quad \ddot{x}^{\mu}+\Gamma_{\lambda \nu}{ }^{\mu} \dot{x}^{\lambda} \dot{x}^{\nu}=0$
with $\quad \Gamma_{\lambda \nu}{ }^{\mu}=\frac{1}{2} g^{\mu \kappa}\left(\partial_{\lambda} g_{\kappa \nu}+\partial_{\nu} g_{\kappa \lambda}-\partial_{k} g_{\lambda \nu}\right)$
\longleftrightarrow covariant derivative
$\nabla_{\nu} A_{\mu}=\partial_{\nu} A_{\mu}-\Gamma_{\nu \mu}{ }^{\lambda} A_{\lambda} \quad$ (parallel displacement)
in particular $\nabla_{\lambda} g_{\mu \nu}=0$
curvature: Riemann tensor
non-commuting covariant derivatives $\quad\left[\nabla_{\mu}, \nabla_{\lambda}\right] A_{\nu}=-R_{\mu \lambda \nu}{ }^{\kappa} A_{\kappa}$

with

$$
\left.\begin{array}{rl}
R_{\mu \nu \nu}{ }^{K} & =\partial_{\mu} \Gamma_{\lambda \nu}{ }^{\kappa}-\partial_{\lambda} \Gamma_{\mu \nu}{ }^{\kappa}-\Gamma_{\mu \nu}{ }^{\sigma} \Gamma_{\lambda \sigma}{ }^{\kappa}+\Gamma_{\lambda \nu}{ }^{\sigma}{ }{ }_{\mu}{ }^{\kappa}{ }^{\kappa}
\end{array}\right)
$$

Einstein equations

Ricci tensor and scalar $\quad R_{\mu \nu}=R_{\nu \mu}=R_{\mu \lambda \nu}{ }^{\lambda}, \quad R=R_{\mu}{ }^{\mu}$

Bianchi identity

$$
\nabla_{\sigma} R_{\mu \lambda \nu}{ }^{\kappa}+\nabla_{\mu} R_{\lambda \sigma \nu}{ }^{\kappa}+\nabla_{\lambda} R_{\sigma \mu \nu}{ }^{\kappa}=0
$$

$$
\longrightarrow \quad \nabla^{\mu} R_{\mu \nu}=\frac{1}{2} \nabla_{\nu} R
$$

Einstein tensor $\quad G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R \quad \longrightarrow \quad \nabla^{\mu} G_{\mu \nu}=0$

$$
\begin{aligned}
& G_{\mu \nu}=-\kappa^{2} T_{\mu \nu} \\
& \kappa^{2}=\frac{\hbar}{m_{\text {planck }}^{2} c^{3}}=\frac{8 \pi G}{c^{4}} \simeq 2.1 \times 10^{-43} \mathrm{~kg}^{-1} \mathrm{~m}^{-1} \mathrm{~s}^{2}
\end{aligned}
$$

local energy-momentum conservation: $\quad \nabla^{\mu} T_{\mu \nu}=0$

