
Exercise session 1 - solutions

1. Laser propagation in plasma

A laser can propagate in plasma if its angular frequency ωℓ is greater than the
plasma angular frequency ωp:

ωℓ > ωp

The laser angular frequency is:

ωℓ =
2πc

λ

The plasma frequency is given by:

ωp =

√
nee2

ε0me

Laser frequencies:

ωℓ1 = 2.36× 1015 rad/s

ωℓ2 = 1.88× 1014 rad/s

Plasma frequencies:

ωp1 = 1.78× 1013 rad/s

ωp2 = 3.99× 1014 rad/s

Comparison and Result:

• (a) + (c): ω1 > ωp1 ⇒ Yes, propagation is possible

• (a) + (d): ω1 > ωp2 ⇒ Yes, propagation is possible

• (b) + (c): ω2 > ωp1 ⇒ Yes, propagation is possible

• (b) + (d): ω2 < ωp2 ⇒ No, propagation is not possible

2. Wakefield excitation length

1. (a) Since nb > npe the regime is non-linear:

Eacc ∼
√

nb

npe
EWB

A transformer ratio equal to 1 means that Eacc = Edecc, calculating it
with the values given:

Edecc ∼ 21GV/m.
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In principle, the bunch stops driving wakefields once its energy is depleted,
such that the length over which it drives wakefields is given by:

Eparticles

Edecc
=

10

21
∼ 0.47m

2. (b) We note that the depletion length in the case of a laser pulse can be
expressed in two different ways, depending whether the regime is linear,
or non-linear:

Linear : a20 ≪ 1 : Lpd ∼ 1

a20

(
ωℓ

ωpe

)2

λpe

Non-linear : a20 ≫ 1 : Lpd ∼ a0
π

(
ωℓ

ωpe

)2

λpe

First, we calculate a0 for the parameters given:

a0 ∼
√

I [W/cm2]

1.37× 1018
λℓ [µm] = 1.52

a20 = 2.32 >> 1

We will therefore use the depletion length formula in the non-linear case.
We calculate ωℓ = 2.35× 1015 rad/s and ωpe = 5.64× 1013 rad/s

Lpd = 2.84 cm

3. Group velocity and witness electron energy gain

(a) The group velocity of a laser pulse in plasma is given by

vg = c

√
1−

ω2
p

ω2
, ωp =

√
nee2

ε0me
, ω =

2πc

λ
.

If ωp ≥ ω, the laser cannot propagate (cutoff condition).

(a,c) For λ1 = 800 nm and npe1 = 2× 1017 cm−3:

vg = c
(
1− 5.74× 10−5

)
(a,d) For λ1 = 800 nm and npe2 = 3× 1019 cm−3:

vg = c
(
1− 8.65× 10−3

)
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(b,c) For λ2 = 10µm and npe1 = 2× 1017 cm−3:

vg = c
(
1− 9.01× 10−3

)
(b,d) For λ2 = 10µm and npe2 = 3× 1019 cm−3:

ωp > ω ⇒ Laser is cut off (no propagation).

(b) The largest energy gain occurs when the accelerating distance times the
accelerating gradient is the largest. If we neglect the diffraction of the
laser, the accelerating distance is limited by either depletion of the driver,
or dephasing of the witness. In the case of the linear regime, a20 << 1,
these lengths can be expressed as the following:

Lpd ∼ 1

a20
(
ωl

ωpe
)2 λpe

Ld ∼ 1

2
(
ωl

ωpe
)2 λpe

These two expressions contain ωpe and λpe, which can both be expressed
as a function of npe. Same for ωl which can be expressed as a function of
λl.

We find (for a fixed a0):

Lpd ∝ Ld ∝ 1

λ2
l n

3/2
pe

The accelerating gradient is:

Eacc ∼ a20 EWB

i.e.,
Eacc ∝ EWB ∝ n1/2

pe

The energy of the witness therefore scales as

Ewitness ∝
1

λ2
l n

3/2
pe

n1/2
pe ∝ 1

λ2
l npe

The combination of npe and λl result in the largest energy gain is therefore
the smallest npe and λl.

Note that, while in this exercise, a0 is fixed, a0 also has a dependency on
λl.
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4. Rayleigh range and self-focusing power

Reyleigh length and self-focusing power threshold formulas:

zR =
πw2

0

λ
, Pcrit = 17

(
ω

ωp

)2

GW

with ω = 2πc/λ and ωp =
√
nee2/(ε0me).

Solutions:

(a) Rayleigh ranges for w0 = 50 µm:

zR(λ1 = 800 nm) =
π(50× 10−6)2

800× 10−9
= 9.8175× 10−3 m = 9.82 mm,

zR(λ2 = 10µm) =
π(50× 10−6)2

10× 10−6
= 7.85398× 10−4 m = 0.7854 mm.

(b) Minimum (critical) power for relativistic self-focusing Pcrit = 17(ω/ωp)
2

GW. Numerical values for the two wavelengths and two densities npe1 =
2× 1017 cm−3, npe2 = 5× 1018 cm−3 (converted to m−3):

λ1 = 800 nm :

npe1 = 2× 1017 cm−3 : Pcrit ≈ 1.481× 1014 W ≈ 1.481× 105 GW ≈ 148.1 TW,

npe2 = 5× 1018 cm−3 : Pcrit ≈ 5.938× 1012 W ≈ 5.9× 103 GW ≈ 5.9 TW;

λ2 = 10 µm :

npe1 = 2× 1017 cm−3 : Pcrit ≈ 9.4763× 1011 W ≈ 948 GW

npe2 = 5× 1018 cm−3 : Pcrit ≈ 3.7905× 1010 W ≈ 38 GW

5. Dephasing length in PWFA

The drive bunch and the witness propagate with constant group velocity veloc-
ities which can be expressed by:

vb,d = c

√
1− 1

γ2
d

, vb,w = c

√
1− 1

γ2
w

.

The witness dephases from the focusing accelerating region of the wakefields
when the relative slip equals one quarter of the plasma wavelength:

(vb,w − vb,d) td ∼ λpe

4
.
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Hence the dephasing length (distance travelled by the witness during td) is

Ld ≈ c td ≈ c λpe

4 (vb,w − vb,d)
.

Writing the velocities explicitly in terms of the Lorentz factors gives the
exact form

Ld =
c λpe

4

1√
1− 1

γ2
w
−
√
1− 1

γ2
d

For highly relativistic beams (γd, γw ≫ 1) one may expand

vb ≃ c
(
1− 1

2γ2

)
,

so that to leading order

vb,w − vb,d ≃ c

2

(
1

γ2
d

− 1

γ2
w

)
=

c

2

γ2
w − γ2

d

γ2
dγ

2
w

.

Ld ≃ λpe

2

γ2
dγ

2
w

γ2
w − γ2

d

6. Dispersion relation in vacuum

Starting from Maxwell’s equations in vacuum:

∇ ·E = 0, ∇ ·B = 0, ∇×E = −∂B

∂t
, ∇×B =

1

c2
∂E

∂t
.

Take the curl of Faraday’s law and substitute Ampère’s law:

∇× (∇×E) = − ∂

∂t
(∇×B) = − 1

c2
∂2E

∂t2
.

Using the vector identity ∇× (∇×E) = ∇(∇ ·E)−∇2E and ∇ ·E = 0 yields
the wave equation

∇2E− 1

c2
∂2E

∂t2
= 0.

Assume a plane-wave solution

E(r, t) = E0 exp
[
i(k · r− ωt)

]
.

Substituting into the wave equation gives

(−k2 +
ω2

c2
)E0 = 0,
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which requires

k2 =
ω2

c2
.

Taking the positive-frequency branch yields the vacuum dispersion relation

ω = c k

(and equivalently k = ω/c), as was to be shown.

1 Exercise session 2 - solutions

1. Efficiency

First, we calculate the power required for 1nC at 1 TeV with a repetition rate
of 1kHz.

The number of electrons in 1nC can be calculated as follows:

Ne ≈
1× 10−9

1.6× 10−19
≈ 6.24× 109 electrons

If each electron acquires 1 TeV of energy, the energy per accelerated bunch
is:

Ebunch ≈ Ne Ee ≈ 6.24× 109 · 1× 1012 · 1.6× 10−19 ≈ 1 kJ

The power required is then simply the energy per bunch multiplied by the
repetition rate:

P = Ebunch · 1 kHz

So now that we know how much power we would need for these beams to
exist with this amount of charge, energy and at this repetition rate we can
go back to the initial discussion. The wall-plug to witness efficiency (ηwp2w)is
expressed by:

ηwp2w = ηwp2d ηd2w ηwk2w

where ηwp2d is the wall-plug to driver efficiency, ηd2w is the driver to witness
efficiency and ηwk2w is the wake-to-witness efficiency.

We want to use at most 2.7MW of power, and the power contained in the
electron bunches produced will be 1MW.

In other words, we want:

P · ηwp2w = 2.7MW · ηwp2w > 1MW

i.e.,

2.7MW · ηwp2d ηd2w ηwk2w > 1MW
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We solve for ηwk2w:

ηwk2w >
1

2.7 ηwp2d ηd2w
=

1

2.7 · 0.5 · 0.9
≈ 82%

2. Staging

We consider a beam propagating through a vacuum gap with a thin focusing
quadrupole. Let the first drift have length d1 and the second drift d2. The
transport matrix is:

T = D(d2)L(f)D(d1),

where

D(d) =

(
1 d
0 1

)
, L(f) =

(
1 0

−1/f 1

)
Step 1: Obtain the transport matrix
First, multiply L(f) by D(d1):

L(f)D(d1) =

(
1 0

−1/f 1

)(
1 d1
0 1

)
=

(
1 d1

−1/f 1− d1/f

)
Next, multiply by D(d2) on the left:

T = D(d2)L(f)D(d1) =

(
1 d2
0 1

)(
1 d1

−1/f 1− d1/f

)
=

(
1− d2

f d1 + d2 − d1d2

f

− 1
f 1− d1

f

)

So the general transport matrix for arbitrary drift lengths is:

T =

(
1− d2

f d1 + d2 − d1d2

f

− 1
f 1− d1

f

)

The focusing element is placed at the center of the gap separating the two
accelerating stages, i.e.,

d1 = d2 = d.

Then the matrix simplifies to:

T =

(
1− d

f 2d− d2

f

− 1
f 1− d

f

)
The transport matrix is a (2x2) matrix, which can be expressed as:
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T =

(
A B
C D

)
To refocus the beam at the downstream stage entrance with the same size,

we require both B = 0 and abs(A) = 1 (that is because xf = Axi + Bx′
i, and

we want xf = xi). Note also that A = −1 simply means that the image is
flipped compared to the object, in the case of a axi-symmetric beam, this has
no importance.

B = 0 ⇒ 2d− d2

f
= 0 ⇒ f =

d

2
.

Step 3: Express d in terms of total gap L
Since the total gap length is L = d1 + d2 = 2d, we have:

d =
L

2
⇒ f =

L

4
.

Step 4: Quadrupole gradient
The focal length of a thin quadrupole is related to its gradient G by:

1

f
=

GLq

Bρ
⇒ G =

Bρ

fLq
.

Substituting f = L/4:

G =
4Bρ

LLq
.

For ultra-relativistic (Ekin >> Erest electrons (q = 1) (Bρ ≈ p/q ≈ E/c):

G =
4E

c q LLq
.

This expresses the required quadrupole gradient in terms of the electron
energy E, total gap length L, and quadrupole length Lq.

(b) Numerical Example

Given:
E = 10 GeV, L = 1.0 m, Lq = 0.10 m.

Using the following formula give in the instructions, we find that:

Bρ ≈ 3.335× 1 ≈ 33.35 T ·m.

Then

G =
4 · 33.35
1.0 · 0.10

≈ 1333 T/m.

Comparison: - Typical normal-conducting quadrupoles: ∼ 10 T/m.
⇒ The required gradient of∼ 1.33 kT/m cannot be reach by typical quadrupole

magnets, we need to find an alternative...
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(d) Plasma Lens Alternative

An active plasma lens (APL) produces a symmetric magnetic field (no need
of a quadrupole triplet!) that focuses the beam equally in both transverse
planes. The focusing gradient can be approximated as

gAPL [T/m] = 200
I [kA]

(R [mm])2
,

where

• I is the discharge current through the plasma column

• R is the effective plasma lens radius.

I[kA] =
(R[mm])2

200
G[T/m]

Computation for the given values :
For R = 0.5mm and G = 1.33 kT/m:

I =
0.52

200
1333 ≈ 1.67 kA.

Thus, a current of order ∼ 1.67 kA is needed to provide the required focusing
strength.

(e) Scaling with Beam Energy

Since Bρ ∝ E, the required plasma-lens current scales linearly with beam en-
ergy:

I ∝ Bρ ∝ E.

At TeV-scale energies, the discharge currents required for the active plasma
lenses become much larger if the gap length remains the same. In practice, we
would increase the gap length, as well as the length of the plasma lens instead.

To go further, one can try to understand whether the aperture of the plasma
lens would need to become larger when increasing the drift length due to larger
witness energies. To do so, you can use the matched size equation and the
envelope equation. Note that while the normalized emmitance is preserved
under acceleration, the geometric emittance decreases.

3. Single stage acceleration schemes

(a) The proton bunch has a length of σz ∼ 5.1 cm and a transverse size
σr ∼ 200µm. Calculate the wave-breaking field amplitude of the plasma,
knowing that, ideally, σz ∼ λpe. Comment on the result.
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The plasma frequency is given by

ωpe =

√
nee2

ε0me
, kpe =

ωpe

c
, λpe =

2π

kpe
=

2πc

ωpe
.

The maximum (cold non-relativistic) wave-breaking field is

Ewb =
mec ωpe

e
.

If we assume σz ∼ λpe, then

λpe = 0.051m ⇒ ωpe =
2πc

λpe
=

2π(3.0× 108)

0.051
= 3.7× 1010 s−1.

Hence, the plasma density is

ne =
ε0meω

2
pe

e2
= 4.3× 1017 m−3 = 4.3× 1011 cm−3.

The wave-breaking field is then

Ewb =
mecωpe

e
= 6.3× 107 V/m = 63MV/m.

Comment: The estimated Ewb ≃ 63MV/m is not so interesting com-
pared to conventional accelerator gradients (10 − 100MV/m typically).
Using the proton bunch from SPS as is is not so interesting for driving
wakefields, this is why we rely on the self-modulation process (see Mar-
lene’s lecture for more details). What is important to note, is that if we
use the self-modulation process, then the condition to satisfy is given in
(b), i.e., 1

kpe
> σr.

(b) Calculate now the wave-breaking field amplitude if the condition to fulfill
is 1/kpe > σr instead. Comment on the result.

Using 1/kpe = σr = 2.0× 10−4 m, we find

kpe =
1

σr
= 5.0×103 m−1, ωpe = kpec =

c

σr
=

3.0× 108

2.0× 10−4
= 1.5×1012 s−1.

The corresponding plasma density is

ne =
ε0meω

2
pe

e2
= 7.1× 1020 m−3 = 7.1× 1014 cm−3.

The wave-breaking field becomes

Ewb =
mecωpe

e
= 2.6× 109 V/m = 2.6GV/m.

Comment: When fulfilling this condition, the plasma can now sustain
waves of amplitudes much more interesting for a compact accelerator (∼
100 times larger than RF cavities typically).
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