Charge-Up Effect - Simulations with Garfield++

Philip shows some exponentials

Philip Hauer

December 112019

Garfield + + and the Charge-Up Effect

Simulations of the Charging-Up Effect in Gas Electron Multipliers

A Preprint - To be submitted to Nucl. Instr. and Meth. A

Philip Hauer; Jonathan Ottnad, Steffen Urban, Markus Ball, Bernhard Ketzer Helmholtz-Institut für Strahlen- und Kernphysik

Universität Bonn
3115 Bonn - Germany

November 28, 2019
Abstract
Gas Electron Multipliers (GEM) are widely used as amplification stage in gaseous detectors exposed to high rates, e.g. in the Time Projection Chamber of the ALICE (A Large Ion Collider Experiment experiment after its upgrade. The GEM consists of a polyimide foil which is coated by two thi copper layers. GEM foils are known to collect charges on the polyimide part in its holes during the amplification process. This is accompanied by a change of the effective gain. The effect is commonly known as the "charge-up effect"

In Progress

Simulation Workflow

ANSYS

Calculate electrostatic potential with
finite element methods

Simulation Workflow

Simulation Workflow

Simulation Workflow

ANSYS

- ANalysis SYStem

- Solves problems with finite element method (FEM)
- Linear and non-linear problems
- Fluid mechanics, acoustic, thermodynamic, electromagnetism....
- Divides the system into small cells
- Adaptive meshing
- Complicated problem (!)
- Solves Poisson equation on nodes
- Result: Electrostatic Potential
- $\vec{E}(x, y, z)=-\vec{\nabla} V(x, y, z)$

$$
V(x, y)=p_{0} x^{2}+p_{1} y^{2}+p_{2} x y+p_{3} x+p_{4} y+p_{5}
$$

- Simulating particle detectors
- Not only gaseous detectors (!)
- Interface to finite element programs
- ANSYS
- Interface to Magboltz
- MC of electron drift and diffusion in gases
[doi: 10.1016/S0168-9002(98)01233-9]
- Interface to Heed
- Models ionization produced by fast charged particles in gases [doi: 10.1016/j.nima.2005.08.064]
- Creating gas files
- Drift velocity and diffusion
- Avalanche creation
- Microscopic tracking of electrons
- Each collision is simulated (!)
- Simulate movement of ions
- Spatial and temporal information
- Charge creation
- Charge movement
- Signal induction

AnALYsIS OF SimULATIONS

- Where do the charges end up?

ANALYSIS OF SimULATIONS

- Where do the charges end up?
- End of the simulated volume

ANALYSIS OF SimULATIONS

- Where do the charges end up?
- End of the simulated volume
- Copper

ANALYSIS OF SimULATIONS

- Where do the charges end up?
- End of the simulated volume
- Copper
- Polyimide

ANALYSIS OF SimULATIONS

- Where do the charges end up?
- End of the simulated volume
- Copper
- Polyimide
- Charges on polyimide interesting

AnALYsIS OF SimULATIONS

- Where do the charges end up?
- End of the simulated volume
- Copper
- Polyimide
- Charges on polyimide interesting
- Divide polyimide into slices

AnALYsIS OF SimULATIONS

- Where do the charges end up?
- End of the simulated volume
- Copper
- Polyimide
- Charges on polyimide interesting
- Divide polyimide into slices
- Count net charge on each slice

AnALYsIS OF SimULATIONS

- Where do the charges end up?
- End of the simulated volume
- Copper
- Polyimide
- Charges on polyimide interesting
- Divide polyimide into slices
- Count net charge on each slice
- Multiply by constant and dynamic extrapolation factor

- Apply these charges as surface charges in ANSYS

ANALYSIS OF SimULATIONS

Settings:

- $E_{\text {Drift }}=400 \mathrm{~V} / \mathrm{cm}$
- $U_{\mathrm{GEM}}=350 \mathrm{~V}$
- $E_{\text {Induct }}=2000 \mathrm{~V} / \mathrm{cm}$

Observations:

- Neighboring slices accumulate oppositely charged net charges
- E.g. Slices 19 \& 20
- "Multipole-like structure"

\Rightarrow Unrealistic behavior!

Analysis of Simulations - Electric Field

Initial state

After simulating charge-up

Analysis of Simulations - Electron Creation

Polyimide
Copper

\Rightarrow Effective gain should not be influenced by multipoles!

Analysis of Simulations - Effective Gain

- Where do the charges end up?
- End of simulated volume
- Copper
- Polyimide
- Electrons at the lower end of simulated volume interesting
- Count them
- Effective gain
- Only valid if one single initial electron

Effective Gain - Simulations with HTCondor

- Most of the time: 350 steps
- Effective gain changes with each step
- A precise simulation of the effective gain needs
≈ 10000 initial electrons
- Computationally very expensive!
- But: Easy to parallelize
- Only simulate every fifth step
- A reasonable trade-off:
- 50 jobs for every fifth step ($=3500$ jobs in total)
- Each job 400 single initial electrons
- Equals 20000 initial electrons
- 1400000 initial electrons in total for one setting (!)

Development of the Effective Gain

- Effective gain increases exponentially
- "Time constant" can be compared to measurements
- $\left(8.3 \pm 0.4_{-2.8}^{+4.0}\right) \times 10^{6} \mathrm{e} /$ hole
- $\left(5.2 \pm 0.4_{-1.3}^{+1.8}\right) \times 10^{6} \mathrm{e} /$ hole
- Percentual increase $\approx 20 \%$
- Reasonable extrapolation factor?
- What about different voltage
 settings?

Different Constant Extrapolation Factor

- Higher
extrapolation
desirable
- Should not influence characteristics
- $\chi^{\text {const }}$ varied between 10 and 100
- Results look similar
- Choose a

X	$\chi^{\text {const }}=10$
X	$\chi^{\text {const }}=20$
X	$\chi^{\text {const }}=30$
采	$\chi^{\text {const }}=40$
X	$\chi^{\text {const }}=50$
X	$\chi^{\text {const }}=100$

conservative value of $\chi^{\text {const }}=30$

Different Drift Fields

－Changed $U_{\text {GEM }}$ to 400 V

$$
\begin{array}{ll}
\text { 世 } & E_{\mathrm{D}}=400 \mathrm{~V} / \mathrm{cm} \\
\text { 世 } & E_{\mathrm{D}}=800 \mathrm{~V} / \mathrm{cm} \\
\text { 枼 } & E_{\mathrm{D}}=1600 \mathrm{~V} / \mathrm{cm} \\
\text { 采 } & E_{\mathrm{D}}=1800 \mathrm{~V} / \mathrm{cm} \\
\text { 世 } & E_{\mathrm{D}}=2000 \mathrm{~V} / \mathrm{cm} \\
\text { स } & E_{\mathrm{D}}=2400 \mathrm{~V} / \mathrm{cm}
\end{array}
$$

Different Drift Fields

－Changed $U_{\text {GEM }}$ to 400 V
－Higher drift fields lead to smaller increase

- Why？$\rightarrow \epsilon_{\text {coll }}$

$$
\begin{array}{ll}
\text { X } & E_{\mathrm{D}}=400 \mathrm{~V} / \mathrm{cm} \\
\text { 胥 } & E_{\mathrm{D}}=800 \mathrm{~V} / \mathrm{cm} \\
\text { 疋 } & E_{\mathrm{D}}=1600 \mathrm{~V} / \mathrm{cm} \\
\text { 胥 } & E_{\mathrm{D}}=1800 \mathrm{~V} / \mathrm{cm} \\
\text { ※ } & E_{\mathrm{D}}=2000 \mathrm{~V} / \mathrm{cm} \\
\text { ※ } & E_{\mathrm{D}}=2400 \mathrm{~V} / \mathrm{cm}
\end{array}
$$

Different Drift Fields

- Changed $U_{\text {GEM }}$ to 400 V
- Higher drift fields lead to smaller increase
- Why? $\rightarrow \epsilon_{\text {coll }}$
- Depends on
$E_{\text {Drift }} / U_{\text {GEM }}$

Upper scale for $U_{\mathrm{GEM}}=400 \mathrm{~V}$

- Higher drift fields lead to smaller increase
- Why? $\rightarrow \epsilon_{\text {coll }}$
- Depends on $E_{\text {Drift }} / U_{\text {GEM }}$
- Could be interesting for ALICE settings

- Higher drift fields lead to smaller increase
- Why? $\rightarrow \epsilon_{\text {coll }}$
- Depends on
$E_{\text {Drift }} / U_{\text {GEM }}$
- Could be interesting for ALICE settings

$$
\begin{array}{cc}
E_{\mathrm{D}}=1600 \mathrm{~V} / \mathrm{cm} \\
\text { ※ } & U_{\mathrm{GEM}}=350 \mathrm{~V} \\
\text { ※ } & U_{\mathrm{GEM}}=375 \mathrm{~V} \\
\mathbb{\Psi} & U_{\mathrm{GEM}}=400 \mathrm{~V} \\
\mathbb{\Psi} & U_{\mathrm{GEM}}=425 \mathrm{~V}
\end{array}
$$

- Changed $U_{\text {GEM }}$ from 350 V to 400 V
- Total gain different

- Changed $U_{\text {GEM }}$ from 350 V to 400 V
- Total gain different
- Normalized to first value
- No dependency
- Contradicts measurements

$$
\begin{array}{ll}
\mathbb{X} & U_{\mathrm{GEM}}=350 \mathrm{~V} \\
\text { ※ } & U_{\mathrm{GEM}}=360 \mathrm{~V} \\
\text { 氶 } & U_{\mathrm{GEM}}=370 \mathrm{~V} \\
\text { ※ } & U_{\mathrm{GEM}}=380 \mathrm{~V} \\
\text { ※ } & U_{\mathrm{GEM}}=390 \mathrm{~V} \\
\text { ※ } & U_{\mathrm{GEM}}=400 \mathrm{~V}
\end{array}
$$

Different Induction Fields

- Changed $E_{\text {Induct }}$ from $800 \mathrm{~V} / \mathrm{cm}$ to $3500 \mathrm{~V} / \mathrm{cm}$
- Extraction efficiency different

Different Induction Fields

- Changed $E_{\text {Induct }}$ from $800 \mathrm{~V} / \mathrm{cm}$ to $3500 \mathrm{~V} / \mathrm{cm}$
- Extraction efficiency different
- Normalized to first value
- No (strong) dependency

Different Induction Fields

- Changed $E_{\text {Induct }}$ from $800 \mathrm{~V} / \mathrm{cm}$ to 3500 V/cm
- Extraction efficiency different
- Normalized to first value
- No (strong) dependency
- Slope of extraction efficiency?!

Single Conical GEMs

- Up to now: DC GEMs
- Charge collection should depend on geometry
- Tapered side down: Electrons
- Same behavior
- Tapered sipe up: Ions
- Behavior different but agrees with first measurements

- Every simulation: Multipoles (!)
- Continuous charge distribution best solution
- In FEM not feasible
- No alternative to FEM (up to now..)
- Test a few options
- Charge distribution with a function
- Re-bin charge distribution
- Percentage charge exchange between neighboring slices
\Rightarrow Charge transfer between slices

Application of a Function

Application of a Function

Application of a Function

Analysis of Simulations - Pol3

- 800 steps
- No more multipoles

Analysis of Simulations - Pol3

- 800 steps
- No more multipoles
- Example: step 500
- Charges are almost following pol3 already

Analysis of Simulations - Pol3

- 800 steps
- No more multipoles
- Example: step 500
- Charges are almost following pol3 already
- Fit function has no big impact

Analysis of Simulations - Pol3

- 800 steps
- No more multipoles
- Example: step 500
- Charges are almost following pol3 already
- Fit function has no big impact
- However: Multipole-like-like

- Development of $G_{\text {eff }}$
- Two different functions
- Changes the development significantly
- Question: Do we want to introduce this additional degree of freedom?

Re-Binning of Charge Distribution

- Simulate everything as normal
- But don't divide into 20 slices

- Simulate everything as normal
- But don't divide into 20 slices
- Use 60 instead
- For ANSYS: 20 slices (!)
- Smear out charges on "subslices"
- Can also be done with 40 slices

Results

No results up to now due to a bug in my software

- Charge transfer proportional to difference
- Factor: p
- In Example: Slice 18 \& 19
- Difference $1040000 e$
- Add $p \cdot 1040000$ to slice 18
- Subtract $p \cdot 1040000$ from slice 19
- Resembles diffusion and current flow
- Do many simulations with different p

- First example with $p=0.01$
- No more multipoles
- Additional degree of freedom
- How does it change for different p ?
- And what about the effective gain?

- Second example with $p=0.0001=0.01 \%$
- Again multipoles
- $p=0.01 \%$ is too small to make a significant change
- And what about the effective gain?

- Effective gain for different p
- $p=10 \%$ is too much
- From multipole considerations:
$p=0.01 \%$ too small
- Probably 1% is a fair trade-off

※	10%
※	5%
※	1%
※	0.5%
※	0.1%
※	0.01%

- Iterative approach
- Based on ANSYS and Garfield++
- Can describe measured values
- Describes qualitative behavior nicely
- Even for unexpected things (e.g. SC GEM)
- But: Deviations to measurements
- And what about multipoles?!
- Approaches to get rid of multipoles
- Most promising: Percentage smooth
- But it introduces another degree of freedom
- Write Paper (!!!)
- Try to simulate re-binning
- Simulate different voltage settings with percentage smooth (?)
- ? Any ideas ?

Thanks!

Thank you for your attention!

