Superfluid transport through a dissipative quantum point contact

Anne-Maria Visuri

Basset *et al.*, Phys. Rev. Research **1**, 032009(R) (2019)

Basset *et al*., Phys. Rev. Research **1**, 032009(R) (2019)

Basset *et al.*, Phys. Rev. Research **1**, 032009(R) (2019)

Basset *et al.*, Phys. Rev. Research **1**, 032009(R) (2019)

Cuevas *et al.*, Phys. Rev. B **54**, 7366 (1996)

Klapwijk, Blonder Tinkham, Physica **109**, 1657 (1982) Blonder, Tinkham, Klapwijk, Phys. Rev. B **25**, 4515 (1982) Averin, Bardas, Phs. Rev. Lett. **75**, **1831 (1995)**

Connected superfluids

modied from Krinner et al., PNAS 113, 8144 (2016)

Cuevas *et al.*, Phys. Rev. B **54**, 7366 (1996)

Husmann et al., Science 18, 1498 (2015)

Transport with cold atoms

modied from Krinner et al., PNAS 113, 8144 (2016)

Transport with cold atoms

modied from Krinner et al., PNAS 113, 8144 (2016)

Transport with cold atoms

modied from Krinner et al., PNAS 113, 8144 (2016)

Transport of noninteracting fermions

Transport of noninteracting fermions in the presence of dissipation

Corman *et al.*, Phys. Rev. A **100**, 053605 (2019)

Superfluid transport in the presence of dissipation?

M.-Z. Huang, et al., arXiv:2210.03371

Superfluid transport in the presence of dissipation?

M.-Z. Huang, et al., arXiv:2210.03371

Superfluid transport in the presence of dissipation?

Lithium team, ETH

1 Introduction

2 Theoretical description of the lossy quantum point contact

- Multiple Andreev reflections
- Local particle loss

3 Current-voltage characteristics in the presence of a particle loss

- High transparency of the contact: comparison to experiment
- Low transparency

$$n_F(E-\mu) = \frac{1}{e^{\frac{E-\mu}{k_B T}} + 1}$$

current

$$I = \frac{1}{h} \int_{-\infty}^{\infty} dE \mathcal{T}(E) \left[n_F (E - \mu_L) - n_F (E - \mu_R) \right]$$

current

$$I = \frac{1}{h} \int_{-\infty}^{\infty} dE \mathcal{T}(E) [n_F(E - \mu_L) - n_F(E - \mu_R)]$$

= $G(\mu_L - \mu_R) = GV$
 $V: \text{ voltage}$

Connected superfluids – tunneling Hamiltonian

$$\begin{aligned} \mathcal{H} &= \sum_{i=L,R} \mathcal{H}_i + \mathcal{H}_{\mathsf{tun}}, \\ \mathcal{H}_i &= \sum_k \left(\psi_{i\uparrow k}^{\dagger} \quad \psi_{i\downarrow - k} \right) \begin{pmatrix} \epsilon_k - \mu_i & \Delta \\ \Delta & -(\epsilon_{-k} - \mu_i) \end{pmatrix} \begin{pmatrix} \psi_{i\uparrow k} \\ \psi_{i\downarrow - k}^{\dagger} \end{pmatrix} \\ \mathcal{H}_{\mathsf{tun}} &= -\tau \sum_{\sigma = \uparrow,\downarrow} [\psi_{R\sigma}^{\dagger}(\mathbf{r} = \mathbf{0})\psi_{L\sigma}(\mathbf{r} = \mathbf{0}) + \mathsf{H.c.}] \end{aligned}$$

Single-particle tunneling

first-order tunneling, $V = \mu_L - \mu_R$

Single-particle tunneling

$$I \propto \int_{-\infty}^{\infty} dE \rho(E - \mu_L) \rho(E - \mu_R)$$

 $\times [n_F(E - \mu_L) - n_F(E - \mu_R)]$
 $\rho(E)$: density of states

first-order tunneling, $V = \mu_L - \mu_R$

Blonder, Tinkham, Klapwijk, Phys. Rev. B 25, 4515 (1982)

0.95

0.88

0.77

0.65

0.47

0.14

3.0

Sub-gap currents

- Smaller voltage \rightarrow more pairs $(n \sim \frac{2\Delta}{2V})$ required for the single quasiparticle to tunnel.
- Current proportional to τ^{2n} .

Particle loss?

Particle loss at the "contacts"


```
M.-Z. Huang et al., arXiv:2210.03371
```

$$\frac{d\rho}{dt} = -i[H,\rho] + \sum_{\sigma=\uparrow,\downarrow} \sum_{i=L,R} \gamma_{\sigma} \left[\psi_{i\sigma}(0)\rho\psi_{i\sigma}^{\dagger}(0) - \frac{1}{2} \left\{ \psi_{i\sigma}^{\dagger}(0)\psi_{i\sigma}(0),\rho \right\} \right]$$

- Conserved current $I = i\tau \sum_{\sigma=\uparrow,\downarrow} \left(\langle \psi_{R\sigma}^{\dagger}(0)\psi_{L\sigma}(0) \rangle \langle \psi_{L\sigma}^{\dagger}(0)\psi_{R\sigma}(0) \rangle \right)$
- $\blacktriangleright \ \ Nonequilibrium \ \ correlation \ functions \rightarrow \ Keldysh \ formalism$

Kamenev, *Field theory of non-equilibrium systems*, Cambridge (2011) Sieberer, Buchhold, Diehl, Rep. Prog. Phys. **79**, 096001 (2016) Jin, Filippone, Giamarchi, Phys. Rev. B 102, 205131 (2020) Visuri, Giamarchi, Kollath, Phys. Rev. Lett. **129**, 056802 (2022) Visuri, Giamarchi, Kollath, arXiv:2209.01686 M.-Z. Huang, et al., arXiv:2210.03371

Particle loss at the "contacts"

Nonequilibrium - Keldysh formalism

Expectation values calculated as path integrals along a closed time contour,

$$\langle \psi_{a} \bar{\psi}_{b}
angle = \int \mathcal{D}[\psi, \bar{\psi}] \psi_{a} \bar{\psi}_{b} e^{iS[\psi, \bar{\psi}]} = iG_{ab},$$

where the action is written in matrix form as

$$S[\bar{\psi},\psi] = \int_{-\infty}^{\infty} dt \bar{\psi}(t) G^{-1}(t) \psi(t).$$

Here, $\psi = (\psi^+, \psi^-)$: two copies of the fields for each point in time.

• The action is the sum $S = S_L + S_R + S_{tun} + S_{loss}$.

Kamenev, *Field theory of non-equilibrium systems*, Cambridge (2011) Sieberer, Buchhold, Diehl, Rep. Prog. Phys. **79**, 096001 (2016) Jin, Filippone, Giamarchi, Phys. Rev. B 102, 205131 (2020) Visuri, Giamarchi, Kollath, Phys. Rev. Lett. **129**, 056802 (2022) Visuri, Giamarchi, Kollath, arXiv:2209.01686 M.-Z. Huang, et al., arXiv:2210.03371

High transparency

• Current is reduced by the particle loss but not sharply suppressed at $V < 2\Delta$.

High transparency: compare to experimental data

- Current is reduced by the particle loss but not sharply suppressed at $V < 2\Delta$.
 - Results for $\tau \approx 1$ supported by experimental data.

M.-Z. Huang, et al., arXiv:2210.03371

High transparency: compare to experimental data

- Current is reduced by the particle loss but not sharply suppressed at V < 2∆.
 Results for τ ≈ 1 supported by experimental data.
- Superfluid transport "survives" up to large dissipation strengths $\gamma \gtrsim \Delta$.

M.-Z. Huang, et al., arXiv:2210.03371

Low transparency: current enhanced at small voltage

Low transparency: current enhanced at small voltage

Modified local density of states leads to an enhancement?

Low transparency: current enhanced at small voltage

- Modified local density of states leads to an enhancement?
- Weak-tunneling approximation $I \propto \int_{-\infty}^{\infty} dE \rho(E - \mu_L) \rho(E - \mu_R) [n_F(E - \mu_L) - n_F(E - \mu_R)].$

Summary

M.-Z. Huang, J. Mohan, A.-M. Visuri, P. Fabritius, M. Talebi, S. Wili, S. Uchino, T. Giamarchi, T. Esslinger, arXiv:2210.03371

Summary

M.-Z. Huang, J. Mohan, A.-M. Visuri, P. Fabritius, M. Talebi, S. Wili, S. Uchino, T. Giamarchi, T. Esslinger, arXiv:2210.03371

Current is enhanced by dissipation at small voltages.

A.-M. Visuri, S. Uchino, T. Giamarchi, in preparation

Summary

M.-Z. Huang, J. Mohan, A.-M. Visuri, P. Fabritius, M. Talebi, S. Wili, S. Uchino, T. Giamarchi, T. Esslinger, arXiv:2210.03371

Current is enhanced by dissipation at small voltages.

A.-M. Visuri, S. Uchino, T. Giamarchi, in preparation

Summary and outlook

Spin bias in superfluid reservoirs, pair loss, dephasing...

M.-Z. Huang, J. Mohan, A.-M. Visuri, P. Fabritius, M. Talebi, S. Wili, S. Uchino, T. Giamarchi, T. Esslinger, arXiv:2210.03371

Current is enhanced by dissipation at small voltages.

A.-M. Visuri, S. Uchino, T. Giamarchi, in preparation

Summary and outlook

Spin bias in superfluid reservoirs, pair loss, dephasing...

Fermions with spin

Action for the reservoirs i = L, R in ω basis:

$$S = \int rac{d\omega}{2\pi} ar{\mathbf{\Psi}}(\omega) G^{-1}(\omega) \mathbf{\Psi}(\omega),$$

where $\Psi = \left(\psi_{i\uparrow}^1 \ \bar{\psi}_{i\downarrow}^1 \ \psi_{i\uparrow}^2 \ \bar{\psi}_{i\downarrow}^2\right)^T$. The inverse Green's function G^{-1} has the structure

$$G^{-1} = \begin{pmatrix} 0 & \left[g^A\right]^{-1} \\ \left[g^R\right]^{-1} & \left[g^K\right]^{-1} \end{pmatrix},$$

with the elements

$$[g^{R,A}]^{-1} = \begin{pmatrix} \uparrow\uparrow & \uparrow\downarrow \\ \downarrow\uparrow & \downarrow\downarrow \end{pmatrix}.$$

 Multiple Andreev reflections described by infinite-size matrix

$$G^{-1}=egin{pmatrix} \Omega_{L\uparrow} & \mathcal{T} & \mathbf{\Delta}_L & 0 & 0 & ...\ \mathcal{T} & \Omega_{R\uparrow} & 0 & 0 & \mathbf{\Delta}_R & .\ \mathbf{\Delta}_L & 0 & \Omega_{L\downarrow} & -\mathcal{T} & 0 & .\ \mathbf{0} & \mathbf{0} & -\mathcal{T} & \Omega_{R\downarrow} & 0 & 0\ \mathbf{0} & \mathbf{\Delta}_R & \mathbf{0} & \mathbf{0} & \Omega_{R\downarrow} & -\mathcal{T}\ dots & & \mathbf{0} & 0 & -\mathcal{T} & \ddots . \end{pmatrix}$$

Fermions with spin

Action for the reservoirs i = L, R in ω basis:

$$S = \int rac{d\omega}{2\pi} ar{f \Psi}(\omega) G^{-1}(\omega) m \Psi(\omega),$$

where $\Psi = \left(\psi_{i\uparrow}^1 \ \bar{\psi}_{i\downarrow}^1 \ \psi_{i\uparrow}^2 \ \bar{\psi}_{i\downarrow}^2\right)^T$. • The inverse Green's function G^{-1} has the structure

$$G^{-1} = \begin{pmatrix} 0 & \left[g^{A}\right]^{-1} \\ \left[g^{R}\right]^{-1} & \left[g^{K}\right]^{-1} \end{pmatrix},$$

with the elements

$$[g^{R,A}]^{-1} = \begin{pmatrix} \uparrow\uparrow & \uparrow\downarrow \\ \downarrow\uparrow & \downarrow\downarrow \end{pmatrix}.$$

 Multiple Andreev reflections described by infinite-size matrix

$$G^{-1}=egin{pmatrix} \Omega_{L\uparrow} & \mathcal{T} & \mathbf{\Delta}_L & 0 & 0 & ...\ \mathcal{T} & \Omega_{R\uparrow} & 0 & 0 & \mathbf{\Delta}_R & \mathbf{\Delta}_L & 0 & \Omega_{L\downarrow} & -\mathcal{T} & 0 & 0 \ \mathbf{0} & \mathbf{0} & -\mathcal{T} & \Omega_{R\downarrow} & 0 & 0 \ \mathbf{0} & \mathbf{\Delta}_R & 0 & 0 & \Omega_{R\downarrow} & -\mathcal{T} \ dots & & 0 & -\mathcal{T} & \ddots \end{pmatrix}$$

which can be truncated to obtain

$$\langle \psi_a \bar{\psi}_b \rangle = \int \mathcal{D}[\psi, \bar{\psi}] \psi_a \bar{\psi}_b e^{iS[\psi, \bar{\psi}]} = iG_{ab}.$$

Bolech, Giamarchi, PRL **92**, 127001 (2004) Bolech, Giamarchi, PRB **71**, 024517 (2005) Husmann *et al.*, Science **18**, 1498 (2015)

Fermions with spin

The inverse Green's function G^{-1} has the structure

$$G^{-1} = \begin{pmatrix} 0 & \left[g^{A}\right]^{-1} \\ \left[g^{R}\right]^{-1} & \left[g^{K}\right]^{-1} \end{pmatrix},$$

with elements

$$\begin{split} [g^{R,A}]^{-1} &= \begin{pmatrix} \frac{(\bar{\omega}\pm i\eta)}{W\sqrt{\Delta^2 - (\bar{\omega}\pm i\eta)^2}} \pm \frac{i\gamma_{\uparrow}}{2} & \frac{\Delta}{W\sqrt{\Delta^2 - (\bar{\omega}\pm i\eta)^2}} \\ \frac{\Delta}{W\sqrt{\Delta^2 - (\bar{\omega}\pm i\eta)^2}} & \frac{(\bar{\omega}\pm i\eta)}{W\sqrt{\Delta^2 - (\bar{\omega}\pm i\eta)^2}} \pm \frac{i\gamma_{\downarrow}}{2} \end{pmatrix}, \\ [g^{K}(\bar{\omega})]_{11}^{-1} &= -\left([g^{A}]_{11}^{-1} - [g^{R}]_{11}^{-1}\right)\left[1 - 2n_{F}(\bar{\omega})\right] + i\gamma_{\uparrow} \\ [g^{K}(\bar{\omega})]_{22}^{-1} &= -\left([g^{A}]_{22}^{-1} - [g^{R}]_{22}^{-1}\right)\left[1 - 2n_{F}(\bar{\omega})\right] - i\gamma_{\downarrow} \\ [g^{K}(\bar{\omega})]_{12}^{-1} &= -\left([g^{A}]_{12}^{-1} - [g^{R}]_{12}^{-1}\right)\left[1 - 2n_{F}(\bar{\omega})\right] \\ [g^{K}(\bar{\omega})]_{21}^{-1} &= -\left([g^{A}]_{21}^{-1} - [g^{R}]_{21}^{-1}\right)\left[1 - 2n_{F}(\bar{\omega})\right]. \end{split}$$