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Kepler’s laws of planetary orbits

inner solar system

· planets move on elliptic orbits  
    with the sun in a focal point 

· the radius connecting the planet 
and the sun sweeps out equal 
areas in equal times 

· the square of the period of the 
orbit is proportional to the cube 
of the major axis

ΔtΔt



and
L = mr ⇥ v = m!r2 ẑ,

Kepler’s area law follows immediately in the form

dA

dt
=

|L|

2m
,

which is constant. Observe that constant |L| requires ! / 1/r2, hence the angular
velocity is large for small r and conversely it is small for large r. The area law,
expressing conservation of the angular momentum, explains why in the northern
hemisphere the summer –when the earth is farthest from the sun, near apohelium–
lasts longer than the winter –when earth is closest to the sun, near perihelium; in
the southern hemisphere the reverse holds. The seasons di↵er by about 8 days.

In addition to angular momentum, central forces also conserve the total energy
of a moving body:

E =
1

2
mv2 + V (r), (1.16)

of which Huygens’ result (1.1) is a special case. For central forces in general the
potential energy V (r) is the primitive of the magnitude of the force:

F (r) = �
dV

dr
, F = �rV, (1.17)

V being a function of the radial co-ordinate r only. The proof that

dE

dt
= 0

then follows directly from the law of force (1.4).

1.3 Newton’s law of gravity

The elliptic orbits of planets and moons around their respective centres of attrac-
tion belong to the class of conic sections, plane curves which can be parametrised
in 2-dimensional polar co-ordinates (r, ') by the equation

r =
⇢

1 � e cos '
, (1.18)

as illustrated in fig. 1.2. The parameter ⇢ represents the width of the conic section
as characterized by the perpendicular distance between the curve and the focal
point at the origin where ' = ±⇡/2; it is known by its latin name semi-latus
rectum. The other parameter e is the eccentricity, determining the shape of the
curve. Closed curves are circles with e = 0 or ellipses with 0 < e < 1, whilst open
curves are parabolas with e = 1 or hyperbolas with e > 1.
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points is an axis of symmetry. The line element between the extremal points
where the curve intersects this axis is called the major axis of the ellipse; by
construction it has length 2a. There is a second axis of symmetry through the
midpoint perpendicular to the major axis; the line element between the points
where the curve intersects this axis is called the minor axis of the ellipse. Its
length is defined to be 2b, and by Pythagoras’ theorem

b2 = a2
� c2 = a2(1 � e2).

As for an arbitrary point P on the curve |OP | = r, by construction |PF | = 2a�r.
Then by a second application of Pythagoras’ theorem

(2a � r)2 = r2 sin2 ' + (2c � r cos ')2.

Solving for r we get

r =
⇢

1 � e cos '
, ⇢ ⌘ a(1 � e2).

Hence for ' = ±⇡/2 we have r = ⇢, the semi-latus rectum. It also follows
that the semi-minor axis is the geometric average of the semi-major axis and the
semi-latus rectum:

b2 = a⇢.

Clearly the special case e = 0 corresponds to a circle: r = ⇢ for all angles '.

b. Parabola
A parabola is constructed as the plane curve formed by all points for which the
distance to a fixed point O, the focal point, equals the distance to a fixed line l;
see fig. 1.2.b. Thus if Q is the perpendicular projection on the line l of a point
P on the curve we have

|PQ| = |PO|.

Therefore �OPQ is an isosceles triangle. If O is taken to be the origin of a polar
co-ordinate system in the plane and the prependicular distance of O to the line l
is called ⇢, it then follows that for a point P on the curve with co-ordinates (r, ')

r = ⇢ + r cos ', or r =
⇢

1 � cos '
.

Therefore the parabola is a special conic section with eccentricity e = 1. For
' = ±⇡/2 the triangle �OPQ is right-angled and r = ⇢, the semi-latus rectum.

c. Hyperbola
A hyperbola, see fig. 1.2.c, is constructed as the plane curve of points P which
have a constant di↵erence in the distance to two fixed focal points O and F :

|PF | � |PO| = 2a.
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Newton’s theory of gravity

· masses interact by a central force  

              conservation of angular momentum

· inverse square law  

               period-radius relation

F = GmM
r2 ̂r

equivalence of inertial and gravitational mass, usually referred to simply as the
equivalence principle.

From the analysis above Kepler’s third law can now be shown to imply that
the ratio a3/T 2 in gravitational two-body systems is proportional to the total
mass M . This involves the use of some elementary properties of the geometry of
the ellipse. First the length of the minor axis 2b is related to that of the major
axis 2a by

b2 = a2
�
1 � e2

�
= a⇢.

Then the area of the ellipse is given by

A = ⇡ab = ⇡a3/2p⇢.

According to the area law (1.14) we also have

dA

dt
=

`

2
.

Therefore the total area, obtained after a full turn of the orbit with period T , is

A =
1

2
`T.

Combining these results it follows that for gravitating bound two-body systems

a3

T 2
=

`2

4⇡2⇢
=

GM

4⇡2
. (1.27)

This is why the ratio a3/T 2 of the planets in orbit around the sun di↵ers from
that of the moons of Jupiter by a factor Msun/MJup ⇡ 1.05 ⇥ 103.

Intermezzo A: Conic sections

For the benefit of the reader we collect the relevant properties of conic sections
in this special section. We first consider the closed curves, then the open ones.
For notation we refer to figs. 1.2.

a. Ellipse
An ellipse is constructed as the curve formed by all points in a plane for which
the sum of distances to two fixed points, the focal points, is constant. In fig. 1.2.a
the focal points are the points O and F at a mutual distance |OF | = 2c. O is
taken to be the origin of a polar co-ordinate system (r, '). For all points P on
the curve we have by definition

|PO| + |PF | = 2a,

where necessarily by the triangle inequality a > c. The eccentricity e is defined
by the ratio: c = ea; it follows that e < 1. The straight line through the focal
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actually motion around common center of mass

M = m1 + m2 m = m1m2
m1 + m2

"3/T2

Mercury  3.362     

Venus     3.362 
                          
Earth      3.362 

Mars       3.362

 (1018 m3 s-2)Instantaneous action at a distance

CM

Binary pulsar 1913 +16:  
violations of Kepler’s laws and evidence for GR

quasi-elliptic orbit 

    - precesses          /yr

    - shrinks                        m/yrΔa = 3.5

4.2∘ corrections to  
Newton’s law
emission of 
gravitational waves

7.35 × 1024 W

Binary pulsar data:

masses

period

semi-major axis

eccentricity

distance
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e↵ective one-body formalism:
separation of CM dynamics and internal dynamics

motion, wave-emission and wave-propagation
in curved space-time
back reaction: radiation-reaction problem
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e↵ective one-body formalism:
separation of CM dynamics and internal dynamics

motion, wave-emission and wave-propagation
in curved space-time
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CM

M2
BH ≃ 50 m1m2

GW energy flux of binaries ~ product of the masses

binary black holes with masses    
same orbit would emit ~ 50 times more energy: 
                       ~ solar luminosity in e.m. radiation

MBH = 10 M⊙

3.7 × 10 26 W

Binary black holes

- frequencies of these massive compact binaries  
  are very low:

fbinary ∼ 0.7 × 10−4 Hz flight ∼ 0.5 × 106 Hz

λbinary ∼ 4 × 109 km λlight ∼ 600 nm

  in hydrogen atom
Fnewton

Fcoulomb
≃ 0.45 × 10−39

- Gravitational forces are extremely weak:

gravitational radiation very difficult to detect!

Direct detection of gravitational waves

Amplitudes expressed by  
metric deformations (strain) h = Δl

l
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Selection of observed mergers of black-hole and neutron-star binaries 
(LIGO-Virgo-KAGRA)

mergers last up to minutes and reach frequencies up to ~ 300 Hz.

Observing the inspiral phase of compact binaries: 

space mission (LISA)



General Relativity

gravitational field                  space-time geometry
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local flat geometry + gravitational forces                  global curvature

Gravitational fields are dynamical    geometry can fluctuate 
  
        fluctuations can propagate as gravitational waves

Static Schwarzschild geometry: 

non-euclidean relation between circumference and  
radius of circular orbits          corrections to Newton’s law

Tools for dynamical space-time: 
differential geometry

metric:        line element ds
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connection:    geodesics ··xμ + Γ μ
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covariant derivative ∇ν Aμ = ∂νAμ − Γ λ
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Einstein equations

Ricci tensor and scalar Rμν = Rνμ = R λ
μλν , R = R μ

μ

Bianchi identity ∇σ R κ
μλν + ∇μR κ

λσν + ∇λR κ
σμν = 0

∇μRμν = 1
2 ∇νR

Einstein tensor Gμν = Rμν − 1
2 gμνR ∇μGμν = 0

energy-momentum tensor

Gμν = − κ2 Tμν

κ2 = ℏ
m2

planck c3 = 8πG
c4 ≃ 2.1 × 10−43

1 Linearized General Relativity

General Relativity, Einstein’s theory of gravity, can be derived and motivated along two
complementary tracks. It can be considered to be a theory of the dynamical geometry
of space-time using concepts like metrics, connections and curvature. Alternatively it
can be derived as the field theory of self-interacting spin-2 fields in a fixed Minskowski
background. This field theory turns out to be highly non-linear, requiring an infinite
series of interaction terms which in the end, under fairly general assumptions, uniquely
reproduce the geometric theory. The geometric formulation therefore provides by far the
most concise and convenient framework for producing general statements about gravity
and its implications for the universe at large, especially in large-curvature environments.

In contrast small-curvature fluctuations propagating on a Minkowski background pro-
vide the setting for the description of gravitational waves as measured by present terrestrial
and space-borne detectors. Even though such waves may be emitted by strongly interact-
ing systems such as coalescing compact binaries (e.g., black holes, neutron stars or white
dwarfs), they are observed in an asymptotic flat environment where they behave like linear
spin-2 quadrupole waves. These waves propagate at the speed of light and accordingly
they have only two transverse polarization modes with helicities ±2.

The Lorentz-covariant field equation of a symmetric massless spin-2 field hµ⌫ in Minkowski
space-time with metric ⌘µ⌫ reads

⇤hµ⌫ � @µ@
�
h�⌫ � @⌫@

�
h�µ + @µ@⌫h

�
� � ⌘µ⌫

�
⇤h

�
� � @


@
�
h�

�
= �Tµ⌫ . (1)

Here Tµ⌫ is the divergence-free energy-momentum tensor of matter and radiation which act
as sources for the gravitational field, and  is the coupling constant, related to Newton’s
constant of gravity and the velocity of light by


2 =

8⇡G

c4
' 2.1⇥ 10�43 kg�1 m�1 s2. (2)

In the following we will without further notice use units in which c = 1. In the geometrical
framework the field h represents a fluctuation of the metric in a Minkoswki background of
the form

gµ⌫ = ⌘µ⌫ + 2hµ⌫ , (3)

and the left-hand side of eq. (1) represents the linearized Einstein curvature tensor.
Equation (1) is invariant under abelian gauge transformations

h
0
µ⌫ = hµ⌫ + @µ⇠⌫ + @⌫⇠µ, (4)

parametrized by the four-vector field ⇠µ. This is a linearized form of general co-ordinate
transformations and a necessary counterpart of energy-momentum conservation as the
condition

@
µ
Tµ⌫ = 0 (5)

requires the divergence of the left-hand side of eq. (1) to vanish.

2

local energy-momentum conservation: ∇μTμν = 0


