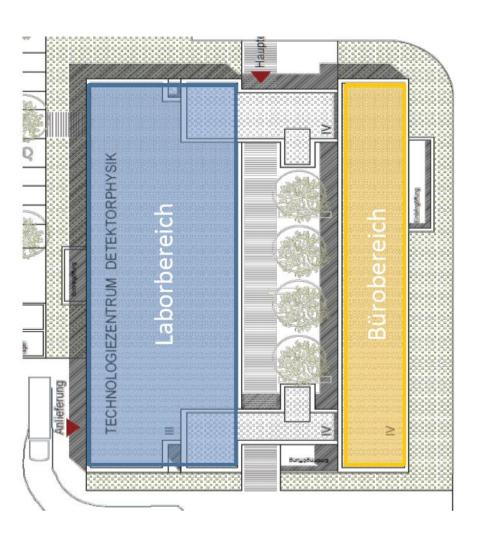
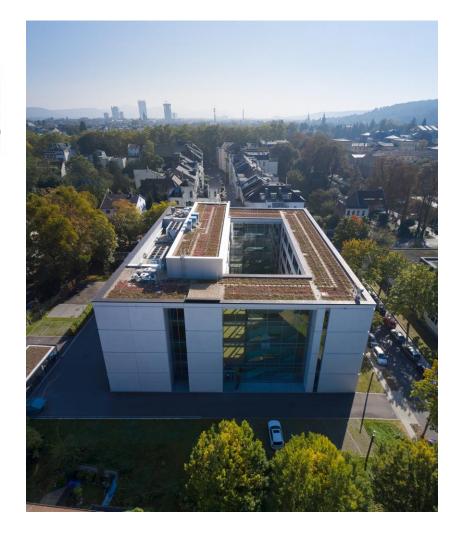
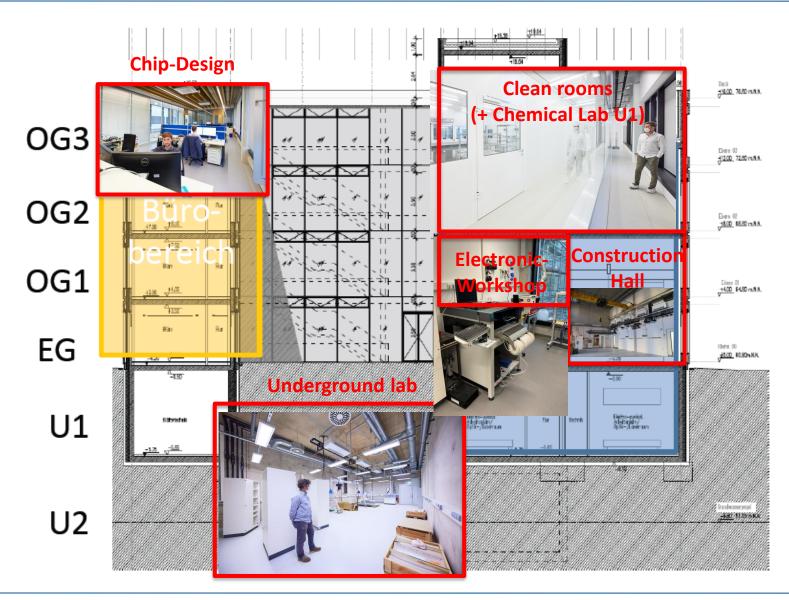


The Forschungs und Technologiezentrum Detektorphysik (FTD) at Bonn


Markus Ball

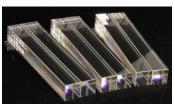

The FTD

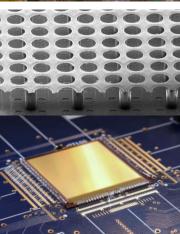
FTD is short for Forschungs- und Technologiezentrum Detektorphysik (FTD) at the university of Bonn

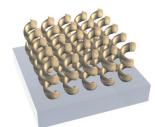


The FTD

Projects of the FTD

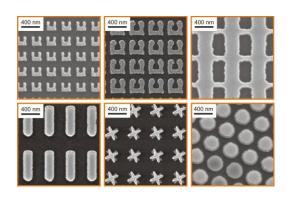



- ATLAS (CERN): Inner Tracker Upgrade: 13m² Hybrid Pixel detector
- Belle II (KEK): DEPFET Pixel detector and upgrade with monolithic CMOS detectors
- ALICE (CERN): ALICE 3 complete redesign with only silicon detectors
- AMBER (CERN): Planar GEM detectors with triggerless readout
- LHC-B: Mighty Tracker upgrade
- PANDA/INSIGHT (FAIR/Bonn): high-resolution electromagnetic calorimeter (20'000 crystals)
- IAXO (axion search at DESY/CERN): InGrid detectors
- ILC: TPC readout with pixelized gaseous detectors
- ELSA:
 - INSIGHT: upgrade with charged-particle tracking and forward detectors
 - O Lohengrin: dark photon search
 - O Bethe-Heitler experiment: form factors
- Nanodetectors for photonics
- Chip design for readout and control of detectors
- Generic R&D on detectors: semiconductors, micropattern gaseous detectors
- Electronics for particle detectors
- Connection to Quantum Optics: Fibre Lab
- Cooperations with external partners

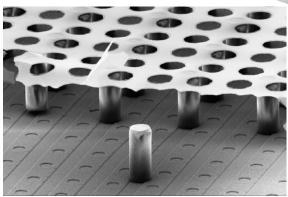


Nano- and Micro-Fabrication

Electron beam + optical lithography



Postprocessing



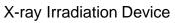
3D Direct laser writing

 Planar nanostructures with feature sizes down to 50 nm

- Etching (chemical, plasma)
- Deposition (metals, dielectrics)

Mer han d'r Dom och en Bonn! Translation provided by https://mingsprooch.de/

Interconnect and Characterization



Scanning Electron Microscope

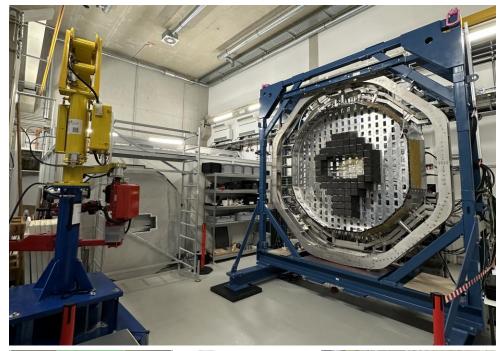
X-ray Inspection Device

Flip Chip Bonder Wire Bonder

Wafer Probe Station

3D Laser Tracker

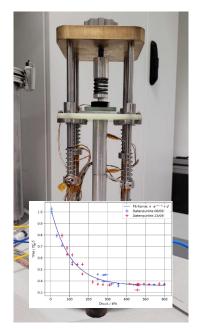
Dissertation N. Heurich (2017)

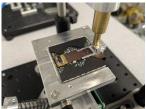

In-beam testing and irradiation

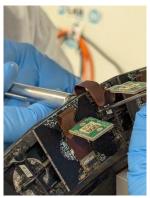

- Cyclotron
- **ELSA**

PANDA FWEC

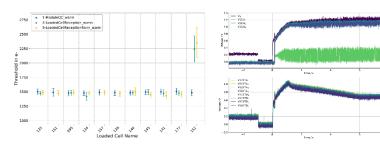
- 3856 PbWO-Crystals
- Length of $20cm = 22X_0$
- Weight: ≈ 8 Tons
- Energy resolution: 3% @ 1GeV
- Operated @ -25°C and cooled with water-methanol mixture
- Installation of modules with high precision
- 14-bit 80MHz sampling ADC with 64 channels




Integration of the ATLAS ITK Pixel



Detector

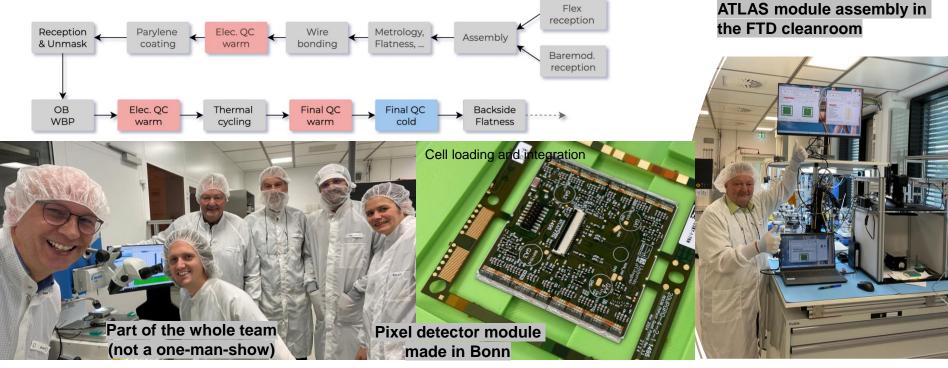


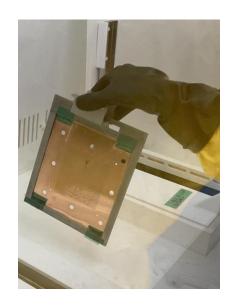
quality control for bare local supports

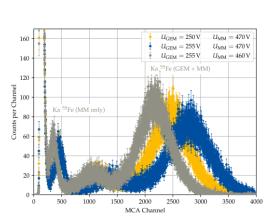
integration of loaded local supports

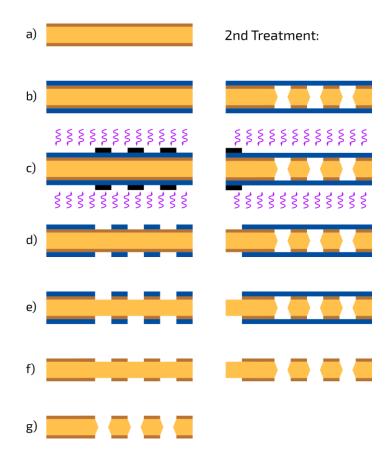
system testing and quality control of loaded local supports

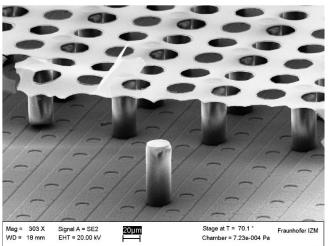
- production of the ITk Pixel Detector (just Bonn)
 - 6.000 bare cells and base blocks
 - 30-50 Loaded Local Supports
 - 850 Modules

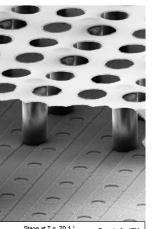

ATLAS Module Production (at FTD)


- The new ATLAS ITk pixel detector requires in total the production of ~11 000 pixel detector modules
- Collaborative effort across the whole world (not only in germany)
- 1600 of these modules will be built in the FTD cleanroom until the end of 2026
- Extensive QC measurements after each production step are required to ensure good quality along the full chain of production
- Production has started already: we have assembled ~120 production modules so far at the FTD

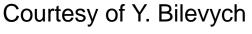



GEM Production (at FTD)





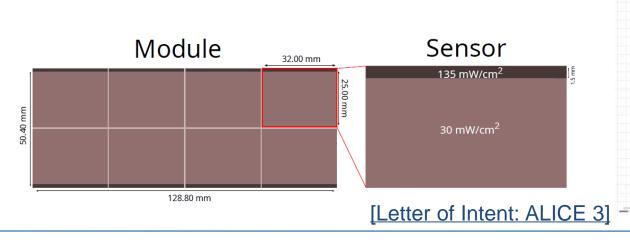
PixGrid Production (at FTD)

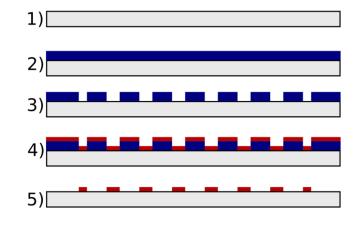


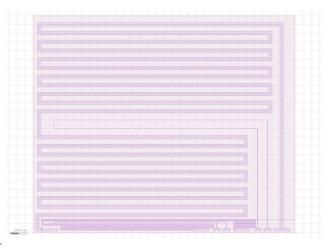
7. Detector releasing

Dry Processing Lab

PL 400


ALICE 3 (at FTD)

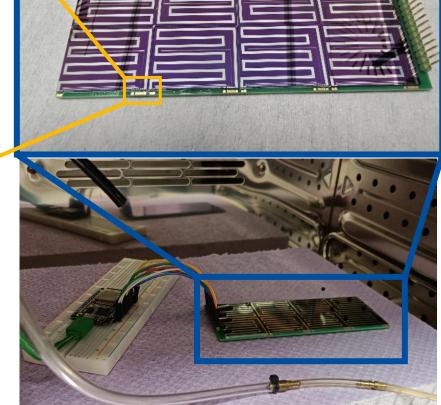



MADHAT: Mechanical Assessment Design for Heat And Thermal Solutions

- Clean and dehydrate silicon wafer
 Apply liquid photoresist via spinner
 Pattern resist using maskless aligner
 Apply 500 nm of aluminium via electron beam evaporation
 Remove access resist with aluminium on
- top

Application: Evaluate cooling and fabrication concepts for ALICE 3 Outer Tacker

ALICE 3 (at FTD)



- Design of MADHAT
 - · Emulates realistic heat dissipation
 - · Used for testing the industrialization
- Production of 25 wafers

Plans for rest of this year:

- Production of O(10) dummy modules
 - (Assembly of components on backside)
 - · Gluing of chips on front
 - Wire-bonding of MADHATs
 - Calibration

Machines for Microstructuring

Designation of the machine/device	Location of the machine	Status of the machine	Used for
Laminator	ISO6 – Yellow	in operation	GEM/Flex board production
LED Illuminator	ISO5 – Yellow	in operation	GEM/Flex board production
Wet bench – organic	ISO5 – Yellow	in operation	Multifunctional
Wet bench – anorganic	ISO5 – Yellow	in operation	Multifunctional
Wet bench – photoresist	ISO5 – Yellow	in operation	Multifunctional
Wet bench	ISO7	in operation	GEM/Flex board production
Dry Cabinet	ISO6	in operation	GEM/Flex board production
Heating Oven	ISO6	in operation	GEM/Flex board production
Spark Detection System (including pA)	ISO6	in operation	GEM/Flex board production
Maskless Aligner (MLA)	ISO5 – Yellow	in operation	Multifunctional
Filmetrics	ISO6 – Yellow	in operation	Optical Wafer resist uniformity inspection
Dektak	ISO6 – Yellow	in operation	Mechanikal structural Wafer inspection
PL 400 (aluminium sputterer)	ISO6 – Yellow	in operation	Metallization of Wafers
Reactive Ion Etching (RIE)	ISO6 – Yellow	in preparation	Dry etching of Wafer Post- processed
Plasma Enhanced Chemical Vapour Deposition (PECVD)	ISO6 – Yellow	in preparation	Deposition of protection layers (e.g. Siliconnitride)
Wafer saw	ISO7	in operation	Wafer cutting

The Staff of FTD

Technical Coordinator

Dr. Markus Ball mball@uni-bonn.de

IT

Dr. Markus Gruber magruber@uni-bonn.de

Head of Cleanroom

Dr. Yevgen Bylevich bilevych@uni-bonn.de

Head of Elektronic-development

Marco Vogt mvogt2@uni-bonn.de

Detectordesign & -integration

Dr. Dmitri Schaab dima@uni-bonn.de

Secretary

Workshops, Guests, Web, Kommunikation, Outreach Sarah Conee **Technician** (Gases, Chemicals)
Chris Winter

Cleanroom-Technician

Jerome Laubner

Construction, CAD N.N.

Common Electronic-Laboratory

Michael Henseler

Walter Honerbach

Alexander Konz

Alexander Ochs

Katharina Rosenthal

Candas Tezel

Radiation Protection Service

Dr. Christoph Wendel

Dr. Fabian Hügging

Dr. Marcus Grüner

Dr. Markus Ball

Dr. Dima Schaab

Laser Protection Service

Dr. Andrea Bergschneider

Enginers + Technicans

of the working groups

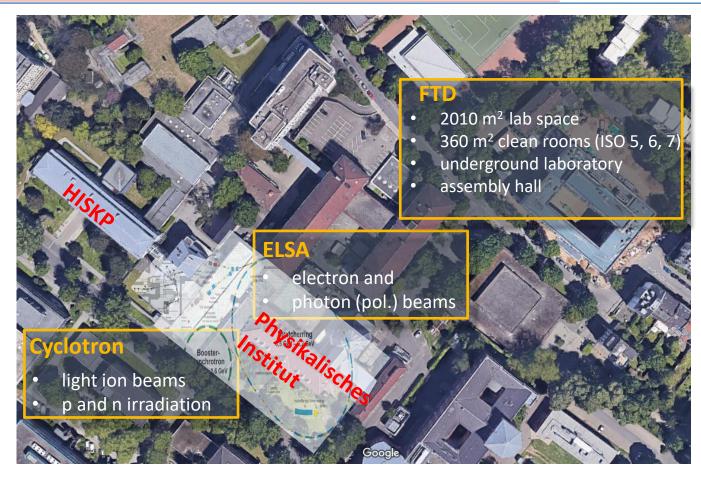
Summary

This is just a small glimpse of the capabilities & potential of the FTD

- Much more capabilities to come
- Some key machines are close to be put in operation
- Other machines are potentially in operation, but lack (still) manpower
- After the (ATLAS) upgrade is before the upgrade:
 - LHC-B
 - ALICE 3
 - INSIGHT
- As resources are always limited

All activities of INSIGHT planning to use the FTD common facilities should be discussed in the FTD board !!!

Machines for Microstructuring

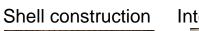

The Research Infrastructure at Bonn INIVERSITÄT BONN

Combined Research Infrastructure:

- FTD
- ELSA (Phys. Institut)
- Cyclotron (HISKP)

Timeline

Excavation

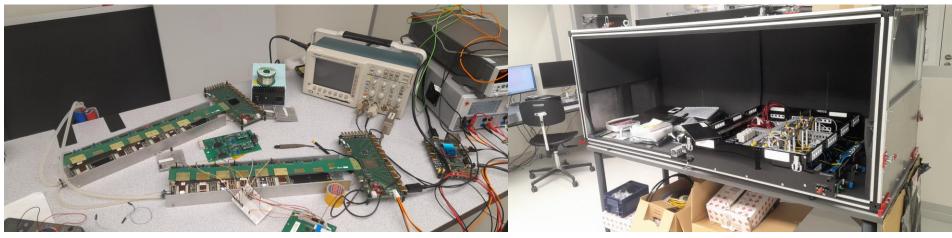

Foundation ceremony

Envelope closure

Hand over to the University

Interior work

Clean room installation Inauguration


Demolition Alte Pharmazie

ATLAS Stave Production (at FTD)

