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Structure

1. Non-Reversible Event-Chain Monte Carlo (ECMC) for the Hard-Disk Model.


2. Generalization of ECMC to Molecular Systems.


3. ECMC Variants and Simulation Results.



a b c
π(a) = π(b) ∝ 1

π(c) = 0

• Probability density of configuration :c = {r1, r2, …, rN} π(c) ∝ {1 if c legal,
0 otherwise .

W. Krauth, Statistical Mechanics: Algorithms and Computations (Oxford University Press, 2006) 
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π(a) = π(b) ∝ 1

π(c) = 0

• Probability density of configuration :c = {r1, r2, …, rN} π(c) ∝ {1 if c legal,
0 otherwise .

W. Krauth, Statistical Mechanics: Algorithms and Computations (Oxford University Press, 2006) 

• Hard-disk model has a phase transition when hard-disk density is changed:

FluidSolid

Precise melting scenario?

E. Bernard, Algorithms and applications of the Monte Carlo method: Two-dimensional melting and perfect sampling (PhD thesis, 2011)

Hard-Disk Model
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• Idea: Change configuration from  to  with transition probability .

 Only converges to probability distribution  if:

c c′￼ p(c → c′￼)
→ π

   (global balance)∑
c′￼

π(c′￼) p(c′￼ → c) = π(c)

• Reversible Markov chains obey global balance by satisfying a weaker condition:

Michel et al., J. Chem. Phys. 140, 054116 (2014)

Global:

Michel et al., J. Chem. Phys. 140, 054116 (2014)

Detailed:

Markov-Chain Monte Carlo (MCMC)

   (detailed balance)π(c′￼) p(c′￼ → c) = π(c) p(c → c′￼)
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1. Choose random disk  and propose random displacement in square around  :i ri
ri = (xi, yi) → r′￼i = (xi + Δx, yi + Δy),
Δx ← ran(−δ, δ), Δy ← ran(−δ, δ) .

2. Accept proposed configuration  if no overlap is introduced 
(or more generally with probability ).

c′￼

p(c → c′￼) = min[1, π(c′￼)/π(c)]

Reversible Metropolis Algorithm

Michel et al., J. Chem. Phys. 140, 054116 (2014)

Obeys detailed balance. 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Obeys detailed balance. 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1. Choose random disk  which becomes “active” with velocity .

2. Move  with  until collision with another disk  .

3. Transfer velocity  from disk  to disk .

4. Repeat steps 2. and 3. for chain time .

i v = (1, 0)T

i v t
v i t

τchain

Straight Event-Chain Monte Carlo (ECMC)

Michel et al., J. Chem. Phys. 140, 054116 (2014)

Breaks detailed balance. 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Phase Transition in the Hard-Disk Model
• For hard-disk model at high densities: Non-reversible straight ECMC about three 

orders of magnitude faster than reversible Metropolis algorithm (LMC). 

Global orientational 
order parameter .|Ψ6 |

Hexatic phase.Fluid-hexatic coexistence.

Li, Nishikawa, PH, Carillo, Maggs, and Krauth, arXiv:2207.07715 (2022, manuscript submitted for publication)
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Phase Transition in the Hard-Disk Model
• For hard-disk model at high densities: Non-reversible straight ECMC about three 

orders of magnitude faster than reversible Metropolis algorithm (LMC). 

• Required (single-core) CPU time for coalescence:

Global orientational 
order parameter .|Ψ6 |

Hexatic phase.Fluid-hexatic coexistence.

ECMC:  1 week.                    LMC:  10 years.∼ ⇔ ∼

Li, Nishikawa, PH, Carillo, Maggs, and Krauth, arXiv:2207.07715 (2022, manuscript submitted for publication)
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Phase Transition in the Hard-Disk Model
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Molecular Dynamics (MD)

• Unphysical time evolution only 
restricted by global-balance condition.


• Directly samples Boltzmann 
distribution.

• Physical time evolution based on 
Newton’s equations of motion.


• Discretizes time (and possibly space).

MCMC
Molecular Simulations
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Molecular Dynamics (MD)

• Unphysical time evolution only 
restricted by global-balance condition.


• Directly samples Boltzmann 
distribution.

• Physical time evolution based on 
Newton’s equations of motion.


• Discretizes time (and possibly space).

MCMC
Molecular Simulations

• MD is predominantly used for long-range-interacting -body molecular systems.N
MD

• Inferior computational complexity per 
MCMC sweep: .


• Inferior (diffusive) exploration of 
configuration space.

𝒪(N3/2)
• Superior computational complexity 

per MD time step: . 

• Superior (Newtonian) exploration of 

configuration space.

𝒪(N log N)

Reversible MCMC
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Both disadvantages are overcome by non-reversible ECMC.

Molecular Dynamics (MD)
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Generalization of ECMC
• ECMC constructs a non-reversible rejection-free continuous-time Markov chain.  

• Conceived for systems described by continuous variables. 
 Here:  point-like atoms with positions .


• Exploits translational symmetry of interaction potentials in molecular systems.

→ N {r1, …, rN}, ri ∈ ℝd

Faulkner et al., J. Chem. Phys. 149, 064113 (2018)
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Generalization of ECMC
• ECMC constructs a non-reversible rejection-free continuous-time Markov chain.  

• Conceived for systems described by continuous variables. 
 Here:  point-like atoms with positions .


• Exploits translational symmetry of interaction potentials in molecular systems. 

• ECMC relies on three concepts:


1. Factorized Metropolis filter accepts/rejects proposed configurations.


2. Lifting framework proposes new configurations and solves rejections.


3. Event-driven implementation.

→ N {r1, …, rN}, ri ∈ ℝd
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Factorized Metropolis Filter
• Decompose total potential  into sum over factor potentials  of factors :U UM M

U(c = {r1, …, rN}) = ∑
M

UM(cM = {ri : i ∈ M}) πB(c) =
1
Z ∏

M

e−βUM(cM)

 

U({2,5}, LJ)(r25) = kLJ ( σ
|r25 | )

12

− ( σ
|r25 | )

6

U({1,2}, bond)(r12) =
1
2

kb ( |r12 | − r0)2

U({1,2,3}, bending)(ϕ{1,2,3}) =
1
2

ka (ϕ{1,2,3} − ϕ0)
2

U({1,2,3,4,5,6}, Coulomb)(r1, …, r6) =
3

∑
i=1

6

∑
j=4

UC (rij)

Faulkner et al., J. Chem. Phys. 149, 064113 (2018)

• SPC/Fw water model:
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• Replace original Metropolis filter that accepts a change of configuration : c → c′￼

AMet(c → c′￼) = min [1,∏
M

e−βΔUM(cM→c′￼M)]
Original Metropolis filter.

AFact(c → c′￼) = ∏
M

min [1,e−βΔUM(cM→c′￼M)]
Factorized Metropolis filter.

• Formulates consensus principle, new configuration is accepted from all factors 
independently:

XFact(c → c′￼) = ⋀
M

XM(cM → c′￼M)

Whether the new configuration 

is accepted by all factors

XM(cM → c′￼M) = {True if ranM(0,1) < e−βΔUM(cM→c′￼M)

False otherwise
Whether the new configuration

is accepted by factor M

Factorized Metropolis Filter
• Decompose total potential  into sum over factor potentials  of factors :U UM M

U(c = {r1, …, rN}) = ∑
M

UM(cM = {ri : i ∈ M}) πB(c) =
1
Z ∏

M

e−βUM(cM)
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Lifting Framework
• Lift configuration  to include active atom  and its velocity .

• Atom  moves with  until a factor breaks consensus.

• If a translationally symmetric pair potential between  and  breaks consensus: 

 Change active atom from  to  in a lifting move. 

c → (c, v, a) a v
a v

a t
→ a t

a

t
Consensus-

breaking factor.
Consensus-

breaking factor.
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Event-Driven Implementation

PH, All-Atom Event-Chain Monte Carlo — Designing a General-Purpose Python Application (Master’s thesis, 2019)

• For every factor  containing , sample a candidate event time  . 

 Proposed configuration  : . 

 Invert equation for  : . 

 Integrate event rate .


• Event takes place at minimum candidate event time                              .

M a ΔtM
→ c′￼M cM = {ra, rt} → c′￼M = {ra + ΔtMv, rt}

→ ΔtM −ln [ranM(0,1)] = βΔU+
M(cM → c′￼M)

→ ΔU+
M(cM → c′￼M) = ∫

ΔtM

0
dt max [0, v ⋅ ∇ra

UM(ra + tv, rt)]
ΔtEvent = min

a∈M
ΔtM
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ECMC for SPC/Fw Water Model

PH, Maggs, and Krauth, Bringing the Power of Monte Carlo methods to Long-Range-Interacting Molecular Systems (2022, manuscript in preparation)
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ECMC for SPC/Fw Water Model

PH, Maggs, and Krauth, Bringing the Power of Monte Carlo methods to Long-Range-Interacting Molecular Systems (2022, manuscript in preparation)

 
Problems 

• Integration and inversion of event rate can be tedious.


• In long-range-interacting -body systems, consensus considers  factors per event.


 Problematic long-range merged-image Coulomb potential.

N 𝒪(N)

→
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Bounding Potentials

• Bounding potentials bound the event rate of their factor potential. 
 Events of bounding potentials have to be confirmed.→

q = β (v ⋅ ∇ra
UM)
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Cell-Veto Algorithm
• Cell-based bounding potentials can be precomputed.

Faulkner et al., J. Chem. Phys. 149, 064113 (2018)

X X X
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Cell-Veto Algorithm
• Cell-based bounding potentials can be precomputed.

Faulkner et al., J. Chem. Phys. 149, 064113 (2018)

• Cell-veto algorithm considers all non-nearby interactions at once with  complexity 
per event.

𝒪(1)

X X X

PH, All-Atom Event-Chain Monte Carlo — Designing a General-Purpose Python Application (Master’s thesis, 2019)
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ECMC for Molecular Systems
• ECMC with cell-veto algorithm samples the Boltzmann distribution … 

 …without ever knowing . 
 …numerically exact without discretizing time (or space). 
 …using non-equilibrium dynamics.

exp(−βU)
→ U
→
→
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ECMC for Molecular Systems
• ECMC with cell-veto algorithm samples the Boltzmann distribution … 

 …without ever knowing . 
 …numerically exact without discretizing time (or space). 
 …using non-equilibrium dynamics.


• General-purpose open-source ECMC application JeLLyFysh for molecular  
simulations available [PH et al., Comput. Phys. Commun. 253, 107168 (2020)].


• Factors involving more than three atoms can be treated in a variety of ways (e.g., have 
most liftings within a water molecule).


• ECMC advances  SPC/Fw water molecules with  complexity.

exp(−βU)
→ U
→
→

N 𝒪(N log N)
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Faulkner et al., J. Chem. Phys. 149, 064113 (2018)
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ECMC for Molecular Systems
• ECMC with cell-veto algorithm samples the Boltzmann distribution … 

 …without ever knowing . 
 …numerically exact without discretizing time (or space). 
 …using non-equilibrium dynamics.


• General-purpose open-source ECMC application JeLLyFysh for molecular  
simulations available [PH et al., Comput. Phys. Commun. 253, 107168 (2020)].


• Factors involving more than three atoms can be treated in a variety of ways (e.g., have 
most liftings within a water molecule).


• ECMC advances  SPC/Fw water molecules with  complexity.

exp(−βU)
→ U
→
→

N 𝒪(N log N)

MD

• Computational complexity per MCMC 
sweep: .


•                             ?

𝒪(N log N)
• Computational complexity per MD 

time step: . 

• Superior (Newtonian) exploration of 

configuration space.

𝒪(N log N)

ECMC
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Newtonian ECMC
• Incorporate Newtonian dynamics into the non-reversible Monte Carlo method. 

 Every atom has a velocity, but only one is active. 
 Consider both involved velocities in an event.

→
→
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Newtonian ECMC
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PH et al., J. Chem. Phys. 156, 084108 (2022)
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• Strongly improves rotation dynamics of dense tethered hard-disk dipoles.
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Newtonian ECMC
• Incorporate Newtonian dynamics into the non-reversible Monte Carlo method. 

 Every atom has a velocity, but only one is active. 
 Consider both involved velocities in an event.


• Strongly improves rotation dynamics of dense tethered hard-disk dipoles.


• Entirely different escape behavior from locally stable hard-disk Böröczky packings.


• Trivial choice of the optimal chain time (very large or even infinite). 
 No fine-tuning of internal parameters required.
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Conclusion
• ECMC with cell-veto algorithm samples the Boltzmann distribution … 

 …without ever knowing . 
 …numerically exact without discretizing time (or space). 
 …using non-equilibrium dynamics.


• ECMC overcomes disadvantages of traditional reversible MCMC in long-range-
interacting molecular systems: 

 Decorrelate  water molecules in  computational complexity.

exp(−βU)
→ U
→
→

→ N 𝒪(N log N)
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Outlook
• Direct comparison with MD that considers the precision in the MD algorithm.


• Improve dynamics beyond Newtonian dynamics (e.g., with factor fields).


• Efficiently parallelize ECMC.
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