
Introduction to gravitational waves

J.W. van Holten

Nikhef, Amsterdam NL

and

Lorentz Institute

Leiden University, Leiden NL

c©
2018





Conventions

In these notes we use the generalized summation convention: repeated indices are summed
over, unless explicitly mentioned otherwise.

We use greek indices κ, λ, µ, ... = (0, 1, 2, 3) to denote components of 4-dimensional space-
time vectors, and latin indices i, j, k, ... = (1, 2, 3) to denote components 3-dimensional
spatial vectors.

Discussing physics in a flat background space-time, we generally use the Minkowski metric
and its inverse ηµν = ηµν = diag(−1,+1,+1,+1) to raise and lower indices on vectors and
tensors.

Partial derivatives are frequently denoted by the short-hand notation ∂µ = ∂/∂xµ, but for
3-dimensional spatial gradients and divergences we use the symbol ∇ with ∇i = ∂i. The
4-dimensional d’Alembert or wave operator is � = ∂µ∂µ = ηµν∂µ∂ν and the 3-dimensional
laplacean is ∆ = ∇2 = ∇i∇i.

For ease of notation most of the time we employ units in which the velocity of light c = 1.
Occasionally we reinstate explicit powers of c to facilitate the evaluation of dimensionful
observable quantities.
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1 Linearized General Relativity

General Relativity, Einstein’s theory of gravity, can be derived and motivated along two
complementary tracks. It can be considered to be a theory of the dynamical geometry
of space-time using concepts like metrics, connections and curvature. Alternatively it
can be derived as the field theory of self-interacting spin-2 fields in a fixed Minskowski
background. This field theory turns out to be highly non-linear, requiring an infinite
series of interaction terms which in the end, under fairly general assumptions, uniquely
reproduce the geometric theory. The geometric formulation therefore provides by far the
most concise and convenient framework for producing general statements about gravity
and its implications for the universe at large, especially in large-curvature environments.

In contrast small-curvature fluctuations propagating on a Minkowski background pro-
vide the setting for the description of gravitational waves as measured by present terrestrial
and space-borne detectors. Even though such waves may be emitted by strongly interact-
ing systems such as coalescing compact binaries (e.g., black holes, neutron stars or white
dwarfs), they are observed in an asymptotic flat environment where they behave like linear
spin-2 quadrupole waves. These waves propagate at the speed of light and accordingly
they have only two transverse polarization modes with helicities ±2.

The Lorentz-covariant field equation of a symmetric massless spin-2 field hµν in Minkowski
space-time with metric ηµν reads

�hµν − ∂µ∂λhλν − ∂ν∂λhλµ + ∂µ∂νh
λ
λ − ηµν

(
�hλλ − ∂κ∂λhκλ

)
= −κTµν . (1)

Here Tµν is the divergence-free energy-momentum tensor of matter and radiation which act
as sources for the gravitational field, and κ is the coupling constant, related to Newton’s
constant of gravity and the velocity of light by

κ2 =
8πG

c4
' 2.1× 10−43 kg−1 m−1 s2. (2)

In the following we will without further notice use units in which c = 1. In the geometrical
framework the field h represents a fluctuation of the metric in a Minkoswki background of
the form

gµν = ηµν + 2κhµν , (3)

and the left-hand side of eq. (1) represents the linearized Einstein curvature tensor.
Equation (1) is invariant under abelian gauge transformations

h′µν = hµν + ∂µξν + ∂νξµ, (4)

parametrized by the four-vector field ξµ. This is a linearized form of general co-ordinate
transformations and a necessary counterpart of energy-momentum conservation as the
condition

∂µTµν = 0 (5)

requires the divergence of the left-hand side of eq. (1) to vanish.
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The field equation (1) can be simplified by switching to a different set of field variables
defined by

hµν = hµν −
1

2
ηµνh

λ
λ. (6)

In terms of these field components the equation takes the form

�hµν − ∂µ∂λhλν − ∂ν∂λhλµ + ηµν∂
κ∂λhκλ = −κTµν , (7)

which is invariant under modified gauge transformations

h′µν = hµν + ∂µξν + ∂νξµ − ηµν∂λξλ. (8)

Gauge fixing is the choice of a smooth set of representatives from all classes of gauge-
equivalent fields hµν ; a convenient choice is obtained by imposing the De Donder gauge

∂µhµν = 0, (9)

which reduces the field equation further to the linear inhomogeneous wave equation

�hµν = −κTµν . (10)

That it is possible to impose the condition (9) is seen by observing that for any solution
hµν of the field equation a gauge transformation can cancel its divergence:

∂µh′µν = ∂µhµν + � ξν = 0, (11)

provided one takes the gauge parameters to be a solution of the equation

� ξν = −∂µhµν . (12)

Observe that the gauge condition (9) makes the wave equation (10) compatible with the
condition (5) for energy-momentum conservation.

In regions where the energy-momentum tensor of matter vanishes: Tµν = 0, one can
further eliminate the trace of the gravitational field:

hλλ = −hλλ = 0, (13)

by performing a residual gauge transformation

h′λλ = hλλ − 2∂λξ′λ = 0, (14)

where ξ′λ is to satisfy the conditions

∂λξ′λ =
1

2
hλλ, � ξ′λ = 0. (15)

The first condition cancels the trace of hλλ, the second conditon implies by eq. (11) that
the field-divergence remains zero: ∂µh′µν = 0. Obviously these conditions are compatible
only in regions where the trace satisfies a source-free wave equation:

�hλλ = 0 ⇔ T λλ = 0. (16)

Therefore in such regions the fields hµν and hµν can be made to coincide.
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2 Free field modes

It is instructive to first consider free propagating waves with Fourier decomposition

hµν(x) =

∫
d4k

(2π)2
εµν(k)e−ik·x. (17)

As the gravitational field components are real functions of the space-time co-ordinates xµ

the plane-wave amplitudes εµν(k) must satisfy

ε∗µν(k) = εµν(−k). (18)

The full free-field equation (7) then translates to

k2εµν − kµkλελν − kνkλελµ + ηµνk
κkλεκλ = 0, (19)

which is invariant under gauge transformations in wave-vector space of the form

ε′µν = εµν + kµαν + kναµ − ηµνkλαλ. (20)

The vectors αµ(k) introduced here are wave-vector dependent gauge parameters also sat-
isfying a reality condition

α∗µ(k) = −αµ(−k). (21)

These gauge transformations can be used to transform amplitudes off the light-cone to a
transverse form in 4-dimensional space-time:

kµε′µν = 0, (22)

by taking

αν = −k
µ

k2
εµν , k2 6= 0. (23)

It then follows immediately by eq. (19) that off the light-cone all amplitudes vanish, and

k2ε′µν = 0 ⇒ ε′µν(k) = eµν(k, ω) δ(k2), (24)

with the light-cone defined by

k2 = 0 ⇔ k0 = ±ωk = ±
√

k2. (25)

The reality condition (18) then becomes

e∗µν(k, ωk) = eµν(−k,−ωk). (26)

Inserting the light-cone restriction (24) into the plane-wave decomposition (17) we get

hµν(x) =

∫
d3k

8π2ωk

[
eµν(k, ωk)e−i(k·x−ωkt) + eµν(k,−ωk)e−i(k·x+ωkt)

]
=

∫
d3k

8π2ωk

[
eµν(k, ωk)e−i(k·x−ωkt) + e∗µν(k, ωk)ei(k·x−ωkt)

]
.

(27)
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As the light-cone fields are still subject to the transversality condition (22) we require

kµeµ0 = ωke00 + kiei0 = 0, kµeµi = ωke0i + kjeji = 0. (28)

Observe that these conditions are still invariant under gauge transformations (20) restricted
to the light-cone as well:

αµ(k) = aµ(k, ωk) δ(k2), (29)

such that
e′00 = e00 − ωka0 + k · a, e′0i = e0i − ωkai + kia0,

e′ij = eij + kiaj + kjai − δij (ωka0 + k · a) .
(30)

These transformations can be used to impose 3-dimensional transversality and tracelessness
of the light-cone amplitudes, as follows. Observe that by the first condition (28) and the
light-cone property ω2

k = k2 the combination ei0 + kie00/ωk is transverse:

ki

(
ei0 +

ki
ωk

e00

)
= 0. (31)

As therefore expected, under a gauge transformation its change is proportional to the
transverse components of a:

e′i0 +
ki
ωk

e′00 = ei0 +
ki
ωk

e00 − ωk

(
ai −

kikj
ω2
k

aj

)
. (32)

Next there are two scalar combinations transforming as

e′00 + e′ii = e00 + eii − 4ωka0,

e′00 −
1

3
e′ii = e00 −

1

3
eii +

4

3
k · a.

(33)

Thus it follows that by judicious choice of a0 and a we can eliminate e′00, e
′
i0 and e′ii. Take

a0 =
1

4ωk

(e00 + eii) ,
k · a
ωk

=
1

4ωk

(eii − 3e00) ,

ai −
kikj
ω2
k

aj =
1

ωk

(
ei0 +

ki
ωk

e00

)
;

(34)

then we get as a result
e′00 = 0, e′i0 = 0, e′ii = 0, (35)

which leaves the second constraint (28) in the form

kje
′
ji = 0. (36)
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For example, if the wave vector is directed in the z-direction: k = (0, 0, ω), then the
amplitudes take the form

e′µν(k, ω) =


0 0 0 0
0 e+(ω) e×(ω) 0
0 e×(ω) −e+(ω) 0
0 0 0 0

 . (37)

With this choice of amplitudes the free field satisfies

�hµν = 0, ∂µhµν = 0, hλλ = 0 (38)

and therefore hµν = hµν , subject to the additional constraints

h00 = hi0 = hii = 0, ∇jhji = 0. (39)

As is manifest from the specific representation (37) such a field has only two independent
physical degrees of freedom. In the literature the conditions (39) are referred to as the
transverse traceless or TT -gauge, and the corresponding field components are often denoted
by hTTµν .

3 Emission of quadrupole waves

We now turn to solving the wave equation (10) in the far field regime, meaning at large
distance from the sources, in vacuum and in a Minkowski background space-time. A large
distance here is a distance at which only components falling off no faster than 1/r survive.

For a start we can write down a formal exact solution of the wave equation using the
standard retarded Green’s function:

hµν(x, t) =
κ

4π

∫
Sr

d3x′
Tµν(x

′, t− |x′ − x|)
|x′ − x|

. (40)

As the sources where Tµν 6= 0 are supposedly localized at a large distance from the point
labeled x, where the field is evaluated, the integral is taken over a large sphere Sr containing
the sources, with the origin fixed in some well-defined internal point of the source region.
This sphere thus encloses all of the sources, its radius r = |x| being much larger than
any typical dimension of the source. For example, for a binary star system of maximal
extension d the origin may be taken at a fixed point inside the orbit while requiring at all
times r � d.

With these assumptions we can expand the integrand in powers of 1/r and neglect all
terms of order 1/rp with p > 1. This results in the simpler integral

hµν(x, t) =
κ

4πr

∫
Sr

d3x′ Tµν(x
′, t− r). (41)
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From this expression it is straighforward to show that the time components of the field h0µ
are non-dynamical, representing static fields that do not contribute to the flux of energy and
momentum across the surface of the sphere Sr. More precisely, using energy-momentum
conservation for the source the components h0µ do not depend on co-ordinate time t = x0:

∂0h0µ =
κ

4πr

∫
Sr

d3x′ ∂0T0µ =
κ

4πr

∫
d3x′∇′iTiµ

=
κ

4πr

∮
∂Sr

d2σ r̂iTiµ = 0.

(42)

Here we have used Gauss’ theorem to turn the volume integral into a surface integral
over the spherical surface ∂Sr, and r̂i Tiµ is a normal component of the energy-momentum
tensor, r̂ being the normal unit vector pointing out of the sphere. In view of the assumption
that Tµν = 0, except for a finite region near the center of the sphere, the vanishing of the
surface integral is obvious.

In view of this the only relevant field components for the gravitational energy-momentum
flux are the spatial components hij. As we are evaluating the wave field in empty space
far from the sources we can transform these asymptotic components to the TT -gauge (39)
with a gauge transformation that does not affect the source region. It then follows that we
can write the large-distance solution (41) in the form

hij(x, t) =
κ

4πr
(δik − r̂ir̂k) (δjl − r̂j r̂l)

(
Ikl +

1

2
δkl r̂ · I · r̂

)
, (43)

where defining the retarded time u = t− r

Iij(u) =

∫
Sr

d3x′
(
Tij −

1

3
δijTkk

)
(x′, u) , (44)

and as before the notation Irr = r̂mImnr̂n denotes its double-radial component. Noting
that Iii = 0 it is straightforward to check that

r̂jhji = 0, hii = 0, (45)

proving that the expression (43) represents the transverse and traceless components of the
wave fields (41).

Using a standard trick the expression for Iij can be rewritten for compact sources in
terms of the second moment of the source energy density:

Iij(u) =
1

2
∂20

∫
Sr

d3x′
(
x′ix
′
j −

1

3
δij x′ 2

)
T00(x

′, u). (46)

The proof uses energy-momentum conservation of the source twice:

∂20 T00 = ∂0∇iTi0 = ∇j∇iTij, (47)
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and then involves two partial integrations in (46) to reobtain equation (44). Finally for
non-relativistic sources the energy density is dominated by the mass-density ρ(x, t), which
allows us to replace the integral in (46) by the mass quadrupole moment:

Iij =
1

2

∂2Qij

∂t2
, Qij(u) '

∫
Sr

d3x′
(
x′ix
′
j −

1

3
δij x′ 2

)
ρ(x′, u). (48)

Thus we get the final expression for the wave field hij for non-relativistic sources in the
TT -gauge:

hij(x, t) =
κ

8πr
(δik − r̂ir̂k) (δjl − r̂j r̂l)

∂2

∂t2

(
Qkl +

1

2
δkl r̂ ·Q · r̂

)
u=t−r

. (49)

For the dynamical metric fluctuations δgµν = gµν − ηµν , recalling eqs. (3) and (2), this
implies

δg00 = δg0i = 0;

δgij =
2G

r
(δik − r̂ir̂k) (δjl − r̂j r̂l)

∂2

∂t2

(
Qkl +

1

2
δkl r̂ ·Q · r̂

)
u=t−r

.
(50)

4 Flux of energy and angular momentum

The wave equation (10) can be derived as an extremum of the action

S =

∫
d4xL[h] =

∫
d4x

[
−1

2

(
∂λhµν

)2
+ κhµνTµν

]
, (51)

such that
δS

δhµν
= 0 ⇒ �hµν = −κTµν . (52)

Requiring energy-momentum conservation of matter, the wave equation implies

−κ ∂µTµν = � ∂µhµν = 0, (53)

which shows that by imposing the De Donder gauge condition (9) we consistently select a
special set of solutions of the wave equation. The action can be converted to the hamilto-
nian form by defining

πµν =
δS

δ ∂th
µν = ∂thµν , (54)

and performing a Legendre transformation

H = ∂th
µνπµν − L[h] =

1

2
π2
µν +

1

2

(
∇hµν

)2 − κhµνTµν . (55)

8



The field equations in hamiltonian form then read

∂thµν =
∂H
∂πµν

= πµν , ∂tπµν = − ∂H
∂hµν

= ∆hµν + κTµν . (56)

It also follows that the energy density of the gravitational field is expressed by

E [h] =
1

2

[(
∂thµν

)2
+
(
∇hµν

)2]− κhµνTµν , (57)

where the term with the energy-momentum tensor describes the interaction energy of
gravity with matter. There is an associated field momentum Π to be identified with the
energy flux of gravitational waves:

Π = −∇hµν∂thµν , (58)

such that an equation of continuity holds in the form

∂tE = −∇ ·Π− κhµν∂tTµν . (59)

For free gravitational waves or gravitational fields with stationary sources it follows that
the energy EV inside a volume V changes only by a flux of gravitational energy across the
boundary ∂V :

dEV
dt

=

∫
V

d3x ∂tE = −
∫
V

d3x∇ ·Π = −
∮
∂V

d2σΠn, (60)

where
Πn = n̂ ·Π, (61)

is the normal component of the field momentum Π at the surface element d2σ of the
boundary obtained by the inproduct with the normal unit vector n̂.

In addition to energy and momentum gravitational waves can also transport angular
momentum. Indeed, with a given spatial volume V we can associate the 3-dimensional
axial vector quantity

LV i = εijk

∫
V

d3x
(
2hjl ∂thkl − xj∇khmn ∂thmn

)
. (62)

In the absence of sources in the volume V the rate of change of Li is given by:

dLV i
dt

= εijk

∫
V

d3x

[
2hjl∂

2
t hkl − xj∇khmn∂

2
t hmn −

1

2
xj∇k (∂thmn)2

]
= εijk

∫
V

d3x

[
2hjl∆hkl − xj∇khmn∆hmn −

1

2
xj∇k (∂thmn)2

]
(63)

= εijk

∮
∂V

d2σ n̂m

[
hjl

↔
∇m hkl − xj∇khnl∇mhnl

]
− εijk

∮
∂V

d2σ n̂kxjL[h].
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As before d2σ is a surface element on the boundary and n̂ the local normal unit vector.
Clearly if the field hij is localized in a finite volume and we take V large enough all boundary
terms vanish and we have a conservation law

dLV i
dt

= 0. (64)

If the fields do not vanish at the boundary an amount of angular momentum is transported
across the boundary as given by the surface integral. If there is matter inside the volume
V the expression (62) no longer represents the total angular momentum inside the volume
V ; the angular momentum of the matter will have to be included, and there may be
transfer of angular momentum between matter and gravitational radiation. As long as no
matter is flowing across the boundary of the integration volume, eq. (63) still represents
the contribution to the angular momentum balance inside V arising from transport by
gravitational waves across the boundary.

5 Plane waves

The simplest application of the expressions for energy and angular momentum density is
provided by free plane waves (27). For ease of evaluation in this section we keep explicit
powers of the velocity of light c.

Consider a plane wave in the TT -gauge with wave vector k = (0, 0, ω/c) in the z-
direction and arbitrary polarization. Decomposing the amplitude it has only components
in the x-y-plane of the form

hab = eab cosω(t− z/c), eab =

(
e+ e×
e× −e+

)
, a, b = (1, 2). (65)

As the energy flow is in the direction of the field momentum (the z-direction), the energy
flow per unit area A in the x-y-plane at the point z = 0 is given by

dE

dAdt

∣∣∣∣
z=0

= Πz|z=0 = ∂thab∇zhab|z=0 = −2ω2

c

(
e2+ + e2×

)
sin2 ωt. (66)

Here the minus sign indicates that the energy is lost from the region z < 0. The time
averaged energy loss over a period T = 2π/ω then is

dE

dAdt
=

1

T

∫ T

0

dt
dE

dAdt

∣∣∣∣
z=0

= −ω
2

c

(
e2+ + e2×

)
. (67)

We wish to express this result in terms of deformations of the metric from flat minkowskian
geometry; according to eq. (3) this is accomplished by writing

aij = gij − δij = 2κhij. (68)
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In terms of these dimensionless deformations the energy flux reads

dE

dAdt
= − ω2

4κ2c

(
a2+ + a2×

)
=
πc3f 2

8G

(
a2+ + a2×

)
, (69)

where we have also replaced the angular frequency with the period frequency: ω = 2πf . It
is easy to check that this quantity has the dimensions of W/m2. In figure 1 a dimensionless
amplitude h =

√
a2+ + a2× has been plotted as a function of frequency f for various values

if the power per unit area, ranging from 1 µW/m2 to 1 MW/m2. The frequency range in
which the LIGO (and Virgo) detectors operate is indicated.

Fig. 1: Deformation amplitudes of plane gravitational waves as a function of frequency f for

intensities ranging from 1 µW/m2 - 1 MW/m2.

The weakness of gravity, or equivalently the stiffness of space, is manifest. For example a
wave with frequency f = 100 Hz and a large energy flux of 1 W/m2 deforms space by as
little as 2.5× 10−20.

Plane waves can also carry angular momentum, but this quantity is associated with
circularly polarized waves. To see this, consider again a plane wave moving in the z-
direction, but with a fixed phase difference between the linear polarization modes:

h11 = −h22 = e+ cosω (t− z/c) , h12 = h21 = e× cos[ω (t− z/c) + α]. (70)
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We compute the transport of the z-component of angular momentum per unit area across
the x-y-plane at fixed z = 0. The only contribution to this angular momentum flux is

dLz
dAdt

∣∣∣∣
z=0

= εab hac
↔
∇z hbc

∣∣∣
z=0

= −4ke+e× sinα, (71)

with k = ω/c. Again the sign signifies the loss of angular momentum in the region z < 0.
Clearly the angular momentum transport is maximal for a phase difference α = ±π/2
between the two linear polarization modes, corresponding to purely left- or right-rotating
amplitudes. The sign of the angular momentum transported in the positive z-direction
equals the sign of the phase difference α ∈ [−π, π).

As for the other components of angular momentum, there is no net flux of Lx,y across
the plane z = 0.

6 Energy and angular-momentum flow

created by matter sources

For practical applications it is convenient to consider isolated sources of gravitational waves,
enclose them in a large sphere of radius r and compute the flux of energy in the form of
gravitational waves across the spherical surface. Then the surface element in eq. (60) is

d2σ = r2 sin θdθdϕ ≡ r2d2Ω, (72)

with d2Ω being the 2-dimensional spatial angle measured as the surface element cut out of
the unit sphere by the cone with opening angles (θ, ϕ). With some abuse of notation we
can then define the differential flux of energy in the direction of the cone as

dE

d2Ωdt
= r2Πr = r2∂thµν∂rhµν . (73)

Now if the radial distance r is lage enough, the only components of the gravitational field
contributing to the flux are those falling off no faster than 1/r, which are precisely the
retarded quadrupole fields (49). In the TT -gauge these fields depend on time only through
the derivatives of the mass quadrupole components and therefore

∂thij = − κ

8πr
(δik − r̂ir̂k) (δjl − r̂j r̂l)

∂3

∂t3

(
Qkl +

1

2
δkl r̂ ·Q · r̂

)
u=t−r

,

∂rhij =
κ

8πr
(δik − r̂ir̂k) (δjl − r̂j r̂l)

∂3

∂t3

(
Qkl +

1

2
δkl r̂ ·Q · r̂

)
u=t−r

+O(1/r2),

(74)

with no components h0µ contributing. The differential energy flux at large r is therefore
given by

dE

d2Ωdt
= −r2

(
∂thij

)2
= − κ2

64π2

[
Tr
···
Q2 − 2r̂ ·

···
Q 2 · r̂ +

1

2
(r̂·

···
Q ·r̂)2

]
. (75)
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The minus sign here denotes that energy is flowing out of the surface. Reinstating powers
of c and recalling the relation (2) of the coupling κ with Newton’s constant the result
becomes

dE

d2Ωdt
= − G

8πc5

[
Tr
···
Q2 − 2r̂ ·

···
Q 2 · r̂ +

1

2
(r̂·

···
Q ·r̂)2

]
. (76)

The total energy emitted per unit time by the source is found by integrating the expression
(76) over all angles. This calculation can be simplified by the elementary results

1

4π

∫
d2Ω r̂ir̂j ≡ 〈r̂ir̂j〉 =

1

3
δij, 〈r̂ir̂j r̂kr̂l〉 =

1

15
(δijδkl + δikδjl + δilδjk) . (77)

It is then straightforward to show that

dE

dt
= − G

5c5
Tr
···
Q 2. (78)

As for the energy flux we can also write down an expression for the directional angular
momentum flux per unit of spherical angle. Observing that n̂k = xk/r and εijk xjxk/r = 0,
the last term in eq. (63) vanishes and

dLi
d2Ωdt

= εijkr
2r̂l
(
2hjn∇lhkn − xj∇khmn∇lhnm

)
= εijkr

2
(
2hjn∂rhkn − xj∇khmn∂rhnm

)
.

(79)

Recalling the results (74) we get

dLi
d2Ωdt

= −εijkr2
(
2hjn∂thkn − xj∇khmn∂thnm

)
+O(1/r). (80)

As we always apply the large-r limit we neglect the terms falling off with powers of r, and
insert the expression for the quadrupole fields (49). The first term on the right-hand side
of (80) then becomes

2εijkr
2hjn∂thkn =

κ2

32π2
εijk

[(
··
Q ·

···
Q

)
jk

−
(
··
Q ·r̂

)
j

(
···
Q ·r̂

)
k

− r̂j
(
···
Q ·

··
Q ·r̂−

··
Q ·

···
Q ·r̂+

··
Q ·r̂ r̂·

···
Q ·r̂−

···
Q ·r̂ r̂·

··
Q ·r̂

)
k

]
.

(81)

To evaluate the second one we use the results

∇ir = r̂i, ∇ir̂j =
1

r
(δij − r̂ir̂j) ; (82)

then the leading terms, surviving in the large r limit, are

εijkr
2xj∇khmn∂thnm = − κ2

32π2
εijkr̂j

[
···
Q ·

··
Q ·r̂−

···
Q ·r̂ r̂·

··
Q ·r̂ +

1

2

··
Q ·r̂ r̂·

···
Q ·r̂

]
k

. (83)
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Combining these results we get for the direction-dependent angular momentum flux after
reinstating powers of c:

dLi
d2Ωdt

= − G

4πc5
εijk

[(
··
Q ·

···
Q

)
jk

−
(
··
Q ·r̂

)
j

(
···
Q ·r̂

)
k

+ r̂j

(
··
Q ·

···
Q ·r̂ − 1

2

··
Q ·r̂ r̂·

···
Q ·r̂

)
k

]
.

(84)

Finally integrating over all angles using eqs. (77) the total angular momentum flux is found
to be

dLi
dt

= −2G

5c5
εijk [

··
Q ·

···
Q]jk. (85)

7 Newtonian binaries

In this section we consider a newtonian binary star system in circular orbit. The masses
of the stars are m1,2, and their separation is

R = r2 − r1. (86)

We take the center of mass (CM) as the origin of co-ordinates, hence

m1r1 +m2r2 = 0. (87)

Then we can convert the positions to the CM frame as

r1 = −m2

M
R, r2 =

m1

M
R. (88)

In this frame the newtonian gravitational force is

µR̈ = −GµM
R2

R̂, (89)

where M and µ are the total and reduced mass, respectively:

M = m1 +m2, µ =
m1m2

m1 +m2

. (90)

We first consider circular orbits in the absence of gravitational radiation. Taking the plane
of the orbit to be the x-y-plane, the orbits can be parametrized by

R = R (cosωt, sinωt, 0) . (91)

Inserting this into eq. (89) one gets

ω2 =
GM

R3
. (92)
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In such an orbit the total energy is

E =
1

2
µṘ2 − GµM

R
= −GµM

2R
, (93)

and the angular momentum is

L = µR× Ṙ = (0, 0, Lz), Lz = µR2ω = µ
√
GMR. (94)

The mass quadrupole moment of this binary system is

Qij = m1

(
r1ir1j −

1

3
δij r21

)
+m2

(
r2ir2j −

1

3
δij r22

)

=
µR2

2

 cos 2ωt+ 1
3

sin 2ωt 0
sin 2ωt − cos 2ωt+ 1

3
0

0 0 −2
3

 ,

(95)

and therefore

··
Qij= −2µR2ω2

 cos 2ωt sin 2ωt 0
sin 2ωt − cos 2ωt 0

0 0 0

 ,

···
Qij= −4µR2ω3

 − sin 2ωt cos 2ωt 0
cos 2ωt sin 2ωt 0

0 0 0

 .

(96)

Substitution into eq. (75) then leads to the expression for the differential energy loss of the
system by emission of gravitational waves:

dE

d2Ωdt
= −4G4µ2M3

πc5R5

[
cos2 θ +

1

4
sin2 2 (ϕ− ωt) sin4 θ

]
. (97)

After integration over the angles the expression for the total energy loss is

dE

dt
= −32G4µ2M3

5c5R5
. (98)

Similarly by eq. (85) the total loss of angular momentum is

dLz
dt

= −32G3µ2M2

5c5R3

√
GM

R
. (99)

The approach taken here is to assume that the binary system loses only a small fraction of
its energy and angular momentum per orbit; thus the system changes only adiabatically
and at any time one can describe its motion by an almost stable keplerian orbit, in this
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case a circular orbit of slowly changing radius. Indeed, from the two formulae (93) and
(94) one can calculate this slow orbital evolution:

dE

dt
=
GµM

2R2

dR

dt
,

dLz
dt

=
µ

2

√
GM

R

dR

dt
. (100)

Comparing these expressions with the results (98) and (99) we find that on both accounts
the orbital change is consistently given by

dR

dt
= −64G3µM2

5c5R3
. (101)

Equivalently the angular frequency ω or orbital period T = 2π/ω changes by

dω

dt
=

96G5/3

5c5
µM2/3ω11/3,

dT

dt
= −192π

5

(
2πGµ3/5M2/5

c3T

)5/3

. (102)

The last expression has the advantage that it is dimensionless.
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Exercises

1. Linearized General Relativity

1. The Riemann-Christoffel connection is defined in terms of the metric by

Γ λ
µν =

1

2
gλκ (∂µgνκ + ∂νgµκ − ∂κgµν) .

a. Using a metric of the form gµν = ηµν + 2κhµν show that

Γ λ
µν = κηλκ (∂µhνκ + ∂νhµκ − ∂κhµν) +O(κ2)

= κ
(
∂µh

λ
ν + ∂νh

λ
µ − ∂λhµν

)
+O(κ2),

where the Minkowski metric has been used to raise and lower indices.
b. The Riemann curvature tensor is defined by

R λ
µνκ = ∂µΓ λ

νκ − ∂νΓ λ
µκ − Γ σ

µκ Γ λ
νσ + Γ σ

νκ Γ λ
µσ .

Derive the result

R λ
µνκ = κ

(
∂µ∂κh

λ
ν − ∂ν∂κh λ

µ + ∂λ∂νhµκ − ∂λ∂µhνκ
)

+O(κ2),

and compute the Ricci tensor Rµν = R λ
µλν and the Riemann scalar R = gµνRµν .

c. By definition the Einstein tensor is

Gµν = Rµν −
1

2
gµνR.

Show that

Gµν = κ
(
�hµν + ∂µ∂νh− ∂µ∂λh λ

ν − ∂ν∂λh λ
µ − ηµν�h+ ηµν∂λ∂κh

λκ
)

+O(κ2).

Use this expression to derive eq. (1) from the standard Einstein equations taking
account of definition (2).
d. Check the invariance of the linearized form of Gµν under gauge transformations

h′µν = hµν + ∂µξν + ∂νξµ +O(κ).

2. a. Show that the definition of hµν in eq. (6) implies

hµν = hµν −
1

2
ηµνh

λ
λ.

b. Check the invariance of eq. (7) under the gauge transformations (8).
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2. Free field modes

1. a. Check that the transformations of the form

ε′µν = εµν + kµαν + kναµ − ηµνkλαλ

leave the field equation (19) for the wave modes invariant.
b. Show that we can identify iαµ(k) with the plane-wave coefficients of the gauge
parameters:

ξµ(x) = i

∫
d4k

(2π)2
αµ(k)e−ik·x,

and that the reality condition α∗µ(k) = −αµ(−k) is equivalent with ξ∗µ(x) = ξµ(x).

2. a. From the definition k2 = k2 − k20 show that∫
d4k δ(k2)A(k) =

∫
d3k

2ωk

[A(k, k0 = ωk) + A(k, k0 = −ωk)] ,

where ωk =
√

k2. Explain the various steps.
b. Use this result to derive the expression (27).

3. Emission of quadrupole waves

1. Show that

φ(x, t) = − 1

4π

∫
d3x′

ρ(x′, t− |x′ − x|)
|x′ − x|

is a solution of the inhomogeneous wave equation

�φ(x, t) = ρ(x, t).

Explain why it is called the retarded solution.

2. Check that the gravitational wave solution (43) satisfies the conditions (45) of being
transverse and traceless.

4. Flux of energy and momentum

1. Consider a theory of a scalar field φ(x) with lagrangean action

S[φ] =

∫ x2

x1

d4xL[φ, ∂φ] =

∫ x2

x1

d4x

[
−1

2
∂µφ∂µφ−

m2

2
φ2 − φρ

]
,

where xµ1,2 are the boundaries of integration.
a. Show that the variation of the action vanishes: δS = 0 under any variations δφ
fixed at the boundaries if and only if the field equation holds:(

�−m2
)
φ = ρ. (A)
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b. Derive the expression for the conjugate momentum of field at point x:

π ≡ ∂L
∂∂tφ

= ∂tφ,

and perform a Legendre transformation to obtain the hamiltonian density:

H = ∂tφπ − L.

Show that the hamiltonian takes the form

H ≡
∫
V

d3xH =

∫
V

d3x

[
1

2
π2 +

1

2
(∇φ)2 +

m2

2
φ2 + φρ

]
,

where V is the spatial volume of integration.
c. By considering general infinitesimal variations δφ(x) and δπ(x) in the hamiltonian
prove that the field equation (A) is reproduced by the Hamilton equations

∂tφ(x) =
δH

δπ(x)
, ∂tπ(x) = − δH

δφ(x)
,

allowing for partial integrations.
d. Prove that it follows that keeping the boundary terms from partial integrations

dH

dt
=

∫
V

d3x∇ · (π∇φ) .

e. Argue from this that defining the field energy density

E =
1

2
(∂tφ)2 +

1

2
(∇φ)2 +

m2

2
φ2 + φρ,

and a momentum density
Π = −∇φ ∂tφ,

they satisfy an equation of continuity

∂tE = −∇ · Π + φ ∂t ρ,

and therefore that for stationary sources1 the total energy in a volume V changes by
the flow of momentum across the boundary:

dEV
dt

=
d

dt

∫
V

d3x E = −
∮
∂V

d2σΠn,

with Πn the normal component of Π on the boundary ∂V , and a positive Πn signifying
that energy is flowing out of V .

1Sources for which the net change after integration over the volume V vanishes.
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2. Define the angular momentum associated with the fields in the volume V :

LV i ≡
∫
V

d3x (r× Π)i = −εijk
∫
V

d3x xj∇kφ ∂tφ.

using the field equation (A) show that

dLV i
dt

= −
∫
V

d3x [∇m (εijkxj∇kφ∇mφ) +∇k (εijkxjL[φ]) + φ εijkxj∇kρ] .

Argue that for spherically symmetric density ρ the last term vanishes, and

dLV i
dt

= −εijk
∮
∂V

d2σ (xj∇kφ n̂m∇mφ + n̂kxjL[φ]) .

5. Plane waves

1. Using eq. (69) compute the average energy flux in a plane gravitational wave of
frequency f = 250 Hz and with a total amplitude h =

√
a2+ + a2× = 10−21.

6. Energy and angular momentum flow created by matter sources

1. a. Using the explicit form

r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)) ,

prove the identities (77). Check them by computing traces over index pairs (ij).
b. Use these results to derive the expression (78) from (77).
c. Similarly derive eq. (85) from (84).

7. Newtonian binaries

1. Derive the expressions (93) and (94) for the energy and angular momentum of a
binary system in the CM frame.

2. Use eq. (76) to derive the expression (97) for the energy loss of a binary system in
circular orbit.

3. Derive equation (101) for the shrinking of the orbit both from the energy loss and
from the angular momentum loss.

4. a. Consider a binary neutron star system with masses m1 = 1.2M� and m2 = 1.5M�,
where M� = 2× 1030 kg is the solar mass. Compute the loss of energy and angular
momentum when the stars are in a circular orbit of radius R = 106 km.
b. How much does the radius decrease in a year (3.16× 107 s)?

20


