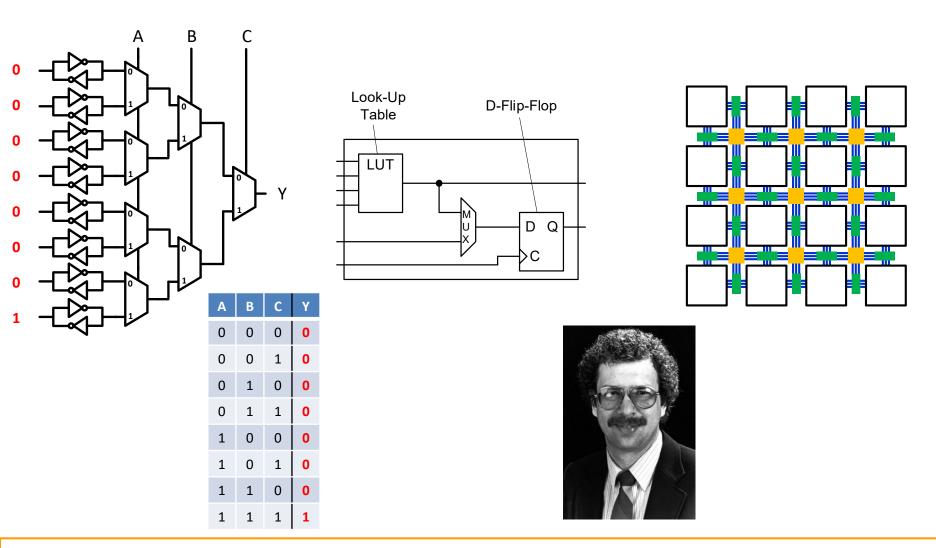
FPGA & Electronics

Intelligent Reconfigurable Detector Electronics


14. November 2025

Qader Dorosti, Andre Zambanini, Michael Karagounis

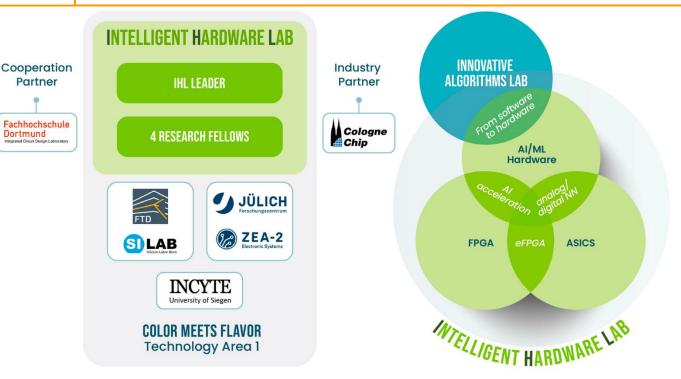
CmF TA1 Kickoff Meeting, Bonn

Field Programmable Gate Array (FPGA)

An FPGA is a type of digital logic device that can be reconfigured after production

FPGA versus **e**(mbedded)FPGA

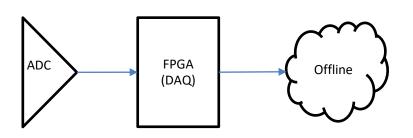
- classic FPGA
 - discrete IC embedded in an electronic system (PCB)
 - SoC (ARM) CPU + FPGA Fabric
- commercial Vendors
 - AMD/Xilinx
 - Intel/Altera
 - Lattice
 - Cologne Chip AG

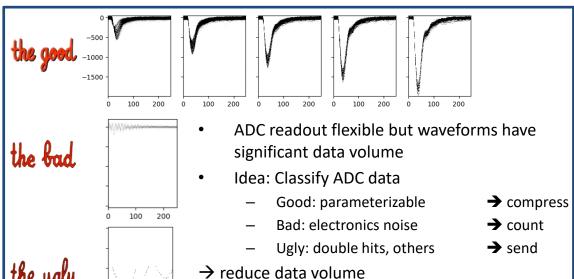


- application in detector electronics
 - data acquisition
 - trigger
 - 333

- embedded FPGA
 - FPGA IP block embedded in an SoC (ASIC)
- open-source flows
 - openFPGA
 - Faboulous
- commercial vendors
 - QuickLogic
 - Achronix
- application in detector electronics
 - enhance reusability of detector ASICs
 - acceleration of algorithms
 - 333

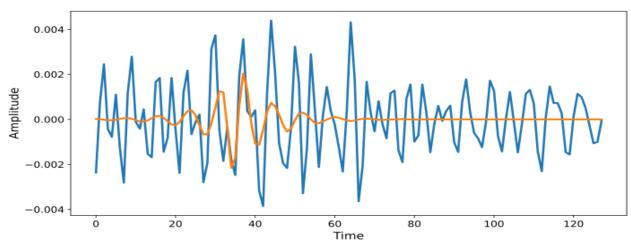
FPGA as a cross-sectional technology in IHL

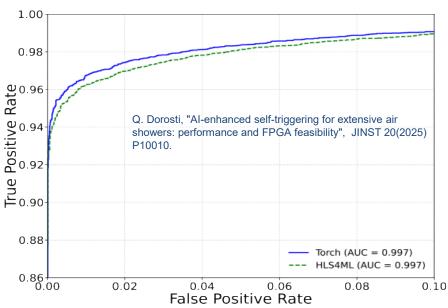



- hardware/software co-design for advanced AI/ML algorithms
- built up expertise in AI/ML algorithms.
- built up expertise in efficient accelerator hardware architectures
- automatic optimized mapping and deployment of algorithms to hardware
- design of radiation-hardened hardware (eFPGAs)
- advanced packaging techniques

Ongoing Activities: Online Compression for SiPM Data

- Compare NN approaches:
 - Binary NN + Genetic Algorithm
 128(int7) 32 32 2
 - hls4ml 2DCNN 128-4-6-8-2

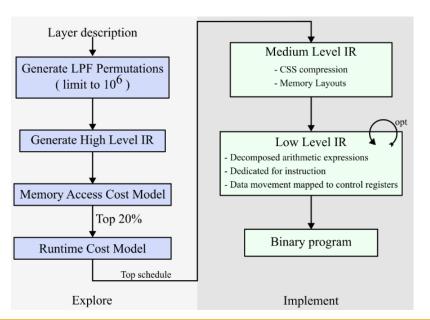

BNN+GA	hls4ml 2DCNN	
74 % accuracy	95 % accuracy	
16640 weights * 2bit	2696 weights * 8bit	
58k LUT + 1.5k FF no DSP, BRAM	186k LUT + 112k FF 556 DSP, 120 BRAM	
10 ns latency	3 μs latency	
105 min * 90 cpu train.	2 min * 16 cpu training	
L Delivery at al. EDCA Decad Deal Time May favor Classification (

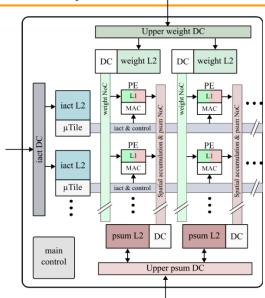

I. Bekman, et.al, "FPGA-Based Real-Time Waveform Classification", https://arxiv.org/abs/2511.05479 (also presented at TWEPP 25)

- •JINST paper + TWEPP contribution
- •DFG proposal for Al-on-FPGA triggering system

Ongoing Activities Al-Enhanced Self-Triggering for Radio Detection of EAS

Faint radio pulse (orange) embedded in noise (blue), correctly classified

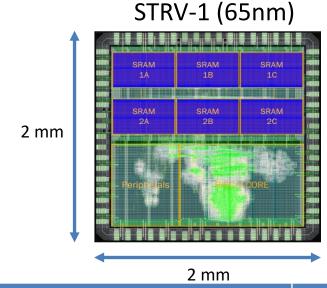


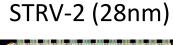


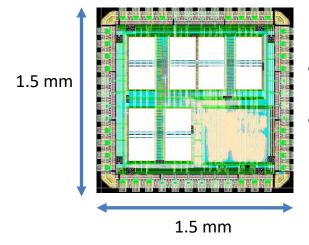
- Radio self-triggering fails in real noise conditions
- Deep-learning classifier robust to strong RFI
 >90% efficiency at <1% false-trigger rate
- FPGA synthesis feasible (2µs high-end FPGAs)
- Power consumption < 5 Watt</p>

Ongoing Activities: Dataflow Optimized Flexible AI/ML Accelerator

- Process element matrix scalable in X and Y direction to define parallelism
- Scalable L1 /L2 memories sizes to influence locality of data processing and meet bandwidth requirements
- Programmability of the processing sequence during runtime e.g. spatial/temporal distribution
- Data coding that restricts flexibility is avoided
 e.g. bitmaps instead of RLC, CSS in the feature maps






- automatic optimized mapping of neural networks to custom hardware
- compiler translates configurations into intermediate representations
 - MLIR Framework (Multilevel Intermediate Representation)
- Evaluation using cascaded cost models e.g. for memory accesses, peak bandwidth, runtime, pre- / post-processing,

Ongoing Activities: Radiation Hard RISC-V Micrcontroller

- functional under lab conditions
- detailed characterization ongoing

	STRV-1	STRV-2
Frequency	50 MHz	100 MHz
Supply Voltage	1.2V	0.9V
Power with Scrubbing	20 mW	-
Power without Scrubbing	15 mW	-
TID hardness	1 Gigarad	-
SEE hardness	2.2 SEFI/h @ 10 ⁹ p/cm ² /s	-

Conclusion

- FPGAs are a cross-sectional technology that will be used extensively in IHL
- study of advanced algorithms and their efficient mapping to hardware
- Radiation-hardened (eFPGA) hardware is required.
- Meaningful detector physics applications must be identified and implemented.